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In this paper, a novel dual-channel convolutional neural network (DC-CNN) framework
is proposed for accurate spectral-spatial classification of hyperspectral image (HSI). In
this framework, one-dimensional CNN (1D CNN) is utilized to automatically extract
the hierarchical spectral features and two-dimensional CNN (2D CNN) is applied to
extract the hierarchical space-related features, and then a softmax regression classifier
is used to combine the spectral and spatial features together and predict classification
results eventually. To overcome the problem of the limited available training samples
in HSIs, we propose a simple data augmentation method which is efficient and effective
for improving HSI classification accuracy. For comparison and validation, we test the
proposed method along with three other deep learning based HSI classification methods
on two real-world HSI datasets. Experimental results demonstrate that our DC-CNN
based method outperforms the state-of-the-art methods by a considerable margin.

1. Introduction

Hyperspectral remote sensors capture digital images in hundreds of continuous nar-
row spectral bands and produce hyperspectral imagery (HSI) which contains both
spectral and spatial information. The rich spectral information of HSI has been
widely used in many different applications, such as environmental management, a-
griculture and mineralogy. Classification of each pixel in HSI plays a crucial role in
these applications.

Conventional HSI classification methods are often based on spectral information
only. In order to address the curse of dimensionality, spectral features are extracted
via some feature extraction methods such as principal component analysis (Licciardi
et al. 2012), independent component analysis (Villa et al. 2012) and linear discrim-
inant analysis (Bandos, Bruzzone, and Camps-Valls 2009). Then these extracted
spectral features are combined with some classifiers to finish the HSI classification
task. However, classification algorithms exploiting only the spectral information
fail to capture the important spatial variability observed for high resolution data,
generally resulting in lower performance. To improve classification performance, a
natural idea is to design classifiers using the spectral-spatial information jointly, in
order to incorporate the spatial structure into the pixel-level classifiers. The spatial

*Corresponding author. Email: lybyp@nwpu.edu.cn
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dependence is extracted in advance through various spatial filters such as mor-
phological profiles (Benediktsson, Palmason, and Sveinsson 2005), attribute profiles
(Dalla Mura et al. 2011), and low-rank representation (Jia, Zhagn, and Li 2015).
These transformed spatial features are combined with the spectral features, which
in some cases undergo dimensionality reduction, to perform pixel-wise classification.

However, most conventional HSI classification methods are commonly based on
handcrafted features and shallow learning models, relying highly on specific domain
knowledge. The design of handcrafted features can be tedious and is typically sub-
optimal. Recently, deep learning has emerged as one of the state-of-the-art machine
learning techniques, with great potential in the field of image processing. Rather
than using handcrafted features, deep learning aims to learn data-adaptive, hierar-
chical, and distributed representation from raw data. Deep learning has achieved
impressive performance in the field of computer vision and image processing, such
as image classification (Krizhevsky, Sutskever, and Hinton 2012), object detection
(Girshick et al. 2014) and depth estimation from a single image (Liu, Shen, and Lin
2015).

Very recently, deep learning methods have been introduced into hyperspectral da-
ta classification (Chen et a. 2014; Chen, Zhao, and Jia 2015; Yue, Mao, and Li 2016;
Slavkovikj et al. 2015). For example, unsupervised feature learning was applied to
HSI classification. Chen et al. (2015) proposed the stacked autoencoder (SAE) and
deep belief network (DBN) based spectral-spatial features extraction and classifica-
tion frameworks. Although SAE and DBN can extract deep features hierarchically
in a layer-wise training fashion, the training samples composed of image patches
should be flattened to one-dimension to meet the input requirement of the models.
However, the flattened training samples do not retain the same spatial information
that the original image may contain. Moreover, SAE and DBN are unsupervised and
do not directly use the label information when learning the features. Slavkovikj et
al. (2015) proposed to use convolutional neural network (CNN) for HSI classification
where the spectral-dominated features were extracted from a small neighborhood.
Yue et al. (2015) adopted the CNN model on the first a few principal component
(PC) bands of the original HSI data to extract spatial-dominated features. These
two CNN based methods did not fully exploit the spatial and spectral information
simultaneously. Yue, Mao, and Li (2016) proposed a spectral-spatial deep learning
framework for HSI classification where the spectral features and spatial features were
extracted via SAE and CNN separately. However, due to the intertwined connection
of different layers in the SAE model, it demands the training of many parameters. In
addition, almost all of the deep learning methods mentioned above do not consider
the problem of the limited available training samples.

