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Abstract 

Avulsion (relocation of a river course to a new position) typically is assumed to occur more 

frequently in rivers with faster sedimentation rates, yet supporting field data are limited and 

the influence of sedimentation rate on avulsion style remains unclear.  Using analysis of 

historical aerial photographs, optically stimulated luminescence dating of fluvial sediments, 

and field observations, we document three avulsions that have occurred in the last 650 

mailto:zacchary.larkin@hdr.mq.edu.au
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years along the lower reaches of the semiarid Tshwane River in northern South Africa.  

Study of the modern river and abandoned reaches reveals that a downstream decrease in 

discharge and stream power leads to reduced channel size and declining sediment transport 

capacity. Bank erosion drives an increase in channel sinuosity, leading to a decline in local 

channel slope, and to a further decrease in discharge and sediment transport. Local 

sedimentation rates >10 mm a-1 occur within and adjacent to the channel, so over time 

levees and an alluvial ridge develop. The resulting increase in cross-floodplain gradient 

primes a reach for avulsion by promoting erosion of a new channel on the floodplain, which 

enlarges and extends by knickpoint retreat during periods of overbank flow. Ultimately, the 

new channel diverts the discharge and bedload sediment from the older, topographically 

higher channel, which is then abandoned. Our findings support the assumption that avulsion 

frequency and sedimentation rate are positively correlated, and we demonstrate that 

incisional avulsions can occur in settings with relatively rapid net vertical aggradation. The 

late Holocene avulsions on the semiarid Tshwane River have been driven by intrinsic 

(autogenic) processes during meander belt development, but comparison with the avulsion 

chronology along a river in subhumid South Africa highlights the need for additional 

investigations into the influence of hydroclimatic setting on the propensity for avulsion. 

Keywords: geochronology; channel change; sedimentation rate; drylands 

1. Introduction 

Avulsion is the shift of a river course to a new position on a floodplain or delta and is a key 

process by which many rivers form new channels and adjust laterally (Smith et al., 1989; 

Slingerland and Smith, 2004; Stouthamer and Berendsen, 2007; Phillips, 2011).  Following 

avulsion, the original channel may be abandoned or it may continue to operate alongside 
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the new channel as a distributary or anabranch.  Avulsions have significant implications for 

the lateral redistribution of water, sediment, and nutrients and thus are a key influence on 

floodplain and delta geomorphology, sedimentology, and ecology (Makaske et al., 2002, 

2012; Slingerland and Smith, 2004; Tooth et al., 2007; Phillips, 2012; Ralph et al., 2016).  

Avulsions also affect human land use and settlement in these environments, as shown by 

various archaeological investigations in Holocene palaeoenvironments (e.g., Morozova, 

2005; Macklin and Lewin, 2015).  

Despite the importance of avulsion along many rivers, the controls on the frequency and 

style of avulsion remain unclear.  Avulsion frequency and vertical sedimentation rate are 

commonly assumed to be positively correlated so that avulsions occur only infrequently on 

slowly aggrading rivers but more frequently on rapidly aggrading rivers (Bridge and Leeder, 

1979; Bryant et al., 1995; Mackey and Bridge, 1995; Schumm et al., 1996; Slingerland and 

Smith, 1998; Jerolmack and Mohrig, 2007; Stouthamer and Berendsen, 2007; Hajek and 

Wolinsky, 2012; Hajek and Edmonds, 2014).  This reflects the fact that most sedimentation 

occurs within or near the channel, forming levees and/or alluvial ridges.  These topographic 

features increase cross-floodplain gradient, promoting overbank flow away from the 

channel and providing a slope advantage for new channels forming through floodplain scour 

(Brizga and Finlayson, 1990; Jones and Schumm, 1999).  While an assumption of a positive 

correlation between avulsion frequency and vertical sedimentation rate is thus physically 

reasonable, well-constrained field data remains lacking to quantify the relationship more 

precisely over Holocene and longer timescales (Tooth et al., 2007; Phillips, 2009, 2012; 

Donselaar et al., 2013). 
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The relationships between avulsion style and sedimentation rate are less clear. 

Nevertheless, at least two of the three main avulsion styles, defined by Slingerland and 

Smith (2004) as progradational, incisional, and reoccupational (also termed ‘avulsion by 

annexation’) are commonly associated with different sedimentation rates (Table 1). 

Table 1  

Summary of the three main avulsion styles (after Slingerland and Smith, 2004) 

Avulsion style Process of new channel 
formation 

Relationship with 
sedimentation rate 

Examples References 

Progradational Overbank flows form 
large crevasse splays, in 
which a channel network 
develops and extends 
downstream, eventually 
forming a new channel 

Most commonly 
associated with 
relatively rapid 
vertical 
sedimentation rates 
(>1 mm

-1
) 

Cumberland 
Marshes and upper 
Columbia River, 
Canada 

Rhine-Meuse Delta, 
Netherlands 

Baghmati River, 
India 

Pantanal, Brazil 

Smith et al., 1989; 
Morozova and 
Smith, 2000; 
Stouthamer and 
Berendsen, 2000, 
2001; Makaske et al., 
2002, 2012; Jain and 
Sinha, 2004; Assine, 
2005;  
 

Incisional Overbank flows returning 
to a channel erode a 
knickpoint that retreats 
upstream forming a new 
channel once it 
reconnects with the 
original channel 

Most commonly 
associated with 
relatively slow 
vertical 
sedimentation rates 
(<1 mm

-1
) 

Cooper Creek, 
Australia 

Klip River, South 
Africa 

Knighton and 
Nanson, 1993; 
Gibling et al., 1998;  
Tooth et al., 2007 

 

Reoccupational Reoccupation and 
reworking of an 
abandoned channel on 
the floodplain 

Associated with slow 
and rapid vertical 
sedimentation rates 

Lower Mississippi 
River, Nueces River, 
and Trinity River, 
USA 

Aslan and Blum, 
1999; Aslan et al., 
2005; Phillips, 2009 

 

 

Irrespective of the frequency and style of avulsion, previous studies have shown that for 

avulsion to occur the river must be near an avulsion threshold and that the final trigger is 

typically a large flood or closely spaced series of floods (Jones and Schumm, 1999). A variety 

of local physiographic and climatic factors can influence the timing and patterns of flooding, 

as well as the locations of newly avulsing channels. These include decreases in floodplain 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT 

5 
 

confinement (Tooth, 1999, 2005), ice jams (Smith and Pearce, 2002), vegetation 

encroachment or debris blockages such as log jams (Ralph and Hesse, 2010; Phillips, 2012), 

beaver dams (Polvi and Wohl, 2013), hippopotami trails (McCarthy et al., 1992; Ellery et al., 

2003; Tooth et al., 2007), and substrate composition (Aslan et al., 2005). 

