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Abstract

We derive the filtering equation for Markovian systems undergoing ho-
modyne measurement in the situation where the output processes being
monitored are squeezed. The filtering theory applies to case where the
system is driven by Fock noise (that, quantum input processes in a co-
herent state) and where the output is mixed with a squeezed signal. It
also applies to the case of a system driven by squeezed noise, but here
there is a physical restriction to emission/absorption coupling only. For
the special case of a cavity mode where the dynamics is linear, we are able
to derive explicitly the filtered estimate πt(a) for the mode annihilator a
based on the homodyne quadrature observations up to time t.

In memory of Slava Belavkin.

1 Introduction
The theory of quantum filtering was developed by V.P. Belavkin in the 1980’s [1]-
[4] as the extension of classical filtering theory [5]-[10]. It has been subsequently
developed as a technique for quantum measurement and control [11]-[23].

Our aim here is to derive the filter for a system whose output is either
squeezed light, or is mixed with squeezed light. For the special case of a linear
dynamics, we are able to give the filter explicitly. The advantage of using
squeezing as a control resource was proposed in [24] and [25]. In the experimental
setup in figure 1 below we have a input-system-output device with dynamical
coupling operators (S,L,H), see later, whose output is sent through a beam
splitter and mixed with a second input. The input into the system will be
modelled as a coherent state, however we take the second input to be in a
squeezed coherent state. The output processes from the beam splitter are then
subject to a homodyne measurement. The scheme depicted in figure 1 has been
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proposed in [26] as a component of an entanglement with large squeezing to
suppress noise.

Figure 1: Experimental setup: an open quantum system is driven by a coherent
state field (input 1) and the output enters a 50-50 beamsplitter along with a
squeezed coherent state field (input 2). The single-line arrows stand for quantum
field inputs, while the double-line arrows imply classical readout.

The input processes are described by independent quantum Wiener annihi-
lation processes A(·) and B (·) and we have

[A (t) , A∗ (s)] = [B (t) , B∗ (s)] = t ∧ s ,

where t ∧ s = min(t, s). The inputs are in Gaussian states with means

E [dA (t)] = α (t) dt , [dB(t)] = β (t) . (1)

We shall take the two inputs to be independent, with input one being a coherent
state (and so having the same covariances as the vacuum) while input two is
squeezed. The quantum Itō table [27] will then have the form

× dB dB∗

dB 0 dt
dB∗ 0 0

,
× dA dA∗

dA mdt (n+ 1) dt
dA∗ ndt m∗dt

, (2)

where n > 1 and |m|2 ≤ n (n+ 1). Note that dAdB∗ ≡ 0, etc.
The output Bout from the system is passed through the beam splitter along

with the squeezed input Aout ≡ A leading to the overall output[
C1

C2

]
=

1√
2

[
1 1
−i i

] [
Bout

Aout

]
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with C1 = 1√
2

(Bout +Aout) and C2 = 1√
2i

(Bout −Aout) then being indepen-
dent annihilation processes: [Cj (t) , C∗k (s)] = δjk (t ∧ s).

Finally we measure the quadratures

Y1 = C1 + C∗1 ≡
1√
2

(
Qout
B +Qout

A

)
Y2 = C2 + C∗2 ≡

1√
2

(
P out
B − P out

A

)
at the detectors. Here Qout

B = Bout + Bout∗ and P out
B = 1

i (B
out − Bout∗), etc.

We will see that quadratures then have increments of the form

dY1 (t) =
1√
2
{jt (S) dB (t) + jt (L) dt+ dA (t) + H.c.} ,

dY2 (t) =
1√
2i
{jt (S) dB (t) + jt (L) dt− dA (t)−H.c.} , (3)

where jt (·) transfers to the interaction picture, and S and L are prescribed
operators determining how the system couples to the input field.