In this paper, we introduce a dual-channel CNN (DC-CNN) model into HSI
classification where spectral features and spatial features are extracted via one-
dimensional CNN (1D CNN) and two-dimensional CNN (2D CNN) respectively,
and then a softmax regression classifier (Liao, and Chin 2007) is used to combine
the spectral and spatial features together and predict classification results eventu-
ally. Furthermore, to address the problem of over-fitting caused by limited training
samples of HSIs, we propose a simple but effective data augmentation method for
improving classification accuracy. We compared our DC-CNN based method with
three deep learning based methods on two real HSI datasets. Experimental results
demonstrate that the proposed method significantly outperforms other methods in
terms of classification accuracy.
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2. Proposed method

In this section, we explain in detail the basic operations of DC-CNN based method,
and elaborate on how to train this network.

2.1. 1D-CNN based spectral feature extraction

lD-("NN

Softmax

Convolution2 ~ Convolution3
Pooling 2 Pooling 3

Pixel Convolution 1

vectors Pooling 1

Figure 1. Illustration of 1D-CNN based spectral feature extraction framework.

The most significant advantage of CNN is that it offers an algorithmic means
to extract features directly from the raw input imagery. It is thus simpler to use,
and more applicable in generic domains. Inspired by this, we introduce a 1D CNN
model for spectral feature extraction. The 1D kernels instead of the conventional
2D kernels are exploited to effectively capture intrinsic semantic content along the
1D spectral dimensions.

Typically, a CNN alternatively stacks several convolutional layers and pooling
layers to form a deep architecture. In the 1D convolution operation, the input data
is convolved with 1D kernels (the length of 1D kernels is the size of the receptive
field), and then go through the activation function to form the output data (feature
vectors). The value at position x on the jth feature vector in the [th layer is given

by:

H—1

x z+h
vy =1 (Z > kl}fj,m“((zjl)?m + blu‘) (1)

m  h=0

where [ is the layer number, j is the feature vector number in the lth layer, b; ; is the
bias of the jth feature vector in the lth layer, and f() is the activation function. m
indexes over the set of feature vectors in the (I — 1)th layer connected to the current
feature vector. Finally, klh]m is the hth value of the kernel connected to the mth
feature vector in the (I—1)th layer, H; is the length of the kernel. There are different
kinds of activation functions available to apply. In our CNN implementation, the
rectified linear unit (ReLU) (Krizhevsky, Sutskever, and Hinton 2012) is utilized as
the non-linear activation function in the convolutional layers. Its formula is given

as follows:

f(z) = max(0, x) (2)
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Pooling can be used to reduce the dimensions of feature vectors, offer invariance,
and increase the receptive field. A pooling layer follows a convolutional layer. The
neuron in the pooling layer combines a small 2 x 1 strip of the convolutional layer.
The most common pooling operation is max-pooling (Krizhevsky, Sutskever, and
Hinton 2012), which is used in our CNN models.

The full flowchart of 1D CNN based spectral feature extraction is shown in Figure
1. For one pixel of hyperspectral data which is to be dealt with, a 3 x 3 x L-sized
cube is extracted from its eight neighborhoods as its original input data. The size of
spatial neighborhood is empirically determined through experimental investigation.
We have studied the effect of different spatial sizes including 1 x 1, 3 x 3 and 5 x 5,
and subsequently chosen 3 x 3 as the input to obtain a high classification accuracy
for the 1D CNN. To meet the input requirement of 1D CNN, the original data is
rearranged into nine pixel vectors, and the length of each pixel vector is L. The
rearranged features are fed into the 1D CNN to extract the high-level abstract
spectral features. Then the extracted features are stretched into a 1D vector F%D
to be fed into a softmax regression classifier to yield the prediction probability
vector F%D. Such a 1D CNN system is trained via stochastic gradient descent with
momentum and weight decay strategies (Krizhevsky, Sutskever, and Hinton 2012).

2.2. 2D-CNN based spatial feature extraction

2 2
ﬂ! e F3p
,ﬂ g ’, & 2
g & :.. B
o
o o
Softmax
HSI Convolutionl Convolution 2 ' Convolution 3

MXNX3 Pooling 1 Pooling 2 Pooling 3

Figure 2. Illustration of 2D-CNN based spatial feature extraction framework.

Similar to 1D CNN, a typical 2D CNN stacks convolutional and pooling layer-
s. In a convolution layer, the input data is convolved with 2D kernels, and then
goes through the activation function to form the output data (feature maps). This
operation can be formulated as:

H—-1W;—1
x, h,w z+h), w
marty =5 (S X X i D0 )

m  h=0 w=0

where klhjwm is the value at the position (h,w) of the kernel connected to the mth
feature map in the (I —1)th layer, H; and W; are the height and width of the kernel,
respectively, and b ; is the bias of the jth feature map in the /th layer. Pooling
is carried out in the similar way to the 1D CNN. The neuron in the pooling layer
combines a small 2 x 2 patch of the convolutional layer.