Most previous studies of avulsion have focused on humid rivers in tropical or temperate 

regions and, despite some notable exceptions (Smith et al., 1997; Judd et al., 2007; Tooth et 

al., 2007; Donselaar et al., 2013; Li et al., 2014; Li and Bristow, 2015), fewer studies of 

avulsion have focused on dryland rivers.  In particular, while some dryland rivers are 

associated with extensive floodplain wetlands that in part owe their formation to avulsive 

redistributions of water and sediment, well-constrained field data necessary to define the 

relationships between sedimentation rate, avulsion frequency, and avulsion style remain 

limited (Tooth et al., 2007). To clarify these relationships, this study develops a chronology 

of floodplain sedimentation and avulsion for the lower reaches of the Tshwane River, 

located in the upper Limpopo River catchment in semiarid, northern South Africa (Fig. 1A).  

The aims of this study are to (i) combine analysis of aerial photography with optically 

stimulated luminescence (OSL) dating to determine the spatial pattern and chronology of 

avulsions; (ii) assess whether avulsion frequency and sedimentation rates are positively 

correlated; (iii) evaluate the influence of sedimentation rates on avulsion style; and (iv) 

discuss the relative importance of intrinsic (e.g., flow-sediment dynamics) and extrinsic (e.g., 

hydroclimatic) factors in controlling avulsion. 
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Fig. 1. The Tshwane catchment and study site: (A) location within northern South Africa; (B) the Tshwane River 

and part of the Pienaars River, showing the location of the study site near the confluence; (C) aerial 

photograph (2012) illustrating the modern channels and numerous palaeochannels near the Tshwane-Pienaars 

confluence (source: National Geo-spatial Information, Department of Rural Development and Land Reform, 

Mowbray, South Africa). 

2. Regional setting 

The geology of the upper Tshwane River catchment comprises mainly Pretoria Group shales 

and quartzites and Bushveld Complex granites. The middle and lower catchment comprises 

mainly sandstones, mudstones, and shales of the Karoo Supergroup (Ecca and Irrigasie 

formations) but outcrop is limited.  The Tshwane headwaters arise in the Magaliesberg at 

~1470 masl, and the river flows north toward the Pienaars River (Fig. 1B).  Slope, discharge, 

and stream power decrease downstream; and the channel becomes less confined, smaller, 

and more sinuous as it traverses extensive (1-2 km wide) floodplain wetlands (Larkin et al., 

in press; see Table A.1).  In the lower reaches, the Tshwane River is characterised by a 

prominently leveed, single-thread, meandering channel of variable sinuosity and is flanked 

by numerous oxbows, palaeochannels 1-5 km long, and backswamps (Figs. 1C and 2A).  Near 

the diffuse confluence with the Tshwane, the Pienaars River displays similar characteristics 

(Fig. 1C).  The Tshwane-Pienaars floodplain wetlands remain in a near-natural condition, 

with human influences restricted to some subsistence grazing on the floodplain. Collectively, 

the floodplain wetlands cover ~55 km2, and their geomorphology indicates that river 

avulsion has been a key process in their development. Other than the study by Larkin et al. 

(in press), the rivers and floodplain wetlands have not been subject to previous detailed 

investigations, with avulsion chronologies remaining unknown. 
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Fig. 2. (A) Geomorphological map of the Tshwane-Pienaars floodplain wetlands showing the location of the 13 

OSL samples along four surveyed transects (S1-S4), and the locations of a further two samples (P1, 2) that 

were taken from an abandoned alluvial ridge on the Pienaars River floodplain (near transect S5). Letters A to F 

refer to discrete sections of the modern channel or the palaeochannels (see text). Flow direction is from south 

to north in the Tshwane River and from east to west in the Pienaars River. Photographs illustrating key 

geomorphological features at the study site: (B) relatively straight reach of the Tshwane River (view looking 

NNW, with flow away from the camera); (C) current headcut (~1 m tall) that has extended headward for some 

tens of metres from the channel bank toward a reedbed in an adjacent backswamp (view looking SSW, with 

flow toward the camera; arrow indicates location in study reach); (D) tight meander bend on a sinuous reach 

of the Tshwane River (looking WSW, with flow from left to right).  

Rainfall in the study area is strongly seasonal with distinct wet (November through March) 

and dry (April through October) seasons. Mean annual precipitation in the Tshwane 

catchment is ~585 mm, falling mostly during convective thunderstorms; while mean annual 

potential evaporation is ~1750 mm (Working for Wetlands, 2008; Gauteng Department of 

Agricultural and Rural Development, 2011). Flow in the Tshwane River is perennial but 

strongly seasonal, with high wet season flows (>60 m3 s-1) and low dry season flows (<4 m3 s-

1; Department of Water Affairs Hydrological Services, 2015).  During the wet season, the 

Tshwane River floodplain is inundated regularly; but during the dry season, low flows are 

confined to the main channel, while oxbows, palaeochannels, and backswamps gradually 

desiccate. The lower Tshwane River transports a mixed load of slightly gravelly sand, silt, 

and clay, but there are no sediment transport measurements. The floodplain surface is 

comprised mainly of clay, with sandier sediment restricted to active channel beds and 

levees. Palaeochannels have been infilled to varying degrees by clastic and organic sediment 

but typically are preserved as <1.5-m-deep depressions with minor levees.  
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3. Methods 

Historical aerial photograph analysis and OSL dating was used to determine the spatial 

pattern and chronology of avulsions. Aerial photographs at 1:32, 000 and 1:36, 000 scale 

from 1950, 1972, 2005, and 2012 were used to produce geomorphological maps and a time 

series of channel change along the lower Tshwane River.  From the geomorphological maps, 

four distinct palaeochannel belts (labelled A-D) were selected for detailed investigation (Fig. 

2A).  A reach of the modern Tshwane (labelled E) and a prominent palaeochannel belt 

(labelled F) of the Pienaars River (Fig. 2A) were also investigated.  Detailed topographic 

surveys of the channel, floodplain, and palaeochannel belts were undertaken using an 

automatic level along five transects (Fig. 2A).  

3.1. Field sampling 

Eleven palaeochannel samples, one oxbow sample, and three levee/alluvial ridge samples 

were collected for OSL dating (Fig. 2A).  Palaeochannel samples (T1-T5, T7, T10, T11, T15, 

T16) were collected by hand augering through the organic and clay-rich infills until medium-

coarse sand was encountered (sediment terminology follows the Udden-Wentworth scale; 

Wentworth, 1922).  Following the approach adopted in previous similar studies (Rodnight et 

al., 2005, 2006), a ~30-cm-long, ~7-cm-diameter metal tube was then attached to the end of 

the auger extension rods.  The metal tube was pushed into the sand at the base of the auger 

hole, and the sample retrieved without exposure to sunlight. One oxbow sample (T12) was 

collected by digging through ~45 cm of organic-rich infill with a spade, and a metal tube was 

then hammered horizontally into the underlying sand.  These sand samples are 

representative of the last time that the palaeochannels and oxbow were actively 

transporting bedload.  Sample T8 was collected from levee deposits along the modern 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT 

11 
 

channel by hammering a steel tube horizontally into an eroded bank exposure and is 

representative of the start of overbank sedimentation at this location.  Samples P1 and P2 

were collected from the alluvial ridge of the abandoned Pienaars River palaeochannel using 

a percussion coring system that was capable of extracting intact 1-m sections of sediment to 

a depth of >5 m.  These samples are representative of overbank sedimentation on this part 

of the Pienaars floodplain.  All OSL sample tubes and percussion cores were extracted 

without exposing the sediment to sunlight and then wrapped in light-tight black plastic for 

transport to the laboratory, where subsequent sample treatment took place in subdued red-

light conditions.  

