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Highlights 

- A mobile, fully-automated operant system for the horse is presented 

- A validated 3-CSRTT training method has been developed 

- Horses required 3 days of training to achieve learning criterion  

- Horses reach steady state responding within six sessions 

- Horses may provide a complement to rodent models of human neurological  

dysfunction 
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ABSTRACT 

Background: Large animal models of human neurological disorders are 

advantageous compared to rodent models due to their neuroanatomical complexity, 

longevity and their ability to be maintained in naturalised environments. Some large 

animal models spontaneously develop behaviours that closely resemble the 

symptoms of neural and psychiatric disorders. The horse is an example of this; the 

domestic form of this species consistently develops spontaneous stereotypic 

behaviours akin to the compulsive and impulsive behaviours observed in human 

neurological disorders such as Tourette’s syndrome. The ability to non-invasively 

probe normal and abnormal equine brain function through cognitive testing may 

provide an extremely useful methodological tool to assess brain changes 

associated with certain human neurological and psychiatric conditions. 

New Method: An automated operant system with the ability to present visual and 

auditory stimuli as well as dispense salient food reward was developed. To validate 

the system, ten horses were trained and tested using a standard cognitive task 

(three choice serial reaction time task (3-CSRTT)).  

Results: All animals achieved total learning criterion and performed six probe 

sessions. Learning criterion was met within 16.30±0.79 sessions over a three day 

period. During six probe sessions, level of performance was maintained at 

80.67±0.57% (mean±SEM) accuracy.  

Comparison with existing method(s): This is the first mobile fully automated system 

developed to examine cognitive function in the horse. 
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Conclusions: A fully-automated operant system for mobile cognitive function of a 

large animal model has been designed and validated. Horses pose an interesting 

complementary model to rodents for the examination of human neurological 

dysfunction.   

Highlights 

- A mobile, fully-automated operant system for the horse is presented 

- A validated 3-CSRTT training method has been developed 

- Horses required 3 days of training to achieve learning criterion  

- Horses reach steady state responding within six sessions 

- Horses may provide a complement to rodent models of human neurological  

dysfunction 

Key words: Horse; Operant; Cognition; Learning; 3-CSRTT; Tourette’s Syndrome. 

 

1.0 Introduction  

The development of large animal models for examination of neurocognitive dysfunction is 

increasing in popularity, with several examples in sheep (Ovis aries domestica; Morton & 

Howland, 2013; McBride et al., 2016) and pigs (Sus scrofula domesticus; Morton & 

Howland, 2013). Large animal and human brains demonstrate distinct neuroanatomical 

similarities which rodent models lack, for example both possess gyrencephalic cerebral 

cortex and heterogeneous striatal structures (McBride & Hemmings, 2005; Morton & 

Howland, 2013); the latter being particularly important for detailed study of basal ganglia 

disorders such as Tourette’s syndrome (TS; Worbe et al., 2012), Parkinson’s disease (PD; 

Obeso et al., 2000), addiction (Haber, 2003) and early onset Huntington’s disease (HD; 
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Rosenblatt & Leroi, 2000). Whilst relatively expensive compared to rodents, large animals 

can be housed in a naturalised environment (Morton & Howland, 2013), negating the 

influence of artificial, sub-optimal conditions that can themselves lead to neural 

dysregulation (Garner & Mason, 2002). Furthermore the extended life expectancy of the 

large animals at over 15 years compared to the rodent at approximately 2 years (Levine, 

1997; Morton & Howland, 2013), is also highly beneficial for modelling slow progression 

neurodegenerative diseases including PD and HD, but also phasic pathology such as 

schizophrenia as well as further aiding our understanding of the longitudinal development of 

TS. 