For a certain pixel in the original HSI, it is natural to consider its neighboring
pixels to extract the spatial features. However, due to the hundreds of channels along

the spectral dimension of hyperspectral data, the region-stacked feature vector will
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result in too large an input dimension. As a result, PCA is commonly executed in
the first step to map the data to an acceptable scale with a low information loss
and then 2D CNN can be applied for feature extraction and classification.

The full structure of 2D CNN based spatial feature extraction framework is shown
in Figure 2. Firstly, we reduce the spectral dimension of the original HSI to three
(which is empirically chosen as a tradeoff between accuracy and computational
complexity). Then, for each pixel which is to be dealt with, we choose a relatively
large image patch from its neighboring region as the input of the 2D CNN model.
After that, we build deep CNN to extract the high-level spatial features. Finally,
the extracted spatial features are vectorized into a 1D vector F%D to be fed into a
softmax regression classifier to yield the prediction probability vector F%D, which
is similar to the spectral information extraction scheme. In addition, the 2D CNN
model contains a large number of parameters which can be prone to over-fitting. We
adopt a normal dropout rate of 50% in the 2D CNN model to handle over-fitting
during the training process.

2.3.

DC-CNN based HSI classification

Spectral-spatial
Channel one classification
1D-CNN F %D ¢
cube F2 :
‘§><3><L AP | ipool(Fip):
I z ;
gy
: H '}
9 Fipt
Spegtral feature! : :
0
Fip : b
o F2, i A
Ny pool(Fip);
- ﬂ’ ﬁ‘ — i o
== @ H i [4 Softmax
o 0 :
’ Fip i
2D-CNN Spatial feature H
o
Spectral-spatial
feature

Channel two

Figure 3. Illustration of DC-CNN based classification framework.

HSIs contain both spectral and spatial information. Therefore, the spectral-spatial
feature based classification methods are more effective than single feature based
classification methods. In this section, a dual-channel convolutional neural network
(DC-CNN) framework is proposed for spectral-spatial HSI classification, as shown
in Figure 3.

For illustration purposes, we divide the DC-CNN based HSI classification frame-
work into the following three parts. We also represent the pixel to be dealt with as
P for concise expression.

(1) Channel one: 1D CNN based deep spectral feature extraction. In

channel one, we extract a data cube with size 3 x 3 X L from the neighborhood
of P (marked by yellow box in Figure 3) as the input of 1D CNN, and then
put this cube though the trained 1D CNN and softmax regression sequentially
to obtain the hierarchical spectral features F 1p and FlD

Channel two :
channel two, we choose a data cube with size 41 x41 x 3 from the neighborhood

2D CNN based deep spatial feature extraction. In
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of P (marked by red box in Figure 3) as the input of 2D CNN, and then put
this cube though trained 2D CNN and softmax regression sequentially to
obtain the hierarchical spatial features F%D and F%D.

(3) Spectral-spatial classification. When the spectral and spatial features have
been extracted respectively, the final classification step is carried out. Firstly,
the spectral and spatial features are concatenated together as following

F = [pool(Fip), Fip, pool(Fp), F3p] (4)

where F' is the concatenated spectral-spatial features, pool() is the max pool-
ing operation which is used to reduce the dimensions of F%D and F%D. In
this way, we can combine the features of the different hierarchies, and avoid
involving too many parameters in the classification model. Then the softmax
regression classifier is applied to predict the class label.

2.4. Data augmentation

CNN usually requires a lot of training data to learn deep structure and its related
parameters. However, in HSI classification, only the limited labeled samples are
available, which may lead to over-fitting. To address this issue, we adopt a simple but
effective data augmentation method to generate additional data without introducing
extra labeling costs. For each training sample, two forms of data augmentation are
used. The first one is rotation: we do this by rotating the original samples by 90°,
180° and 270° respectively. The second form is to flip the data where the original
samples are flipped along the horizontal and vertical directions respectively. After
the augmentation operation, the number of training samples can be increased by a
factor of six.