The outputs Y1 and Y2 have non-trivial correlation expressed through the
following table

× dY1 dY2
dY1 (1 + n+m′) dt m′′dt
dY2 m′′dt (1 + n−m′) dt

where m = m′ + im′′ is the decomposition of the squeezing parameter into real
and imaginary parts. In particular, the matrix

K =

[
1 + n+m′ m′′

m′′ 1 + n−m′
]

(4)

has determinant ∆ = (1 + n)
2 − |m|2 > 1 + n and therefore is invertible.

Our interest will be in modelling the dynamical evolution of the system
conditioned on the continuous observations of the output quadratures Y1 and
Y2.

2 Quantum Filtering for General Gaussian States
In this section we derive the filter for a generic quantum Markov model with in-
puts in Gaussian states. Generalizing the situation in the introduction, we allow
formFock vacuum inputs B1, · · · , BmFock andmsq squeezed inputs A1, · · · , Amsq .
We may think of the input driving a single component (with Hilbert space h)
which in fact is a network of several quantum inputs. The inputs are fields on
a Fock space F. The outputs are then fed into a measurement apparatus which
performs a continuous measurement on a collection Y1, · · · , Ynobs of commuting

3



Figure 2: Equivalent block-diagram set-up of the system in figure 1.

self-adjoint processes. We shall assume that the measured processes are linear
combinations of the output quadratures, and that they are linearly independent
(so nobs ≤ mFock +msq). The set-up is depicted in Figure 2.

On the joint space h ⊗ F, we consider the quantum stochastic process V (·)
satisfying the quantum stochastic differential equation (QSDE) [27]

dV (t) = {(Sjk − δjk)⊗ dΛjk(t)

+Lj ⊗ dB∗j (t) +Rj ⊗ dA∗j
−L∗jSjk ⊗ dBk (t)−R∗j ⊗ dAj
−(KA +KB + iH)⊗ dt}V (t) (5)

with V (0) = 1.
Here S = [Sjk] is a unitary mFock×mFock matrix whose entries are bounded

operators on h, Lj (j = 1, · · · ,mFock) and Rj (j = 1, · · · ,msq) are bounded op-
erators and H self-adjoint. This specific form of QSDE may be termed the
Hudson-Parthasarathy equation as the algebraic conditions on the coefficients
are necessary and sufficient to ensure unitarity (though the restriction of bound-
edness can be lifted). The process is also adapted in the sense of Hudson and
Parthasarathy [27]. The operators KA and KB will be given below as (6) and
a representation specific.

The processes Λjk (t) are the scattering (or gauge) processes. Formally we
may introduce bj(t) as the derivative of Bj(t) in which case

Λjk (t) ≡
∫ t

0

b∗j (τ)bk(τ) dτ.

We adopt the summation convention that repeated Latin indices are summed
from 1 to mFock for the non-squeezed terms (e.g. Bj ,Λjk, Lj , Sjk), and from 1
to msq for the squeezed terms (e.g. Aj , Rj). The ranges should be clear from
the context. Note that the squeezed terms have no scattering terms!
The squeezed terms rely on the non-Fock (i.e., Araki-Woods) representation and
the scattering process is not well-defined in this case.
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2.1 Gaussian Input States
We shall aim for the most general Gaussian state for the input field. Let us
introduce the Weyl displacement operator

W (g, f) = exp[

∫ ∞
0

gk(t)dBk(t)∗ + fj(t)dAj(t)
∗

−gk (t)
∗
dBk (t)− fj (t)

∗
dAj (t)]

with square-integrable test functions gk, fk. We require a Gaussian state where
the A fields are squeezed and the B fields are unsqueezed (Fock): here we take

E [W (g, f)] = exp{
∫ ∞
0

[
gk(t)βk(t)∗ − gk (t)

∗
βk (t)

]
dt− 1

2

∫
g∗k(t)gk(t)dt}

× exp{
∫ ∞
0

[
fk(t)αk(t)∗ − fk (t)

∗
αk (t)

]
dt

−1

2

∫ ∞
0

[~f ′(t)>, −~f ′′(t)>]
C

[
~f ′(t)
~f ′′(t)

]
dt}.