One potentially advantageous large animal model of neurological dysfunction that is yet to 

be explored is the horse (Equus caballus). As well as having all of the large animal model 

advantages previously described, a percentage of horses also consistently develop a 

hyperdopaminergic state associated with spontaneous stereotypy development (McBride & 

Hemmings, 2005). These behaviours have morphological and behavioural characteristics 

that are extremely similar to the spontaneous compulsive/impulsive symptoms of 

neurological disorders such as TS. It may be extremely useful therefore, to be able to probe 

equine brain function in order to gain a further understanding of the neurological changes 

associated with human neurological and psychiatric conditions that manifest stereotypy as a 

symptom. This can be achieved both invasively (neurophysiological assays) and non-

invasively (cognitive battery), but the latter has the advantage of being able to monitor the 

animal over time within a longitudinal context.  

 

The horse is able to achieve many of the standard cognitive paradigms used in neurological 

testing, such as extinction learning tasks (Hemmings et al., 2007; Roberts et al., 2015), the 
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two-choice discrimination reversal task (Hanggi & Ingersoll, 2009), the match-to-sample 

task (Gabor & Gerken, 2012), and memory tests (Hanggi & Ingersoll, 2009), amongst 

others (Hanggi, 2003; Hanggi, 2005). Overall these data strongly suggest that the horse 

may be a highly suitable large animal model of human neurological and psychiatric 

disorders.  

 

The primary objective of this study, therefore, was to design and produce a portable, fully-

automated operant system (OS) designed for efficient, simple cognitive and neural testing 

for the horse. In order to validate the OS, a three choice version of the well utilised five 

choice serial reaction time task in other species (Bari et al., 2008; Parker et al., 2012) was 

developed and tested using 10 horses. 

 

2.0 System Specification and Fabrication 

2.1 System Specification 

A number of key aspects for the development of the OS were important. The portability of 

the OS was crucial, both for short-term use, but also for the potential long-term cognitive 

testing at different establishments. This required the OS to be light and small enough for 

ease of transport. It was also critical that the OS was sufficiently robust to protect it from 

damage under standard usage conditions. 

 

Ethological relevance of the OS was also considered to ensure the horse would be both 

capable and motivated to perform the cognitive test. Some evidence indicates that 
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presenting the stimuli at ground level is more suitable for horses (Hall et al., 2003). 

However, complex cognitive tasks could involve the presentation of picture based stimuli 

e.g. shapes, which may require greater visual acuity, and therefore the use of the binocular 

vision (Harman et al., 1999). Binocular vision is suggested to cover approximately 80° to the 

front of the horse and is typically used when the head is raised, with lateral vision utilised 

when the head is closer to the ground (Harman et al., 1999). As such, visual acuity may be 

less clear when the horse is observing at ground level (Hall, 2007), therefore the long term 

use of the OS for a range of cognitive tests could be compromised should the stimuli be 

presented at ground level. Additionally, the feed trough was designed to sit below the 

screens to which small amounts of fibre based concentrate feed were to be deposited. 

Whilst primarily grazing animals (Hall, 2007), horses can often be observed foraging at 

wither-to-head level in shrubs and trees (van den Berg et al., 2015), and are similarly fed in 

the stable environment with a hay net under some management regimes (Ellis et al., 2015). 

Thus chest height feeding apparatus was deemed suitable in this case. As horses are 

trickle feeders they do not need to be food deprived prior to the performance of the 

cognitive task in order to maintain motivation (Parker et al., 2008), increasing the 

ethological relevance with regards to the release of small amounts of concentrate feed as 

reward, as well as minimising ethical concerns associated with enforced feed restriction 

recommended to maintain motivation during the rodent 5-choice serial reaction time task 

(Bari et al., 2008). 

 

In addition to the visual stimuli, different auditory cues were utilised to alert the horse as to 

the imminent display of the visual stimulus, as well as for timeout, correct and incorrect 

choice selection. Horses are able to recognise the vocal calls of a ‘familiar’ compared to 

‘stranger’ horse (Basile et al., 2009). Additionally, horses have been shown to differentiate 



8 
 

between a ‘pleasant’ soft tone of human voice compared to a ‘stern’ human voice, altering 

their behaviour accordingly (Merkies et al., 2013). This would indicate therefore that the 

horse can identify between different auditory stimuli and use this as a basis to guide 

behaviour. Furthermore, the use of visual and auditory cues when presented separately has 

been shown to hold the attention of the horse towards the stimuli (Christensen et al., 2005); 

a phenomenon which would be of value here to ensure the animal is actively partaking in 

the cognitive task. 