3.2. Laboratory methods 

The OSL samples were processed in the Aberystwyth Luminescence Research Laboratory at 

Aberystwyth University. Standard methods were used to isolate the 125-212 µm quartz 

fraction of sediment, to dissolve carbonates and organics (hydrochloric acid and hydrogen 

peroxide, respectively), to remove heavy minerals and feldspars by density mineral 

separations, and to etch grains with 40% hydrofluoric acid in order to remove the α-

irradiated outer grain surface (see Aitken, 1998). 

Luminescence measurements were made on a Risø automated TL/OSL reader equipped with 

a single-grain system based on a 532-nm green laser (Bøtter-Jensen et al., 2003). 

Luminescence emitted by grains was detected with an EMI 9235QA photomultiplier, with 

the light filtered through 2.5 mm of U-340 to reject the stimulation source. Prior to single-

grain OSL analysis, a dose recovery and preheat test was performed to determine the 

optimum thermal treatment for the samples to be used in the single aliquot regenerative 

dose (SAR) procedure (Wintle and Murray, 2006). All samples were measured with a 
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preheat temperature of 220°C for 10 seconds and a cut-heat of 160°C for 10 seconds. At 

least 800 grains were analysed for each sample, and individual grains were accepted based 

on criteria outlined in Jacobs et al. (2006), which are: recycling ratio within 10% of unity; test 

dose error <10%; Tn signal greater than three times the standard deviation of the 

background; and an IR-OSL depletion ratio within 10% of unity (Duller, 2003). After 

application of these criteria, between 135 and 495 individual equivalent dose (De) values 

were determined using Analyst software (Duller, 2015). All samples display De distributions 

that indicate heterogeneous bleaching prior to burial (see Fig. A.1 for radial plots) and are 

relatively young (<1 ka).  Therefore, the unlogged minimum age model was used to calculate 

De values for each sample (Galbraith et al., 1999) as implemented in the R package 

‘Luminescence’ (Fuchs et al., 2015). 

The environmental dose rate was calculated by thick source α counting and β counting of 

dried and milled material taken from the ends of sample tubes, as this is representative of 

sediment surrounding the OSL sample. The cosmic ray contribution was estimated from the 

data given by Prescott and Hutton (1994), taking into account altitude, geomagnetic 

latitude, and thickness of sediment overburden. Water content was measured and kept 

constant for palaeochannel and oxbow samples at 25 ± 5% and at 15 ± 5% for levee 

samples, which dry out more readily and regularly than samples in the base of infilling 

channels. Equivalent dose is divided by the dose rate to derive an OSL age estimate (Duller, 

2004).  

4. Results 

Aerial imagery, geomorphological mapping, OSL dating, and field observations provide 

insight into the timing and mechanisms of avulsion on the lower Tshwane River. Historical 
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channel changes and OSL analytical data and ages are presented in Figs. 3-6 and Tables 2 

and 3.  

4.1. Historical channel change in the Tshwane floodplain wetlands 

Although the low resolution aerial imagery (scale 1:32, 000 to 1:36, 000) precludes accurate 

calculation of channel lateral migration rates, 14 meander bend cutoffs can be identified in 

the ~4-km-long study reach over the 62 years from 1950 to 2012. In addition, between 1950 

and 1972, an avulsion led to abandonment of a highly sinuous (~2.7) reach of the main 

channel (palaeochannel belt D) and formation of a new, straighter channel reach (channel E) 

(Figs. 2B, 3A-B, 4A).  Based on observations of current headcuts in this reach (Figs. 2C and 

3D), this avulsion appears to have taken place as a result of headcut retreat through a 

backswamp that prior to 1950 existed on the western floodplain margin.  Once the headcut 

joined the main channel upstream, the backswamp desiccated and the original channel 

appears to have been abandoned very quickly, with loss of definition resulting from partial 

infilling at its upstream and downstream ends already evident on the 1972 aerial imagery 

(Fig. 3B). 
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Fig. 3. Time series maps of the Tshwane-Pienaars floodplain wetlands derived from aerial photography: (A) 

1950, (B) 1972, (C) 2005, and (D) 2012. Flow direction is from south to north in the Tshwane River and from 

east to west in the Pienaars River. Channel and palaeochannel belts are labelled A to F. Palaeochannels are not 

clearly visible in all aerial photographs owing to tonal contrast and changing vegetation and water levels. Black 

arrows (numbered i to iii) are shown in the same location of each frame to highlight some of the more easily 

visible adjustments of the river (meander cutoff or avulsion) between 1950 and 2012. 

This recent avulsion led to a net shortening of the Tshwane River’s length by ~1 km and thus 

resulted in local channel steepening. The gradient of the new channel is roughly the same as 

the local floodplain gradient (~0.0009 m m-1) owing to its relative straightness and 

alignment with the valley orientation, although field observations reveal evidence of 

ongoing bank erosion that is leading to a slight increase in sinuosity (Fig. 2B). By contrast, 

upstream and downstream of the avulsion reach, more noticeable net increases in sinuosity 

have occurred over the historical period from ~1.31 to 1.90 and ~1.25 to 1.61, respectively 

(Figs. 4A-B).  These sinuosity increases indicate rapid channel lateral migration (i.e., the 

extension and translation of meander bends; Fig. 2D) that have more than compensated for 

the reduction in channel length associated with the 14 meander cutoffs in the study reach 

during the same period. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT 

16 
 

 

Fig. 4. (A) Sinuosity variations along 500-m reaches of the lower Tshwane River between 1950 and 2012. 

Distance downstream is the floodplain distance, as measured from the river’s source.  Note the profound 

influence of the 1950-1972 avulsion on sinuosity in subsequent years. (B) Sinuosity2012:Sinuosity1950 ratio 

illustrates reaches with net increases or decreases in sinuosity between 1950 and 2012. 

4.2. Late Holocene chronology of avulsion and sedimentation rates 

The accuracy of the OSL ages (Table 2) can be tested at some locations by comparing them 

with historical channel changes reconstructed from the aerial photographs.  For example, 

sample T12 (see location in Fig. 2A) is from sediment in an oxbow that was cut off between 
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1972 and 2005 (point iii in Figs. 3B - 3C), and the OSL age is 40 ± 5 years (ca. A.D. 1975).  