3. Experiments

In order to evaluate the efficacy of the proposed DC-CNN method, we compare the
proposed method with three deep learning HSI classification approaches: SSDCNN
(Yue et al 2015), SSDL (Yue, Mao, and Li 2016) and CNN (Slavkovikj et al. 2015).
Overall accuracy (OA), average accuracy (AA) and kappa statistic (k) are adopted
in this paper to measure the classification results of each model. The OA is calculated
by the ratio between the correctly classified test samples and the total number of
test samples, and the AA is the mean accuracy of each class. The last measurement
metric x is calculated by weighting the measured accuracies. It incorporates both of
the diagonal and off-diagonal entries of the confusion matrix and is a robust measure
of the degree of agreement. To obtain a more convincing estimate of the capabilities
of these methods, for each test dataset, we run the experiments 10 times. Each
time we randomly choose 5% and 10% from each class of the ground truth data as
the training samples for Pavia University and Indian Pines, respectively, and take
the remainders as testing samples. All of the methods are implemented based on
MatConvNet, a MATLAB toolbox for training CNN models. All of the experiments
are implemented on the same desktop with 8 gigabytes of memory, using an Intel
Core 15-3470 central processing unit.

For the two datasets used in this paper, the DC-CNN structure were set using the
same parameters. For the spectral feature extraction part, 1D CNN contains three
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1D convolutional layers, each of which is followed by one pooling layer with pooling
size [2 1] and stride [2 1], and each convolutional layer contains 36 1D kernels.
Three kernels of different size are used: from the first to the third convolutional
layers, the 1D kernel sizes are set to 3 — 7 — 5. For the varying size setting, we
experimented with four possible structures with 1D kernel sizes 3—5—7, 7—5 — 3,
5—7-—3,and 3 —7—5; we found 3 —7 — 5 to be the best. For the spatial feature
extraction part, three principle components are extracted from the original HSI and
then 41 x 41 x 3-sized image patches are extracted as the input data of 2D CNN. 2D
CNN contains three convolutional layers, kernel sizes of which are set to 3 — 7 — 5.
Each 2D convolutional layer contains 36 2D kernels, and is followed by one pooling
layer with pooling size [2 2] and stride [2 2].

3.1. Pavia University scene

The Pavia University scene was acquired by ROSIS sensor in 2001, ranging from
0.43 to 0.86 um, and has a spatial resolution of 1.3 m per pixel. The corrected data
has 103 bands after the 12 noisiest bands are removed and is 610 x 340 pixels in
size. The image is differentiated into 9 ground truth classes. Of the 42776 labeled
samples (ground truth) contained within the corrected Pavia University scene, we
randomly choose 2144 (5%) labeled samples as training data, and the rest 40632
(95%) labeled samples are used for testing. As mentioned above, DC-CNN contains
three parts, 1D CNN based spectral feature extraction, 2D CNN based spatial fea-
ture extraction, and combined feature based classification; each part is trained via
stochastic gradient descent. On this dataset, 1D CNN is trained over 240 epochs
(160 epochs with learning rate 0.01, 80 epochs with learning rate 0.001), 2D CN-
N over 60 epochs (40 epochs with learning rate 0.01, 20 epochs with learning rate
0.001), and the classification part over 15 epochs (10 epochs with learning rate 0.01,
5 epochs with learning rate 0.001). Each iteration randomly takes 40 samples, where
weight decay and momentum are set to 0.0005 and 0.9 respectively. The results (the
percentages of testing samples that are correctly classified) are listed in Table 1. The
results represent the average over ten runs, and the standard deviation of the av-
erage and the training time are also reported. The visual classification results and
detailed mappings with different methods are shown in Figure 4.

Table 1. Classification results (%) of Pavia University scene using the different methods shown.

Class SSDCNN SSDL CNN DC-CNN DC-CNN
+Augmentation
OA 93.94+0.0218  94.88+0.0082  96.57+0.0369  99.554+0.0095  99.68+0.0008
AA 92.20+£0.0419  93.29+0.0112  95.73+0.0403  98.86+0.0293  99.50+0.0121
K 91.954+0.0342  93.21£0.0179  95.43+0.0589  99.401+0.0166 99.58+0.0013
Training time (s) 266.11 333.90 177.39 572.87 3421.25

DC-CNN+Augmentation means DC-CNN which adopted data augmentation method and the best results
among the compared methods are shown in bold

As shown in Table 1, the classification results obtained by DC-CNN provide better
accuracies than the other three methods; moreover, data augmentation improved
the classification accuracy by a further 0.13%. In Figure 4(e), the reduced misclas-
sification error rate is clearly visible, there being fewer misclassified purple pixels
(class 7, Bitumen).
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Figure 4. Classification results of Pavia University scene. (a) SSDCNN, OA=93.94%. (b) SSDL,
OA=94.88%. (c) CNN, OA=96.57%. (d) DC-CNN, OA= 99.55%. (¢) DC-CNN+ Augmentation , OA=
99.68%. (f) Ground truth. (g) False-color composite.