 

The removal of human interference on horse performance was also an important aspect of 

design. The famous case of ‘Clever Hans’ is an excellent example of the horse being able 

to utilise subtle human cues to effectively perform the task, despite not actually learning the 

specific rules (Lambert, 1999). More recent research has also utilised this ability to cue the 

horse to guide the horse towards the food reward (Lovrovich et al., 2015). It is evident then 

that even small cues by any human observer could significantly impact horse performance 

on cognitive tasks, however unknowingly. Thus, during experimentation the role of the 

human was limited to positioning the horse in front of the OS, maintaining horse and human 

safety at all times by removing the animal should dangerous behaviours be performed, and 

the removal of the OS following task completion. 

 

To ensure the long-term use of the OS, the paradigm logic was processed using Matlab 

R2014a (Math-works, UK) with the Psychtoolbox (Psychtoolbox.org) addition. With the use 

of 12bit data acquisition device (DAQ; USB-1208fs, Measurement Computing, Norton, 

USA) Matlab software relays information from input channels i.e. the infrared sensors 

towards the output channels. For example, if the Matlab logic determines that a response 
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was correct based on the information of sensor origin in combination with cognitive task 

coding, then a transitor-transitor logic (TTL) pulse is sent via the DAQ to the feed-dispenser 

which then releases the reward. In contrast, if an inappropriate sensor is selected, Matlab 

will interpret this as such and no pulse will be sent and a different outcome will result. This 

process for the 3-CSRTT can be overviewed in Fig. 1, in line with the horse action.  

 

2.2 System Fabrication 

The OS was designed to be fully portable, but also to be mountable within the animal’s 

individual stable (Fig. 2). A previously successful set-up conducted with sheep (McBride et 

al., 2016) was utilised as a basis for the design, though was adapted significantly to 

address the OS requirements. Visual stimuli were presented utilising a three LCD screen 

(ePathChina, China) format with partitions between screens. The partitions were important 

to prevent the horse from moving its head between the three screens, thereby activating 

multiple infrared sensors (Omron, Nufringen, Germany), but also to ensure the horse made 

a discrete screen selection. Responses were registered once the infrared beam located 

above each screen was broken by the horses muzzle making contact with the screen. To 

account for sensor sensitivity, three positions at 20, 45 and 70mm from the backboard were 

available at the sensor mounting apparatus, allowing the sensors to be moved depending 

on the sensitivity required from the task. If the ‘correct’ response was made by the horse 

and registered with the breaking of the infrared beam, a TTL signal was sent to the DAQ, 

which triggered the release of 5g of unbranded horse and pony nuts (Jollyes, UK) from the 

feed-dispenser. The feed-dispenser design was unchanged from the sheep version 

(McBride et al., 2016) with the exception of adapting to 6.50mm horse feed. As such, the 

feed-dispenser was operated from a direct power source (24 V), as opposed to mains 
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electricity. The feed was released into a feed trough, though in contrast to the ovine model, 

the horse set-up had one trough positioned central to the backboard. For portability 

purposes, the feed trough was removable during transit and could be repositioned on-site. 

 

To mount the OS onto a stable door, a brace structure attached to the backboard on-site via 

a series of boltholes located to the sides of the OS was constructed (Fig. 2). Ten paired 

boltholes with 12mm spacing allowed the OS to be adapted in height dependent on the size 

of the horse, where the screens were positioned slightly below eye level (Brubaker & Udell, 

2016), accounting for the blind spot in directly in front of the horse. The OS, including the 

feed-dispenser was custom-built (Quality Equipment, Woolpit, UK). To ensure full 

portability, the OS could run off of mains powered electricity, or via a 12v car battery 

(Halfords, UK) with the use of an electric inverter (Photonic Universe Ltd, UK). Additionally, 

the feed-dispenser was designed run off of a chargeable internal battery (McBride et al., 

2016). The entire operation of the OS was accomplished utilising the TOUGHPAD FZ-G1 

(Panasonic, UK), which allowed the programming of Matlab, on-site running of the code, 

and recording outputs. The final weight of the OS was approximately 32kg, and therefore 

required two humans to safely lift the OS into position on the stable door. 