Sample T8 (Fig. 2A) is from the base of the levee along the channel reach that formed during 

the period 1950-1972 (Figs. 3A-B), and the OSL age is 55 ± 5 years (ca. A.D. 1960).  Sample 

T14 (Fig. 2A) is from sediment at shallow depth on a modern point bar. Comparative aerial 

photographs for the wider reach show that the bend has not changed significantly in recent 

decades, and the OSL age is 25 ± 10 years (c. AD 1990). The accuracy of the OSL ages is 

further demonstrated by the fact that (i) the ages for samples that were collected in vertical 

sequences are in the correct stratigraphic order; and (ii) the ages for samples collected from 

similar stratigraphic positions but at different locations along the same palaeochannel are 

very similar (e.g., samples T1 and T5, and samples T3, T7, and T11; Fig. 5). 
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Fig. 5. Cross-sectional surveys S1-5 (see Fig. 2A for location), showing sedimentology and OSL sample codes 

and ages. Sample T15 in palaeochannel belt A could not be dated owing to an unusual equivalent dose 

distribution (see text and Fig. A.1) but, on geomorphological grounds, is likely older than the other 

palaeochannels. Note that the core taken from the Pienaars alluvial ridge was taken downvalley of transect S5 

(Fig. 2A) but for diagrammatic purposes has been shown in an equivalent position on the survey.  In the 
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palaeochannels, a relatively sharp boundary exists between sandy bedload sediment and the overlying finer-

grained infill.  The thickness of alluvium in the Tshwane-Pienaars floodplain wetlands is unknown but based on 

the results from augering of palaeochannel B appears to exceed 7 m. 

 

The OSL ages reveal that the dated palaeochannels on the lower Tshwane and Pienaars 

floodplain are all late Holocene in age (Table 2; Fig. 5). Those ages determined from 

medium-coarse sand in palaeochannels and oxbows are interpreted as representing the age 

of some of the last significant bedload transport events and therefore provide a maximum 

age for abandonment of the reach or bend.  Palaeochannel belt B was actively transporting 

medium-coarse sand bedload until ~590 years ago, palaeochannel belt C until ~550 years 

ago, and palaeochannel belt D until ~110 years ago.  Although we collected a sample from 

palaeochannel belt A (T15), the De distribution is highly unusual (see Fig. A.1) and could not 

be used to provide a minimum De estimate using the minimum age model.  As such this 

sample was omitted from subsequent analyses, although given its easternmost location this 

is likely to be one of the oldest palaeochannel belts on the lower Tshwane floodplain. 
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Table 2 

 OSL sample details and single grain analytical results   

(Palaeo)channel 

belt 

Sample
b
 Sample type Depth (m) N

c 
OD 

(%)
d 

Equivalent dose 

(MAM; Gy) 

Dose rate 

(Gy ka 
-1

) 

Age (a) 

A T15 Palaeochannel 1.81 ± 0.10 495 68 - 1.76 ± 0.08 - 

B 

T2 Palaeochannel 1.60 ± 0.10 202 65 0.98 ± 0.09 1.86 ± 0.09 530 ± 30 

T3 Palaeochannel 2.15 ± 0.10 341 96 1.08 ± 0.01 1.74 ± 0.08 620 ± 30 

T7 Palaeochannel 1.68 ± 0.10 252 45 0.97 ± 0.01 1.54 ± 0.08 630 ± 30 

T10 Palaeochannel 1.48 ± 0.08 378 49 1.18 ± 0.01 2.07 ± 0.10 570 ± 30 

T11 Palaeochannel 1.95 ± 0.10 219 40 1.03 ± 0.01 1.76 ± 0.08 590 ± 30 

C T16 Palaeochannel 2.10 ± 0.10 272 90 0.84 ± 0.01 1.54 ± 0.07 550 ± 30 

D 

T1 Palaeochannel 1.05 ± 0.10 188 100 0.23 ± 0.01 1.96 ± 0.10 120 ± 10 

T4 Palaeochannel 0.38 ± 0.08 135 25 0.14 ± 0.01 1.81 ± 0.08 75 ± 5 

T5 Palaeochannel 0.85 ± 0.05 134 71 0.20 ± 0.01 1.91 ± 0.09 110 ± 10 

E 

(modern) 

T8 Levee 0.55 ± 0.05 136 41 0.12 ± 0.01 2.27 ± 0.11 55 ± 5 

T12 Oxbow 0.53 ± 0.08 167 100 0.06 ± 0.01 1.47 ± 0.06 40 ± 5 

T14 Point bar 0.00 ± 0.05 184 100 0.03 ± 0.01 1.16 ± 0.05 25 ± 10 

F 

P1 Abandoned 

alluvial ridge 

1.13 ± 0.13 199 92 1.17 ± 0.27 2.10 ± 0.11 560 ± 140 

P2 Alluvial ridge 

substrate 

2.88 ± 0.13 299 55 30.4 ± 1.44 1.97 ± 0.09 15 500 ± 1100 

Notes: 

a 
Ages are rounded to the nearest 10 years if 100-1000 years old, and to the nearest 5 years if <100 years old.  

Ages are given in years before the measurement date of A.D. 2015.  An age could not be determined for the 

sample from palaeochannel belt A (see text).  See Fig. 2A for sample locations, Fig. A.1 for radial plots, and 

Table A.2 for dosimetry data. 

b 
The full code for samples is Aber219/TSW or Aber219/PC; but for illustrative purposes and brevity, codes 

have been simplified to a prefix ‘T’ or ‘P’.
 

c 
Number of grains giving a

 
De. 

d 
Overdispersion parameter (OD). 

 

The medium-coarse sand in the base of the palaeochannels is overlain by fine sand lenses, 

clay, and organics.  The fine sand lenses are interpreted as representing bedload transport 

during the waning phases of channel activity.  Based on the OSL ages collected in vertical 

sequence (Fig. 5), infill sedimentation rates during these waning phases can be calculated 
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for two sites along palaeochannel belt B and one site along palaeochannel belt D. These 

infill rates vary from 6.1 to 23.5 mm a-1 (Table 3; Fig. 6).  In addition, by assuming an age of 

zero years for each of the clay-rich palaeochannel fill surfaces, linear regressions for the age-

depth profiles can be used to determine the time-averaged sedimentation rates over the 

waning and post-abandonment phases.  These infill sedimentation rates vary between ~3.0 

and ~7.4 mm a-1 over the past ~600 years (Figs. 6A-C).  The levee sedimentation rate over 

the past ~60 years along the newly formed channel (belt E) is ~11.5 mm a-1 (Table 3). The 

OSL ages for sediment associated with palaeochannel belt F indicate that long-term (>1 ka) 

sedimentation rates along this particular alluvial ridge of the Pienaars River may have been 

lower than the shorter-term rates for infilling palaeochannels or levee sedimentation along 

the lower Tshwane River.  Based on the two OSL ages and an assumed surface age of zero 

years, the average sedimentation rate alongside palaeochannel F over the last ~15 ka has 

been ~0.2 mm a-1 (Table 3; Fig. 6D), although this is likely to be a minimum estimate (see 

Table 3 footnote). 
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Fig. 6. Age-depth profiles for the four coring sites with OSL samples in vertical sequence: (A) and (B) 

palaeochannel belt B; (C) palaeochannel belt D; and (D) palaeochannel belt F. The slope of the regression line 

fitted through time and depth zero, given by the equation, equals the mean sedimentation rate in mm a
-1

. 