Here the means are αj are βj giving the multi-dimensional version of (1). The
A quadratures and B quadratures are always independent for this state. We
also have ~f ′ and ~f ′′ as the vectors whose entries are the real and imaginary
components of the fields fj . Introducing the quadratures

Qk = Ak +A∗k,

Pk =
1

i
(Ak −A∗k) ,

and set [Xj (t)]
2msq
1 =

(
Q1 (t) , P1 (t) , · · · , Qmsq (t) , Pmsq (t)

)
. Then

[Xj (t) , Xk (s)] = 2iJjk min {t, s}

where J = ⊕msq
j=1

[
0 1
−1 0

]
. The covariance matrix C is then

Cjk = Re E
[(
Xj − X̄j

) (
Xk − X̄k

)]
which is a (2msq)-square symmetric matrix. The Heisenberg uncertainty prin-
ciple implies that C cannot be chosen arbitrarily, but must satisfy

C + i J ≥ 0.
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We may write

E [W (g, f)] = exp{2
∫ ∞
0

[
g′′k (t)β′k(t)∗ − g′k (t)

∗
β′′k (t)

]
dt

− 1

2

∫ ∞
0

[g′j (t) g′j (t) + g′′j (t) g′′j (t)]dt

+ 2

∫ ∞
0

[
f ′′k (t)α′k(t)∗ − f ′k (t)

∗
α′′k (t)

]
dt

− 1

2

∫ ∞
0

[f ′j (t) f ′k (t)CPPjk + f ′′j (t) f ′′k (t)CQQjk + 2f ′j (t) f ′′k (t)CQPjk ]}.

2.1.1 The Quantum Itō Table

The quantum Itō table for the squeezed fields takes the form

dAjdA
∗
k = (δjk +Nkj) dt

dA∗jdAk = Njk dt

dAjdAk = Mjk dt

dA∗jdA
∗
k = M∗kj dt

where N = N∗ and M = M> are complex msq ×msq matrices. The matrices
N,M are fully determined from the covariance C and vice versa. From the
relation CQQjk dt = dQjdQk we see that

dQjdQk = CQQjk dt

with
CQQ = Inobs +N +N> +M +M∗.

This generalizes (4) to the multidimensional case.
For the unsqueezed fields, we may additionally include the scattering process

to get

dBjdB
∗
k = δjk dt

dBjdΛkl = δjk dBl

dΛjkdB
∗
l = δkl dB

∗
j

dΛjkdΛlr = δkl dΛjr.

All other product of the increments dt, dAj , dA∗j , dBk, dB∗k , dΛjl vanish.
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2.2 The Heisenberg-Langevin Equations
The quantum stochastic process defined by (5) defines a unitary if and only if
S = [Sjk] is unitary, H is self-adjoint, and

KB =
1

2
L∗kLk,

KA =
1

2
R∗j (δjk +Nkj)Rk +

1

2
RjNjkR

∗
k

−1

2
R∗jMjkR

∗
k −

1

2
RjM

∗
jkRk. (6)

For a given system operator X we set

jt (X) , V ∗ (t) [X ⊗ I]V (t) . (7)

Then from the quantum Itō calculus we get

djt (X) = jt (LjkX)⊗ dΛjk(t)

+jt (Lj0X)⊗ dB∗j (t) + jt (Rj0X)⊗ dA∗j (t)

+jt (L0kX)⊗ dBk (t) + jt (R0kX)⊗ dAk (t)

+jt (L00X +R00X − i [X,H])⊗ dt (8)

where the Evans-Hudson maps Lµν are explicitly given by

LjkX = S∗ljXSlk − δjkX,
Lj0X = S∗lj [X,Ll],

L0kX = [L∗l , X]Slk

L00X = LLX

and

Rj0X = [X,Rj ],

R0kX = [R∗k, X],

R00X = LRX +
1

2
Njk {R∗k[X,Rj ] + [R∗k, X]Rj}

+
1

2
Nkj

{
Rk[X,R∗j ] + [Rk, X]R∗j

}
−1

2
M∗jk {Rk[X,Rj ] + [Rk, X]Rj}

−1

2
Mjk

{
R∗k[X,R∗j ] + [R∗k, X]R∗j

}
where we have the standard pure Lindblad superoperator

LLX ,
1

2
L∗l [X,Ll] +

1

2
[L∗l , X]Ll. (9)
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2.3 Output Processes
We introduce the processes