 

3.0 Behavioural Testing 

3.1 Sample Animals 

Ten experimentally naïve horses aged 2-17 years, of various breeds and sex (n=5 mares; 

n=5 geldings) ranging from 12-16.2 hands high (hh) volunteered by private owners were 

recruited. All animals were fed on a forage based diet (e.g. hay/haylage). No management 



11 
 

or feeding regime modifications were implemented, given that feed deprivation is thought to 

not be required to maintain horses feeding motivation as trickle feeders (Parker et al., 

2008). The experimental procedure was conducted within the horses’ own stable, and the 

animal was not limited in terms of eye-contact with conspecifics throughout in an attempt to 

reduce stress 

 

3.2 Pavlovian Acclimation 

The horse was loosely held by the operator for safety reasons, who was positioned on the 

right and side of the device though in such a manner as to be unaware of any screen 

presentations, but also to initiate the software. The operator initiated the Pavlovian 

Acclimation stage of training via the TOUGHPAD. All three LCD screens remained black, 

with 5g feed released into the trough every 30 seconds for 15 trials. Following the final trial, 

a long low-pitched auditory tone (AT; 260Hz sinusoidal wave form, 1.9s) was given to 

signify the end of the session.  

 

3.3 Pre-Training 1 

The purpose of Pre-Training 1 (PT1) was to expose and condition the animal to associate 

both the audio conditioned stimulus (CS1; 400Hz sinusoidal wave form, 0.15s) and visual 

conditioned stimulus (CS2; a plain white screen) with feed reward. The session commenced 

with the concurrent presentation of CS1 and CS2 on all three screens. If an operant 

response was conducted on any of the three screens within a 30 second time-limit, 5g of 

feed was immediately released. If no operant response was sensed, feed was released 

after 30 seconds. Following feed release, CS2 was removed to provide black screens only 
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for a 15 second inter-trial-interval (ITI) to allow the animal to consume the feed prior to the 

initiation of the next trial. As with all sessions, a total of 15 trials was utilised. An AT to 

signify the end of the session was presented after the final trial. Learning criterion to 

proceed to Pre-Training 2 was set at one session with at least a 50% response rate towards 

CS2.  

 

3.4 Pre-Training 2 

Pre-Training Stage 2 (PT2) was designed to further encourage an operant response from 

the animal, and extend trial and error learning initiated during PT1. Similar to PT1, PT2 was 

initiated by the simultaneous presentation of CS1 and CS2 on all three screens. CS2 was 

presented for 30 seconds, however if zero operant responses were performed during this 

time, the 15 second ITI commenced with no feed release. If an operant response was 

sensed on any of the three screens, 5g of feed was immediately released from the feed 

hopper followed by the 15 second ITI. Following the final trial, the end of the session was 

signalled by AT presentation. Learning criterion to proceed onto Pre-Training 3 was set at 

one session with a minimum of 50% response rate. 

  

3.5 Pre-Training 3 

The purpose of Pre-Training 3 (PT3) was to introduce the horse to CS2 on one screen, and 

to encourage the horse to respond only towards this screen. To initiate the session, CS1 is 

given concurrently with CS2 on all three screens. The horse was required to select any one 

of the three screens to achieve a feed reward and commence the remainder of the session. 