Italicised sedimentation rates on A-C represent sedimentation rates between the two ages in the profile that 

we interpret as indicative of sedimentation rates during waning fluvial activity along the reach. Ages for the ‘T’ 

samples have been adjusted to their age at collection in 2008. Error bars are included on the ages but are too 

small to discern on some samples. 

 

 

 

 

 

 

 

 

 

 

Table 3 

Sedimentation rates and floodplain gradients for each (palaeo)channel belt  

(Palaeo) 

channel 

belt  

OSL 

sample 

Depth 

(mm) 

Age 

(a) 
b 

Sedimentation 

rate (mm a
-1

) 
c 

Mean levee 

height (m) 
d 

Floodplain gradient 

Infill 

Infill 

(waning 

flows) 

Levee/ 

alluvial 

ridge 

Down-

stream 

(D/S) 

Cross-

floodplain 

(XFP) 

D/S:XFP
e 

A T15 1810 - - - - 0.22 0.001 0.0049 0.20 

B 

T2 1600 530 
3.3

f
 6.1

g - 

0.29 0.001 0.0073 

 

T3 2150 620 -  

T7 1680 630 2.7 - - 0.13 

T10 1480 570 
3.0

f
 23.5

g -  

T11 1950 590 -  

C T16 2100 550 3.8 - - 0.16 0.001 0.0029 0.34 

D 

T1 1050 120 9.3 - - 0.22 0.001 0.0034  

T4 380 75 
7.4

f
 13.4

g -    0.29 

T5 850 110 -     
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a 
Sedimentation rates are based on OSL dating (where a depth of 0 cm = time 0 years).  Mean levee heights are 

calculated from topographic surveys of each (palaeo)channel belt (see Fig. 2A for location of surveys). 

b 
Mid-point of the OSL age, expressed in years prior to the measurement date of A.D. 2015 (see Table 2). 

c 
Samples T1-8 and T10-12 were collected during fieldwork in 2008, hence the recorded depth is from 2008, 

whilst the measured age is years prior to 2015. Sedimentation rate calculations (depth/age) for these samples 

have been adjusted by subtracting seven years from the calculated age. 

d 
Levee heights calculated from highest point on the levee to lowest point on the floodplain surface within 150 

m of the channel. 

e 
Ratio of downstream gradient to cross-floodplain gradient. 

f
 Denotes the time-averaged mean sedimentation rate to the surface where two OSL samples were taken from 

the same profile in vertical sequence (see Fig. 6).  

g 
Sedimentation rate between two samples in the profile indicative of the sedimentation rates during waning 

fluvial activity along the reach. 

h
 This alluvial ridge sedimentation rate along the Pienaars palaeochannel F is likely an underestimation. 

Sedimentation on the ridge is unlikely to occur post-abandonment, so the assumption that the surface equals 

zero years may not be strictly valid. Nonetheless, it provides a likely minimum sedimentation rate for that 

particular location. 

 

 

5. Interpretation 

The late Holocene avulsion history on the lower Tshwane River is well constrained by aerial 

photograph interpretation and OSL dating and demonstrates that at least three avulsions 

have occurred over the last ~650 years at ca. 630-530 a (palaeochannel B), ca. 550 a 

E 

(modern) 

T8 550 55 - - 11.5 

0.41 0.001 0.011 

 

T12 530 40 - - - 0.09 

T14 0 25 - - -  

F 
P1 1130 560 - - 2.0

h
 

0.41 0.0008 0.017 0.05 
P2 2880 15 500 - - 0.2 
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(palaeochannel C), and ca. 120-75 a (palaeochannel E) in the ~4-km-long study reach. 

Palaeochannel infill rates during the waning phases of channel activity range from 6.1 to 

23.5 mm a-1, bracketing the levee sedimentation rate of 11.5 mm a-1 adjacent to the modern 

channel, while time-averaged sedimentation rates for palaeochannels that incorporate the 

waning and post-abandonment phases are slower, ranging from ~3.0 to ~7.4 mm a-1. 

Along with field observations, these results provide insights into the mechanisms of avulsion 

in this semiarid setting. Particularly noteworthy is the marked contrast between the 

moderate to high sinuosity reaches of most palaeochannels and some very low sinuosity 

reaches of the modern channel, especially the reach formed during the 1950-1972 avulsion 

(Figs. 1C, 2A-B, 3B-D).  The OSL results (sample T5) show that until ~110 years ago, active 

transport of medium-coarse sand was occurring along the highly sinuous (~2.7), leveed, 

palaeochannel belt D (Figs. 3A, 5).  Development of this high sinuosity channel would have 

reduced the reach-scale gradient, thereby contributing to a reduction in sediment transport 

capacity and inducing deposition.  

The OSL dating in this reach (sample T4) confirms that the channel was still transporting 

some fine sand ~75 years ago (ca. A.D. 1940; Tables 2 and 3; Fig. 5), but infilling was clearly 

underway.  This in-channel sedimentation would have decreased channel cross-sectional 

area, which is likely to have caused an increasing proportion of floodwaters to be diverted 

overbank, some of which would have flowed down the cross-floodplain gradient provided 

by the levees and into the backswamp that formerly existed on the western floodplain 

margin. This set of processes moved the reach closer to an avulsion threshold. During the 

falling stage of floods, these overbank floodwaters would have drained from the 

backswamp back into the channel via a low point or a breach in the bank, forming a small 
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headcut sometime between A.D. 1950 and 1972 (see point ii in Fig. 3A).  Observed modern 

headcuts in the early stages of formation are ~1 m tall and up to ~20 m long (Fig. 2C). During 

successive floods, this headcut would have retreated upvalley and cut a newer, straighter 

channel through the backswamp.  Once this headward-eroding channel reconnected with 

the original channel, most flow and sediment would have been diverted down the new 

channel (channel E) and the original channel would have been abandoned to form 

palaeochannel D.  The length of channel E indicates that the headcut retreated a total 

distance of 760 m, while the OSL ages show that levee sedimentation had started adjacent 

to the new channel by ~60 years ago (ca. A.D. 1955).  This suggests that flow and sediment 

diversion was already occurring by this date and indicates that channel E may have formed 

very rapidly over a 5-10 year period (a headcut retreat rate of between ~76 and 152 m a-1).  

Following final abandonment, palaeochannel D would have infilled more rapidly, particularly 

at its upstream and downstream ends where inundation by overbank flows or backflooding 

from the newly-formed channel would occur more frequently, as is indicated by the loss of 

definition on aerial photographs (Fig. 3B). 

The mechanism of incisional avulsion appears to be the dominant avulsion style along the 

floodplain wetlands of the lower Tshwane River. Crevasse splays are not developed 

anywhere along the study reach, suggesting that progradational avulsions are not important 

in this setting; and there is no evidence for reoccupational avulsions. The dominance of 

incisional avulsion explains the marked variations in channel sinuosity along the modern 

Tshwane River and can be used to conceptualise the sequence of changes that have driven 

repeated avulsions in this setting (Fig. 7).  A newly-formed channel in a floodplain 

topographic low such as a backswamp is initially relatively straight, but over time bank 
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erosion leads to a net increase in sinuosity while overbank sedimentation builds levees.  