Aout
j (t) , V ∗ (t) [I ⊗Aj (t)]V (t)

Bout
j (t) , V ∗ (t) [I ⊗Bj (t)]V (t) . (10)

We note that we equivalently have Aout
k (t) ≡ V ∗ (T ) [1⊗Ak (t)]V (T ), for t ≤

T , and similarly for the B fields. Using the quantum Itō rules, we see that

dAout
k = dAk + jt(Rk)dt,

dBout
k = jt(Skl)dBl(t) + jt(Lk)dt. (11)

The readout will consist of the observations of processes (α = 1, · · · , nobs)

Yα (t) = TαjB
out
j (t) + UαkA

out
k (t) + H.c.

≡ V ∗ (t) [I ⊗ {TαjBj (t) + UαkAk (t) + H.c.}]V (t) ,

where the Tαk and Uαj are complex constants. We require that the Yα (t)
commute for all α and t ≥ 0. This requires the following identity Zαβ = Zβα
where we introduce

Zαβ , TαkT
∗
βk + UαjU

∗
βk. (12)

We will have

dYα = jt (TαjSjk) dBk + UαkdAk + jt(TαjLj + UαjRj) dt+ H.c. (13)

We now consider the problem of continuously measuring processes Y1, · · · , Ynobs .
These generate the measurement algebra up to time t:

Yt] = vN {Yα (s) : α = 1, · · · , nobs, 0 ≤ s ≤ t} . (14)

The family
{
Yt] : t ≥ 0

}
then forms an increasing family (filtration) of commu-

tative von Neumann algebras.
The correlation matrix K = [Kαβ ] is defined by

dYα dYβ = Kαβ dt (15)

From the increment (13) we see that

Kαβ ≡ Zαβ + UαkNjkU
∗
βj + U∗αkNjkUβj + UαkMjkUβj + U∗αkM

∗
jkU

∗
βj . (16)

2.4 The Filter
The filtered estimate for jt (X) given the measurement readout is then

πt (X) := E
[
jt (X) | Yt]

]
,

where E
[
· | Yt]

]
is the conditional expectation onto the measurement readout

algebra up to time t for the given state E which is the product state for the

8



system with the Gaussian states for the fields. The conditional expectation has
the least squares property that

E
[{
X̂t − jt (X)

}2
]

is a minimum over all X̂t ∈ Yt] for the choice X̂t = πt (X). This implies the
condition that

E [{πt (X)− jt (X)}C (t)] = 0

for every C (t) ∈ Yt].
We now state the main result which we derive in the next subsection. (We

shall adopt the convention that repeated Greek indices implies a sum over the
range 1 to nobs.)

Theorem 1 The filter satisfies the Belavkin-Kushner-Stratonovich equation

dπt(X) = πt(LX) dt+Hαt (X) dIα (t) , (17)

where (suppressing the time index t) LX = L̃00X + R̃00X − i [X,H] with

L̃00X = L00X + β∗j (t)Lj0X + L0kXβk(t) + β∗jLjkXβk(t),

R̃00X = R00X + α∗j (t)Rj0X +R0kXαk(t),

and

Hαt (X) = πt(XL̃
α + L̃α∗X)− πt(X)πt(L̃

α + L̃α∗)

+πt([X, R̃
α]) + πt([R̃

α∗, X]) (18)

where

L̃α = Tαk(Lk + Sklβl) + Uαj(Rj + αj) (19)

R̃α = Rj
[
UβkNjk + U∗βkM

∗
jk

]
. (20)

and with K−1 = [Kαβ ] the inverse matrix of K = [Kαβ ],

L̃α = KαβL̃β , R̃α = KαβR̃β

and finally, the innovations processes are

dIα(t) = dYα(t)− πt(L̃α + L̃∗α) dt. (21)

Note that E[dIα(t)] ≡ 0.