Following a 15 second ITI, CS1 was once more presented simultaneously with CS2, though 
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importantly CS2 occurred on only one of the three screens in a pseudorandom order. Each 

screen presented CS2 five times. To continue onto the next trial within the session, the 

horse was required to select the screen displaying CS2. There was no time-limit to perform 

this operant response. Once an operant response was conducted on the correct screen, 5g 

of feed was released and the 15 second ITI was initiated prior to the next trial within the 

sequence. To complete the session, the animal was required to select the correct screen for 

each of the 15 trials. The end of the session was signified by the AT. Every horse was 

required to perform three sessions of PT3 before commencing Pre-Training 4a. 

 

3.6 Pre-Training 4a 

The aims of Pre-Training 4a (PT4a) were two-fold:- first, to introduce the consequences of 

error to the horse; and second, to introduce a time-limit within which an operant response 

was required. As with PT3, the session initiation was highlighted with the presentation of 

CS1 and CS2 on all three screens concurrently. To initiate the session, the horse was 

required to perform an operant response on any of the three screens to achieve a feed 

reward and initiate the 15 second ITI. No time-limit was given to perform this initial operant 

response. Following the 15 second ITI, both CS1 and CS2 were presented, with CS2 

occurring on only one screen in a pseudorandom order, each screen displaying CS2 five 

times within the session. During PT4a, an incorrect operant response (error of commission) 

resulted in a short high-pitched incorrect auditory tone (IAT; 1000Hz sinusoidal wave form, 

0.5s) and immediate ITI commencement with no feed reward attainment. CS2 during PT4a 

was only displayed for 20 seconds, with an additional 5 second black screened limited hold 

(LH), allowing a maximum 25 seconds for the horse to perform an operant response. If no 

operant response was performed during this time (error of omission), a time-out auditory 



14 
 

tone (TOAT; 2250Hz sinusoidal wave form, 0.3s) was produced, and the ITI commenced 

with no feed reward attainment. Should the horse perform an operant response on the 

correct screen, immediate 5g of feed delivery and ITI commencement was the result. The 

end of the session was highlighted by the AT. To proceed to Pre-Training 4b, the horse was 

required to perform two consecutive sessions of PT4a with a minimum 80% accuracy, 

inclusive of omitted responses. The probability of such events occurring by chance was 

calculated at p = 5.21-8 utilising a binomial probability calculation. Any compulsive choices 

(i.e. those made during the ITI) were recorded.  

 

3.7 Pre-Training 4b 

Pre-Training 4b (PT4b) was conducted in the same manner as PT4a, except that the time-

limit for which to perform the operant response was reduced. During PT4b, CS2 was 

presented for 10 seconds, with a 5 second LH. Thus the time allowed to perform an operant 

response during PT4b was reduced to 15 seconds. The learning criterion to proceed to Pre-

Training 4c was set at two consecutive sessions of PT4b with a minimum 80% accuracy (p 

= 5.21-8) inclusive of omitted responses. Once more compulsive choices were monitored.  

 

3.8 Pre-Training 4c 

Pre-Training 4c (PT4c) was a further variation of PT4a and PT4b, with the aim to reduce the 

response rate to its final duration. For PT4c, CS2 was presented for 5 seconds, followed by 

a 5 second LH before time-out. The horse therefore had a total of 10 seconds to complete 

an operant response. To proceed onto Task Training, the horse was required to achieve 



15 
 

learning criterion of two consecutive sessions with a minimum 80% accuracy (p = 5.21-8) 

inclusive of omitted responses. Compulsive responses were monitored though unpunished. 