Increasing sinuosity leads to a reduction in local channel slope and a greater propensity for 

in-channel sedimentation, gradually priming the reach for avulsion and abandonment (Fig. 

7).  Once avulsion has taken place, sinuosity again begins to increase along the newly-

formed, straight channel.  In essence, the lower Tshwane River consists of a series of linked 

reaches of different sinuosity that broadly reflect the differing periods of time since each of 

those reaches formed by avulsion.  Evidence from the most recent avulsion shows that the 

avulsion process was initiated and completed within ~50 to 100 years, a timescale that can 

be tentatively applied to the other, older avulsions in the study reach (Fig. 7). 

 

Fig. 7. Diagrammatic representation of the sequence of avulsions on the lower Tshwane River over the last 

600-700 years. Solid horizontal bars represent channel activity and the discontinuous ends represent the initial 

and terminal stages of channel activity. The lower half of the diagram is a schematic illustration of the 

threshold responses driving avulsion. 
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These observations and interpretations can be used to predict the most likely locations of 

future avulsions in the study reach.  In particular, some of the highly sinuous reaches 

upstream of the newly formed reach of the modern channel (channel E) appear to be 

primed for avulsion, including the reach containing a recent cutoff (point iii in Fig. 3C) as 

well as other reaches farther south.  In one of these reaches, field observations show that a 

small headcut has begun to retreat upvalley through a backswamp located between the 

levee of the modern channel and the hillslope (Fig. 2C; for location, see Fig. 3D), and this 

may provide the next avulsion pathway.  High resolution monitoring of this headcut could 

help to constrain further the characteristic rates of headcut retreat and the timescales of 

avulsion in this setting. 

6. Discussion 

The results and interpretations presented above document and explain the late Holocene 

avulsion history of the Tshwane-Pienaars floodplain wetlands but also provide original field 

data that advance our knowledge of the timescales, mechanisms, and controls of avulsions 

more generally. 

6.1. Avulsion frequency, style, and sedimentation rates 

Despite considerable research on river avulsions (e.g., Slingerland and Smith, 2004; 

Stouthamer and Berendsen, 2007), relatively few well-constrained field data sets exist that 

relate avulsion frequency, avulsion style, and sedimentation rates.  There are older 

palaeochannels on the lower Tshwane floodplain that have not been addressed in this study 

(e.g., the undated palaeochannel belt A; Figs. 2A, 5), but the results show that at least three 
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avulsions have occurred over the last ~650 years, which equates to ~4.6 avulsions ka-1.  This 

high avulsion frequency appears to be associated with relatively rapid sedimentation, with 

vertical sedimentation rates >10 mm a-1 occurring within and adjacent to the channels, such 

as on the levee adjacent to the newly formed reach of the modern channel. Although the 

levee sedimentation rate (11.5 mm a-1) presented for channel belt E is based on a single OSL 

age, it is the most relevant rate for comparing to avulsion frequency because levee and 

broader alluvial ridge development is a key determinant of the increase in cross-valley 

gradient that promotes erosion of a new headcutting channel. The palaeochannel infill 

sedimentation rates are less relevant as drivers of avulsion because these reflect either 

sedimentation that occurs after the initiation of the headcuts that ultimately lead to 

avulsion or include the sedimentation that occurs during the post-abandonment phase. 

Nonetheless, the sedimentation rates for the waning phases of channel activity (6.1 to 23.5 

mm a-1) bracket the levee sedimentation rate determined for channel belt E and support the 

interpretation that aggradation is occurring across parts of the lower Tshwane floodplain 

wetlands. 

These results for avulsion frequency and sedimentation rate on the lower Tshwane River 

add another data point to the data set presented by Tooth et al. (2007; Fig. 8) and lend 

further support to the common assumption of a positive relationship between the two 

variables (e.g., Tornqvist and Bridge, 2002; Slingerland and Smith, 2004). Direct comparisons 

of avulsion frequency and sedimentation rate between different rivers are not 

straightforward, with published studies having used different sampling strategies and 

geochronological techniques, and employed various analytical approaches to calculate the 

relevant variables over different timescales (for details, see Fig. 8 caption and the original 
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studies).  Some of the data points on Fig. 8 are for anabranching rivers (e.g., Rhine-Meuse, 

upper Columbia, lower Saskatchewan), which complicates the comparisons with avulsion 

frequencies along single-thread rivers (e.g., Klip River, Tshwane River) because, all other 

factors being equal, avulsion frequencies should be higher where there is a greater total 

length of channels per kilometer of valley.  Nonetheless, although various caveats surround 

each of the data points, the results presented here are sufficient to highlight the distinctive 

plotting position of the lower Tshwane River, at least during the late Holocene. 

 

Fig. 8. Graph illustrating the relationship between sedimentation rate and avulsion frequency, adapted from 

Tooth et al. (2007). Data for the lower Saskatchewan River, Rhine-Meuse delta, and upper Columbia River are 

taken from the compilation in Makaske et al. (2002, their Table 5). The sedimentation rate for the lower 

Saskatchewan River is the average for peat and organic-rich sediments derived using radiocarbon dating and 

may underestimate long-term sedimentation rate (Morozova and Smith, 2000). The sedimentation rate for the 

upper Columbia River is an average of floodplain and levee sedimentation rates derived using radiocarbon 

dating (Makaske et al., 2002). The sedimentation rate for the Rhine-Meuse delta represents the rate before 

compaction (Stouthamer and Berendsen, 2001; Makaske et al., 2002). The long-term (>1 ka) sedimentation 
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rate for the Klip River is assumed to be zero as the channel remains grounded on bedrock, and so it is inferred 

that there is no net, long-term vertical aggradation (Tooth et al., 2007). 

 

Previous work has suggested possible relationships between avulsion style and 

sedimentation rate, highlighting that incisional avulsions tend to be associated with slowly 

aggrading rivers and progradational avulsions with more rapidly aggrading rivers (Makaske, 

2001; Slingerland and Smith, 2004; Tooth et al., 2007; Table 1). Importantly, however, the 

findings from the lower Tshwane River demonstrate that incisional avulsions can be the 

dominant mechanism even in relatively rapidly aggrading rivers.  In stark contrast to other 

moderately to rapidly aggrading rivers with frequent avulsions (Smith et al., 1989; Makaske 

et al., 2002), the absence of crevasse splays shows that progradational avulsions are not a 

feature of the lower Tshwane River, and there is no evidence for reoccupational avulsions.  

Broadly speaking, incisional avulsions and vertical sedimentation rates do not appear to be 

closely coupled; incisional avulsions can occur across a range of rivers with widely differing 

sedimentation rates from effectively zero or barely above zero (e.g., Knighton and Nanson, 

1993; Gibling et al., 1998; Tooth et al., 2007, 2009) to relatively rapid (>5 mm a-1; e.g., Ralph 

et al., 2011, 2016; this study). 