3.2. Indian Pines scene

The Indian Pines scene was acquired by AVIRIS sensor in 1992. It consists of 145 x
145 pixels with moderate spatial resolution of 20 m. The number of bands of the
corrected data has been reduced from 224 to 200 by removing bands covering the
region of water absorption. The image contains 16 different categories. The Indian
Pines scene contains 10249 labeled samples, which were randomly separated into
two parts. 1031 samples (10%) are used as training data, and the rest 9218 samples
(90%) are used for testing. Both 1D CNN and 2D CNN trained over 240 epochs (160
epochs with learning rate 0.01, 80 epochs with learning rate 0.001). At each iteration,
40 samples are randomly selected from the training set. Weight decay, momentum
and dropout rate are set to 0.0005, 0.9 and 0.5, respectively. The classification part
trained over 15 epochs (10 epochs with learning rate 0.01, 5 epochs with learning
rate 0.001), with each iteration also randomly taking 40 samples. The results are
listed in Table 2 and shown in Figure 5.

Table 2. Classification results (%) of Indian Pines scene using the different methods shown.

Class SSDCNN SSDL CNN DC-CNN DC-CNN
+Augmentation
OA 90.764+0.0301  91.60£0.0625 92.82+0.1867 96.884+0.0099  98.76+0.0077
AA 85.524+0.1365  93.96+£0.1404  92.97+0.3901 95.384+2.4834  98.50+0.3150
K 89.4440.0369  90.43+£0.0872  91.82+0.2424 96.444+0.0128  98.58+0.0092
Training time (s) 255.32 328.18 557.89 813.01 4860.57

DC-CNN+Augmentation means DC-CNN which adopted data augmentation method and the best results
among the compared methods are shown in bold

According to Table 2, DC-CNN again outperforms the state-of-the-art alternative
methods by a substantial margin. Compared with the previous dataset, data aug-
mentation offers a more significant improvement upon the classification accuracy
in this dataset, improving the overall classification accuracy by 1.88% compared
to DC-CNN. We argue that this visible improvement is likely caused by the intial
small training sample size of this image set, since the Indian Pines scene contains
fewer labeled samples (10249, compared to 42776 for Pavia). We suggest that data
augmentation is particularly effective if the training sample size is relatively small,
and when accuracy may be prioritized over running time.
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6 Corn-notill
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Wheat
I
18 Buildings-Grass-Trees-Drives
19 Stone-Steel-Towers
20 Figure 5. Classification results of Indian Pines scene. (a) SSDCNN, OA=90.76%. (b) SSDL, OA=91.60%.
21 (c) CNN, OA=92.82%. (d) MD-CNN, OA= 96.88%. (¢) MD-CNN+ Augmentation, OA= 98.76%. (f)
22 Ground truth. (g) False-color composite.
23
24
25
26 4. Discussion and conclusion
27
28 In this paper, for the purpose of improving HSI classification performance, a novel
29 DC-CNN based spectral-spatial classification framework has been proposed. Due to
30 the fact that HSI contains both spectral information and spatial information, we
g; have adopted 1D CNN and 2D CNN to extract the hierarchical spectral features
33 and the hierarchical spatial features respectively, thereby combining them together
34 to complete the HSI classification task. Although the spatial information changes
35 slowly (given the use of the spatial window of 4141 pixels), for a certain target
36 pixel, its label is the main guiding information. As such, the context information
37 is adopted as the auxiliary information during the training process. To address the
38 problem of overfitting caused by the limited available training samples, we have
39 adopted specialized training choices such as dropout and weight decay. This work
40 is further supported by a simple and efficient data augmentation method. We have
j; compared our DC-CNN method against three other state-of-the-art deep learning
43 based HSI classification methods, on two public HSI benchmark datasets.
44 Our experiments show that the proposed DC-CNN based HSI classification
45 method achieved the best overall accuracy. However, in the field of HSI classifica-
46 tion, there exists many issues to be addressed. For instance, compared with labeled
47 samples, typically, unlabeled samples are much more frequently obtained. Super-
48 vised classification methods fail to make full use of these unlabeled samples, whilst
49 unsupervised and semi-supervised classification methods are much more desirable
50 to help deal with such problems. Finally, the present work applies dropout for reg-
51 . R . . . .
5o ularlza‘gon3 further research will investigate the use of alternative Gaussian noise
53 regularization.
54
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