 

3.9 Task Training 

Task Training (TT) was utilised for the introduction of the pre-stimulus interval (PSI), during 

which impulsive choices towards screens could be conducted. The session was initiated as 

per PT4c. Following the ITI, CS1 was presented, with CS2 being displayed 5 seconds later 

on one screen in a pseudorandom order for 5 seconds, with a 5 second LH. Each screen 

displayed CS2 five times throughout the session. If an operant response was performed 

during the 5 second PSI this was counted as an impulsive error, resulting in IAT, zero feed 

attainment and immediate cessation of that trial, with the commencement of the ITI. If no 

impulsive choice was made, the trial continued. Correct choices within the time-limit were 

reinforced with 5g of feed, incorrect responses were highlighted with IAT followed 

immediately by the ITI. Should no response be made within the time-limit, this resulted in 

TOAT followed by the ITI. Learning criterion was set at two consecutive TT with a minimum 

80% accuracy (p = 5.21-8) inclusive of omitted and impulsive responses. Compulsive 

responses were monitored though unpunished. Should the horse not achieve learning 

criterion within a maximum of ten sessions, this was noted training ceased. During any 

phase, should the horse cease responding sessions for that day were halted, and repeated 

the following day. This was not however an issue in this current study. Should overall 

learning criterion not be met, then this would demonstrate that ten sessions is not sufficient 

for the horse to learn the 3-CSRTT and adaptions required to be made. Day criterion were 

also set in an attempt to standardise overnight learning consolidation. Day 1 training ended 
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following two PT4a sessions, Day 2 ceased following two TT sessions, and Day 3 training 

concluded once learning criterion had been met, followed by six probe sessions. 

 

3.10 Analysis 

To determine the success of the OS and its corresponding coding a number of 

measurements were taken, including sessions to criterion, session duration, latency of 

approach and compulsive/impulsive responses where appropriate. From these data, the 

mean duration, sessions and days required to meet overall and individual task phase 

learning criteria could be calculated. To examine whether post-criterion performance were 

stable, data were subject to a repeated measures ANOVA. These data will then provide a 

standardised procedure for application of the equine 3-CSRTT. 

 

4.0 Results 

All animals successfully attained learning criterion (Table 1). The total number of sessions 

(mean±SEM) required to achieve learning criterion was 16.30±0.79 over three consecutive 

days. On Day 1 8.00±0.00 (mean ±SEM) sessions were completed, compared to 7.40±0.74 

sessions on Day 2 and 0.90±0.36 training sessions on Day 3.  Fewer sessions were 

required on Day 3, due to a number of horses already achieving total learning criterion on 

Day 2. On Day 3, the six probe sessions were also completed (Table 2). 

 

The one-way repeated measures ANOVA determined that there was no significant 

difference in percentage accuracy of performance (F(5, 45) = 0.164, p=0.974) over the six 
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probe sessions. No other significant differences were observed for the remaining 

parameters (Table 2). 

 

5.0 Discussion 

In this paper we have introduced a fully portable OS for horses. The design of the OS 

enabled ease of set up within the horses’ stable by a lone operator. Whilst a 3-CSRTT is 

tested here, the use of Matlab programming demonstrates that the OS could simply 

adapted to conduct a series of other operant tests, for example stop-signal reaction time 

tasks, paired associates learning etc. subject to suitable coding development. Such 

adaptations of the OS provided here could therefore provide enhanced understanding of a 

variety of neural circuits in the horse for human comparison. 

 

Horses required a total of 16.30±0.79 sessions to attain learning criterion. Stable 

performance was maintained at 80.67±0.57% (mean±SEM) accuracy during the six probe 

trials. Additional non-significant differences over the six probe sessions for all parameters 

(Table 2) also indicated that the animals had efficaciously learned the task, and reached 

steady state performance. The success rate to achieve learning criterion was excellent at 

100%. This indicates that the horse successfully learned the 3-CSRTT and would therefore 

provide a suitable complementary model for investigating attentional, impulsive and 

compulsive responding; behaviours synonymous with stereotypy performance. Such 

parameters may prove useful in the continuing understanding of TS. Indeed, horses which 

perform the oral stereotypy crib-biting demonstrate a tendency to conduct impulsive 

decisions in a reinforcer choice procedure (Parker et al., 2008), and also demonstrate 
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apparent lack of sensitivity to extinction learning (Hemmings et al., 2007; Roberts et al., 

2015). This behavioural manifestation is thought to arise from midbrain dopaminergic 

dysfunction (McBride & Hemmings, 2005). Thus, crib-biting horses may have an 

impulsive/compulsive phenotype similar to TS, highlighting the advantage of using the 

horse as an improved large animal model. Further application could apply to other 

neurological disorders as the horse also spontaneously develop the degenerative disorder 

pituitary pars intermedia dysfunction (PPID; Gehlen et al., 2014) which may provide an 

interesting model for human neurodegenerative disease such as PD. 