6.2 Relative importance of intrinsic and extrinsic controls of avulsion 

Outstanding questions remain about the relative importance of intrinsic (e.g., flow-sediment 

dynamics) and extrinsic (e.g., tectonic, climatic) controls of avulsion. In tectonically stable 

settings, changing hydroclimates potentially can influence avulsion dynamics, particularly 

through their influence on flow magnitude and frequency (e.g., Grenfell et al., 2014). Some 

studies have highlighted the fact that avulsion frequencies have been higher during wetter 
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past climates (e.g., Stouthamer and Berendsen, 2000, 2001), while other studies have been 

more equivocal, finding no clear evidence of changes in avulsion frequency related to 

changes in climate.  For instance, by comparing an ~30 ka avulsion record for the upper Klip 

River, South Africa, with a range of late Quaternary palaeoclimatic proxy records, Tooth et 

al. (2007) found no correlation between avulsion frequency and regional climatic changes, 

arguing that incisional avulsions on this river have not been extrinsically forced but instead 

have occurred intrinsically as a natural outcome of meander-belt development. 

Although the OSL-constrained avulsion record for the lower Tshwane River covers a much 

shorter timescale than the record for the Klip River (Tooth et al., 2007), similar cause-and-

effect reasoning can be applied.  Palaeoenvironmental proxy records derived from Namibian 

hyrax middens, a nearby crater lake core (Tswaing Crater), and a cave speleothem 

(Makapansgat Cold Air Cave) show that in the last ~650 years there has been some regional 

climatic variability, particularly around the time of the Little Ice Age (LIA; Partridge et al., 

1997; Tyson, 1999; Lee-Thorp et al., 2001; Chase et al., 2010, 2012; Burrough and Thomas, 

2013). However, there is no apparent correlation between the three late Holocene avulsions 

of the Tshwane River and regional climate variability, with the avulsions occurring during 

slightly cooler and drier conditions ~600-500 years ago and during warmer, moister modern 

conditions in the past ~100 years. Hence, like the Klip River, avulsion on the lower Tshwane 

appears to be an intrinsic process related to meander-belt development.  In particular, a 

marked increase in sinuosity along a developing meander belt is associated with a decrease 

in sediment transport capacity and channel cross-sectional area, both of which contribute to 

the development of incisional avulsions (Fig. 7). 
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While the correlations with regional palaeoclimatic records indicate no causal link between 

changing hydroclimates and the timing of particular incisional avulsion events, a comparison 

of the avulsion records for the Klip and Tshwane rivers nevertheless provides a tentative 

indication that the overall hydroclimatic setting may exert a subtle influence on the 

propensity for avulsion.  In the reaches that are dominated by avulsion, both rivers are very 

similar in terms of planform and cross-sectional morphology, riparian vegetation 

assemblages, sediment characteristics, and the range of floodplain features present (e.g., 

oxbows, palaeochannels, and backswamps).  Yet despite these similarities, aerial 

photograph analyses and OSL dating reveals very different timeframes of fluvial change.  

The Klip River exhibits very slow lateral migration rates (<0.16 m a-1), with only three cutoffs 

having occurred in the ~28-km-long study reach since 1954 (Tooth et al., 2009).  Avulsion 

frequency is low (~0.3 avulsions ka-1 since ~15 ka), with the last natural avulsion having 

occurred ~1000 years ago, although an anthropogenically forced avulsion is currently 

ongoing (Tooth et al., 2007, 2009). These infrequent avulsions have occurred under 

conditions of no net long-term vertical sedimentation, for despite local levees and alluvial 

ridges, channel beds essentially remain grounded on bedrock (Rodnight et al., 2005; Marren 

et al., 2006; Tooth et al., 2007, 2009; Keen-Zebert et al., 2013).  By contrast, the Tshwane 

River exhibits faster lateral migration rates, with 14 cutoffs occurring in the ~4-km-long 

study reach since 1950, and avulsion frequency is much higher (~4.6 avulsions ka-1).  Levees 

and alluvial ridges are more prominent features, with vertical sedimentation rates in and 

around channels locally >10 mm a-1.  Consequently, channel beds are decoupled from 

underlying bedrock, with the thickness of floodplain alluvium exceeding 7 m (Fig. 5).  
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A tentative proposition that remains to be tested by further research is that these 

contrasting avulsion behaviours are related to differences in regional climate (Larkin et al., 

in press), as reflected in a differing aridity index for each system, which is defined by mean 

annual precipitation divided by mean annual potential evaporation (United Nations 

Environment Program, 1992; Working for Wetlands, 2008; Gauteng Department of 

Agriculture and Rural Development, 2011).  The Klip River floodplain wetlands are located in 

a subhumid setting with an aridity index of 0.42. Discharge, stream power, and channel size 

increase slightly downstream, and sediment throughput is maintained (Marren et al., 2006; 

Tooth et al., 2009). Owing to the slow lateral migration rates, channel reaches take 

centuries to thousands of years to develop moderate or high sinuosities (>1.5), and so 

incisional avulsions occur only infrequently.  In contrast, the Tshwane River floodplain 

wetlands are located in a semiarid setting with an aridity index of 0.33. Discharge, stream 

power, and channel size all decrease downstream (Table A.2), and sediment throughput is 

not maintained (Larkin et al., in press).  Consequently, there is a greater tendency for long-

term vertical sediment accumulation within and near the channel. Lateral migration occurs 

more rapidly, with channel reaches taking only decades to centuries to develop moderate or 

high sinuosities, which primes the river for more frequent incisional avulsions (Fig. 7).  

Tentatively, these findings suggest that there may be a systematic, climatically influenced 

transition or a series of thresholds between subhumid, slowly adjusting (Klip-type) systems 

and semiarid, more rapidly adjusting (Tshwane-type) systems. Additional chronologically 

constrained avulsion data sets from rivers in differing hydroclimatic settings are required to 

test this proposition and define these relationships further.  If the proposition is broadly 

supported, however, this may provide valuable insight into possible changes to channel 
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dynamics in floodplain wetlands, which is particularly important in view of the projections 

for drier and more variable future climates in many drylands globally (Cook et al., 2014; 

Pachauri et al., 2014; Pascale et al., 2016). 

7. Conclusion  

River avulsion is a complex process that is influenced by a range of regional and site-specific 

factors, and the relationships between sedimentation rate, frequency, and styles of avulsion 

remain to be fully clarified.  Chronologically controlled, field-based data sets are essential 

for defining these relationships and for providing input to computational models of avulsion.  

In this study of the lower Tshwane River, analysis of historical aerial photographs and OSL 

dating reveal that three avulsions have occurred over the last 650 years. Local 

sedimentation rates >10 mm a-1 occur within and adjacent to the channel, leading to levee 

and alluvial ridge development. The increase in cross-floodplain gradient primes certain 

reaches for avulsion by promoting erosion of a new channel on the lower-lying floodplain.  