9



2.5 Derivation of the Filter
To derive a differential equation for the filter, we shall apply the characteristic
function technique to derive the filter for this problem. The technique is to
assume that the filter satisfies and equation of the form

dπt (X) = Ft (X) dt+Hαt (X) dYα (t) (22)

where we assume that the processes Ft (X) and Hjt (X) are adapted and lie in
Yt].

To establish the proposition, we assume the form (22) and apply a method
based on introducing a process C (t) satisfying the QSDE

dC (t) = fα (t)C (t) dYα (t) , (23)

with initial condition C (0) = I. Here we assume that the fα are integrable, but
otherwise arbitrary. These coefficients may be deduced from the identity

dE [(jt (X)− πt (X))C (t)] = 0

which is valid since C (t) ∈ Yt]. We note that the Itō product rule implies
I + II + III = 0 where

I = E [{djt (X)− dπt (X)}C (t)] ,

II = E [(jt (X)− πt (X)) dC (t)] ,

III = E [(djt (X)− dπt (X)) dC (t)] .

Here we have

I = E[{jt(LX)−Ft (X)−Hαt (X) jt(L̃α + L̃∗α)}C (t)]dt (24)

II = E
[
({πt (X)− jt(X)}) jt

(
L̃α + L̃∗α

)
C (t)

]
fα (t) dt,

III = E[{jt(L0kX)dBk + jt(LjkX)dΛjk + jt (Rj0X) dA∗j + jt (R0jX) dAj

−Hβt (X)dYβ} dYα C(t)] fα(t)

To simplify term III we note that

jt(L0kX)dBkdYα = jt(L0kX)T ∗αljt(S
∗
lk) dt = jt ([L∗k, X])T ∗αkdt,

jt(LjkX)dΛjkdYα = jt(LjkX)T ∗αljt (S∗lk) dB∗j = jt
(
[S∗lj , X]

)
T ∗αldB

∗
j ,

jt(Rj0X)dA∗jdYα = jt(Rj0X)
[
UαkNjk + U∗αkM

∗
jk

]
dt = jt

([
X, R̃α

])
dt,

jt(R0jX)dAjdYα = jt(R0jX) [UαkMjk + U∗αk(δjk +Nkj)] dt

= jt
([
R∗j , X

])
U∗αjdt+ jt

([
R̃∗α, X

])
dt,

10



and so

III = E[jt

([
L̃∗α, X

])
C (t)]fα(t)dt+ E[jt

([
X, R̃α

])
C (t)] fα(t)dt

+E[jt

([
R̃∗α, X

])
C (t)] fα(t)dt−KαβE[Hβt (X)C (t)]fα(t)dt.

Now from the identity I + II + III = 0 we may extract separately the
coefficients of fα (t) dt since the fαwere arbitrary. In particular we have I ≡ 0
as this is the only term not proportional to fα (t) dt, and this implies that

Ft (X) ≡ πt(LX)−Hαt (X)πt(L̃α + L̃∗α)

Similarly II + III ≡ 0 so

0 = E
[{
πt(XL̃α +XL̃∗α)− πt (X)πt

(
L̃α + L̃∗α

)}
C (t)

]
fα (t) dt

+E[πt

([
L̃∗α, X

])
C (t)]fα(t)dt+ E[πt

([
X, R̃α

])
C (t)] fα(t)dt

+E[πt

([
R̃∗α, X

])
C (t)] fα(t)dt−KαβE[Hβt (X)C (t)]fα(t)dt.

From the coefficients of fα (t) we deduce

KαβHβt (X) = πt(XL̃α + L̃∗αX)− πt (X)πt

(
L̃α + L̃∗α

)
+πt

([
X, R̃α

])
+ πt

([
R̃∗α, X

])
,

which is the desired form.