 

Rodent models require approximately 25 sessions to reach learning criterion; though it is of 

note that rodent models perform a five choice paradigm, and also employ 0.5s stimulus 

duration, thus whilst not directly comparable demonstrates the potential of our equine OS 

for further validation. Additionally, rodent sessions comprise of significantly more trials per 

session; 100 compared to the 15 utilised for the horse here (Bari et al., 2008; Winstanley et 

al., 2008). The decision to utilise a lower 15 trials/session for the horse was based largely 

on previous sheep operant training (McBride et al., 2016), given that both equine and ovine 

are quadruped ungulate species. Furthermore, previous pilot study in our laboratory 

indicated that sessions of 45 trials resulted in a decrease in motivation to perform the task; 

a finding not observed during shorter sessions trialled here. Also of note is that in rodent 

(Bari et al., 2008; Winstanley et al., 2008) and fish (Parker et al., 2012) versions, each 

animal only performs one session per day. This may well result from the larger number of 

trials per session utilised for these animals. Due to the stable motivation and responding of 

the horses during both this study and earlier pilot work, it was apparent that the horse was 

capable of performing a much larger number of sessions per day. Whilst this may seem 

large in comparison to rodent and fish work, this essentially brings the number of individual 
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trials performed in line with the recommended rodent procedure (Bari et al., 2008). 

Additionally horses are known trickle feeders, having evolved as a grazing and browsing 

animal, and at pasture horses can graze for up to 18 hours a day (Thorne et al., 2005). 

Thus achieving a small amount of fibrous concentrate feed repeatedly could be construed 

as ethologically relevant in the context of natural horse feeding behaviours. It is possibly 

because of this elevated feeding capacity and grazing type behaviour evolved by horses 

that these animals here were able to continue for a greater number of sessions daily as 

opposed to rodent and fish equivalents. A similar reason could also account for the 

maintained motivation also observed by the horses in this study. 

 

Each horse was required to reach a specific level of learning in terms of learning criterion 

achieved per day as opposed to a specific number of sessions. The primary reason for this 

was as an attempt to standardise the level of learning and memory consolidation which was 

likely to occur overnight (Williams et al., 2008) through paradoxical sleep processes 

(Pederson et al., 2004; Marshall & Born, 2007; Diekelmann & Born, 2010). Given that the 

motivation to perform the task remained high, limiting the number of sessions per day could 

potentially be detrimental to learning and task performance parameters by increasing 

frustration around the OS due to premature removal, in line with anticipation frustration 

theory (Amsel, 1992). However, standardisation of such tasks is important to stabilise 

learning and ensure the same training regime for each individual. As such, the protocol 

suggested here provides a standardised training regime for the 3-CSRTT by ensuring every 

horse is reaching a specific level of performance each day. This also allows additional 

learning parameters to be measured, for example number of sessions required to reach 

learning criterion per stage, but also through number of sessions required to be performed 
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daily to attain these. Such parameters may well provide important information when 

investigating differences between behavioural phenotypes.  

 

The design of the OS allows for supplementary adaptations to be made to our baseline 

code for the 3-CSRTT. For example, it would be interesting to determine whether 

shortening the reaction time and limited hold duration to that more in line with the rodent 

work (Bari et al., 2008) would influence the attentional or impulsive/compulsive responding 

of the horse. Additionally, rodent and fish models recommend a variety of adaptations to 

further probe the neural circuitry. Such examples include the use of a variable ITI (both long 

and short), adjusting the brightness of the visual stimuli, and the introduction of a distracting 

noise (Bari et al., 2008). Indeed, the further development of the equine OS is ongoing in our 

laboratory, leading to enhanced adaptability of our OS.  