The findings from the lower Tshwane River support the hypothesis that there is a positive 

relationship between sedimentation rate and avulsion frequency and show that incisional 

avulsions can occur along rivers undergoing relatively rapid net aggradation.  In this setting, 

the lack of correspondence between regional climatic changes and the timing of specific 

avulsion events suggests that avulsions have not been extrinsically forced but instead occur 

intrinsically as an integral part of meander-belt development.  Nevertheless, comparison 

with the avulsion chronology for another South African river system tentatively suggests 

that the overall hydroclimatic setting may exert a subtle influence on the propensity for 

avulsion, with incisional avulsions likely to occur more frequently in semiarid settings than in 

subhumid settings.  Future research should aim to identify and investigate other avulsive 
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rivers across a range of hydroclimatic settings so that additional chronological data sets can 

be developed to test this proposition and further define these relationships. 
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Appendices 

Table A.1. Summary of downstream trends in channel characteristics, discharge and stream power along the 

Tshwane River (after Larkin et al., in press).  

Reach 
Average 
sinuosity 

a 

Average 
floodplain 
width  
( ± SD; km) 

b 

Average 
channel width 
(± SD; m) 

c
 

Bankfull 
discharge 
(m

3 
s

-1
) 

d 

Unit 
stream 
power  
(W m

-2
) 

d 

Bed material  

Confined headwaters 1.00 - 1.20 0.05 ± 0.09 20.7 ± 6.5 > 40  > 30 
Bedrock, sand and 
gravel 

Partly confined middle 
reaches 

1.20 – 1.70 0.31 ± 0.29 19.3 ± 4.0 ~20-40 ~ 15-20 
Mud, sand and minor 
gravel – partly alluvial 

Unconfined lower 
reaches (floodplain 
wetlands) 

1.50 – 2.70 1.13 ± 0.28 10.9 ± 1.5 < 15 < 10 
Mud, sand and minor 
gravel – fully alluvial 

 

a
 Sinuosity measured along 1 km reaches of the channel (channel distance/straight line distance).  

b
 Floodplain width measured every kilometre downstream. Boundary between floodplain and valley hillslope 

estimated using topographic data derived from a 30 m DEM of the region and distinct vegetation zonation 
patterns (hillslope vegetation vs. floodplain vegetation). 
c
 Bankfull channel width measured every 1 km downstream, generally focusing on straighter sections to avoid 

results being skewed by local increases in channel width at meander bends. 
d 

Following the method of Bjerklie (2007), discharge and stream power were modelled for the rivers using 
remotely sensed channel morphology data.  
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Figure A.1 Radial plots of equivalent dose (De) values from individual grains of quartz for the Tshwane River 

and Pienaars River OSL samples. The full code for samples is Aber219/TSW or Aber219/PC but for illustrative 

purposes and brevity, codes have been simplified to a prefix ‘T’ or ‘P’. The grey shaded bar represents the 

minimum De given by the minimum age model (MAM). Samples T12 and T14 are too young to display in a log 

scale radial plot due to some negative De values. Note the unusual De distribution of sample T15. The minimum 

age model could not provide a minimum De estimate with such a distribution, and as such an age estimate has 

not been given for T15. 
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Table A.2 OSL dosimetry data for the Tshwane River samples 

Sample
a 

Depth (m) Water 
content 
(%)

b 

Grain size 
(µm) 

Beta Dose 
(Gy ka

-1
)

c 
Gamma Dose 
(Gy ka

-1
)

d 
Cosmic Dose 
(Gy ka

-1
)

e 
Total Dose 
Rate (Gy ka

-1
) 

T1 1.05 ± 0.10 25 ± 5 125-250 0.93 ± 0.06 0.84 ± 0.08 0.19 ± 0.01 1.96 ± 0.10 

T2 1.60 ± 0.10 25 ± 5 180-212 0.92 ± 0.05 0.76 ± 0.07 0.18 ± 0.01 1.86 ± 0.09 

T3 2.15 ± 0.10 25 ± 5 150-212 0.79 ± 0.05 0.78 ± 0.07 0.17 ± 0.01 1.74 ± 0.08 

T4 0.38 ± 0.08 25 ± 5 180-212 0.86 ± 0.05 0.72 ± 0.06 0.23 ± 0.02 1.81 ± 0.08 

T5 0.85 ± 0.05 25 ± 5 150-212 0.91 ± 0.05 0.81 ± 0.07 0.20 ± 0.01 1.91 ± 0.09 

T7 1.68 ± 0.10 25 ± 5 180-212 0.68 ± 0.04 0.69 ± 0.06 0.18 ± 0.01 1.54 ± 0.08 

T8 0.55 ± 0.05 15 ± 5 150-180 1.10 ± 0.07 0.96 ± 0.08 0.22 ± 0.01 2.27 ± 0.11 

T10 1.48 ± 0.08 25 ± 5 180-212 1.00 ± 0.06 0.89 ± 0.08 0.18 ± 0.01 2.07 ± 0.10 

T11 1.95 ± 0.10 25 ± 5 180-212 0.83 ± 0.05 0.76 ± 0.07 0.17 ± 0.01 1.76 ± 0.08 

T12 0.53 ± 0.08 25 ± 5 180-212 0.68 ± 0.04 0.58 ± 0.05 0.22 ± 0.01 1.47 ± 0.06 

T14 0.00 ± 0.05 25 ± 5 150-212 0.43 ± 0.03 0.42 ±0.04 0.31 ± 0.01 1.16 ± 0.05 

T15 1.81 ± 0.10 25 ± 5 150-212 0.84 ± 0.05 0.74 ± 0.05 0.17 ± 0.01 1.76 ± 0.08 

T16 2.10 ± 0.10 25 ± 5 180-212 0.71 ± 0.04 0.66 ± 0.05 0.17 ± 0.01 1.54 ± 0.07 

P1 1.13 ± 0.13 15 ± 5 180-212 0.95 ± 0.09 0.96 ± 0.09 0.19 ± 0.01 2.10 ± 0.11 

P2 2.88 ± 0.13 15 ± 5 180-212 0.87 ± 0.05 0.78 ± 0.06 0.15 ± 0.01 1.80 ± 0.08 

a
 The full code for samples is Aber219/TSW or Aber219/PC but for illustrative purposes and brevity have been 

simplified to a prefix ‘T’ or ‘P’. 

b 
Water content used to calculate the total dose rate. Water content was measured and kept constant for 

palaeochannel and oxbow samples at 25 ± 5 %, and at 15 ± 5 % for levee samples, which dry out more readily 
and regularly than samples in the base of infilling channels. 

c
 Beta dose rate determined by beta counter measurements of dried and milled material taken from the ends 

of the sample tubes. 

d 
Gamma dose rate determined by thick source alpha counting of dried and milled material taken from the 

ends of the sample tubes. 

e
 The cosmic ray contribution was estimated from the data given by Prescott and Hutton (1994), taking into 

account altitude, geomagnetic latitude and thickness of sediment overburden. 