 

6.0 Conclusion 

Here a fully automated OS allowing the portable cognitive testing has been developed and 

successfully tested with a protocol produced to allow standardised replication of the 3-

CSRTT. Total learning criterion was achieved by 100% horses over three days, in 

16.30±0.79 sessions. The OS developed here has excellent potential for further application 

as a result of flexible design and use of Matlab programming, for both 3-CSRTT but also for 

a variety of other cognitive tests following suitable coding and testing. As such, the 

application of this OS could initiate the utilisation of the horse as a suitable large animal 

model for the examination of dopaminergic conditions, including TS in a natural setting.  
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Figure 1. The Matlab logic in relation to horse action during the 3-CSRTT (adapted from McBride et al., 2016) 
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Figure 2. The set-up for the equine OS. a) and b) are the diagrammatic specification of the front and side of the OS 
respectively, whilst c) and d) demonstrate the front and side view of the OS as presented to the horse within the stable. 
The OS operator stands to the right, next to the door braces, ensuring no view of the screens. 
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Plate 1. Performing the 3-CSRTT. NB image for demonstration 

purposes only, under experimental conditions the human is 

located to the immediate right hand side of the OS as to be 

unaware of CS presentations.  
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Table 1. Sessions and corresponding parameters required to achieve learning criterion (mean±SEM)  

 

  

Session Training Day Sessions 
Required  

Session 
Duration (s)  

Compulsive 
Responses 

Impulsive 
Response (%) 

PA 1 1.00±0.00 497.94±0.03 - - 

PT1 1 1.00±0.00 477.85±22.47 - - 

PT2 1 1.00±0.00 446.68±18.82 - - 

PT3 1 3.00±0.00 520.12±40.12 - - 

PT4a 2 3.20±0.70 426±19.56 2.77±0.91 - 

PT4b 2 2.20±0.13 378.83±11.88 2.02±0.78 - 

PT4c 2/3 2.00±0.00 349.69±6.56 2.65±1.18 - 

TT 3 2.90±0.38 411.14±6.35 4.73±1.35 5.77±1.62 
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Table 2. Parameters recorded from the six probe sessions (mean±SEM). NB – all p values are obtained from repeated measures ANOVA. 
a 
denotes sphericity was not 

violated, 
b 
denotes sphericity was violated and Greenhouse-Geisser p value was used 

 

 

 

Parameter 1 2 3 4 5 6 p value 

Duration (s) 418.86±10.25 404.74±7.24 415.14±6.67 410.44±7.67 411.96±9.71 415.23±9.24 0.278
a 

Response Latency (s) 3.71±0.45 3.30±0.30 3.63±0.32 3.40±0.37 3.16±0.37 3.63±0.42 0.326
b 

Accuracy (%) 80.00±4.77 79.33±3.78 82.67±4.24 80.67±3.51 79.33±7.98 82.00±4.22 0.974
a 

Commission Errors (%) 6.00±1.85 9.33±3.47 6.67±2.43 12.00±2.77 6.67±2.63 8.00±1.94 0.400
b 

Impulsive Responses (%) 8.67±2.44 7.34±3.36 3.34±1.11 3.34±0.37 4.00±1.47 2.00±1.02 0.133
b 

Impulsive Response Latency (s) 2.63±0.43 3.50±0.46 2.38±0.53 2.84±0.46 3.02±0.27 1.87±0.50 0.241
b 

Compulsive Responses 3.80±0.68 3.10±0.82 2.30±0.78 4.40±1.11 2.90±0.85 2.30±0.79 0.314
a 

Compulsive Response Latency (s) 6.33±1.07 4.47±1.18 6.19±1.12 6.05±1.15 6.80±1.74 7.04±1.50 0.677
b 

Omission (%) 6.00±3.64 4.00±3.33 7.33±3.06 4.00±2.27 10.00±7.32 8.00±4.53 0.427
b 