2.6 The Example
We now return to the specific model introduced in the introduction. In this
case we have mFock = 1,msq = 1 and nobs = 2. The system Gsys ∼ (S,L,H)
is driven by the Fock input, while the squeezed input is otherwise unprocessed
(R ≡ 0). We therefore have

L̃1 =
1√
2

[L+ Sβ (t)] +
1√
2
α (t) ,

L̃2 =
1√
2i

[L+ Sβ (t)]− 1√
2i
α (t) .

The covariance matrix K is now given by (4) and we find

L̃1 =
1 + n−m∗√

2∆
[L+ Sβ (t)] +

1 + n−m√
2∆

α (t) ,

L̃2 =
1 + n+m∗√

2∆i
[L+ Sβ (t)]− 1 + n+m√

2∆i
α (t) ,

with ∆ = (1 + n)
2 − |m|2, and of course R̃1 = R̃2 = 0.
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3 Belavkin-Kalman Filters
In this section we solve the filter problem for the special case of a linear dynam-
ical model with Gaussian state. For simplicity we take the system to be a single
cavity mode a and have one squeezed input and (at most) one Fock input.

Here it is possible to obtain an exact form for the filtered estimate πt (a) in
terms of the innovations. In particular, we will encounter the following condi-
tional covariances

V (t) , πt (a∗a)− πt (a∗)πt (a) ,

W (t) , πt
(
a2
)
− πt (a)

2
.

It is a feature of the linear dynamics that these covariances will be deterministic
functions of time t. The assumption of gaussianity ensures that higher mode
moments can be written as combinations of products of first and second order
moments, so for instance

πt (XY Z) = πt (X)πt (Y Z) + πt (Y )πt (XZ) + πt (Z)πt (XY )

−2πt (X)πt (Y )πt (Z)

where X,Y, Z may be a or a∗. In particular, we will make use of the identities

πt
(
a∗a2

)
= πt (a∗)πt

(
a2
)

+ 2πt (a)πt (a∗a)− 2πt (a∗)πt (a)
2

= πt(a
∗)W (t) + 2πt(a)V (t) + πt(a

∗)πt(a)2, (25)

πt
(
a3
)

= 3πt (a)πt
(
a2
)
− 2πt (a)

3

= 3πt(a)W (t) + πt(a)3. (26)

3.1 Cavity mode driven by Fock input whose output is
mixed with squeezed noise

This is the set-up described in subsection 2.6 with

S = eiφ, L =
√
κa, H = ωa∗a.

Figure 3: System driven by a Fock input: the output subsequently mixed with
a squeezed input field.
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(More generally we could take L =
√
κ−a+

√
κ+a

∗ and H = ωa∗a+ εa∗2 +
ε∗a2 and still retain a linear dynamics: this is also solvable.) We now have

L̃1 =
1 + n−m√

2∆

[√
κa+ eiφβ (t)

]
+

1 + n−m∗√
2∆

α (t) ,

L̃2 =
1 + n+m∗√

2∆i

[√
κa+ eiφβ (t)

]
− 1 + n+m√

2∆i
α (t) .

In the following section we will take m to be real, that is, m = m′ and m′′ = 0.
The filter equation then take the form

dπt (X) = πt(
1

2
κa∗ [X, a] +

1

2
κ [a∗, X] a− iω [X, a∗a]

+
√
κ [X, a] e−iφβ∗(t) +

√
κ [a∗, X] eiφβ(t)) dt

+

√
κ

2 (1 + n+m)
{πt (Xa+ a∗X)− πt (X)πt (a+ a∗)} dW1

+
1

i

√
κ

2 (1 + n−m)
{πt (Xa− a∗X)− πt (X)πt (a− a∗)} dW2

(27)

where we now introduce rescaled processes

W1 (t) =
1√

1 + n+m
I1 (t) , W2 (t) =

1√
1 + n−m

I2(t).

The pair W1 and W2 are independent canonical Wiener processes and we have

(dW1)
2

= (dW2)
2

= dt, dW1dW2 = 0.

We obtain the following equation for the estimate πt (a) :

dπt (a) = −
[(

1

2
κ+ iω

)
πt (a) +

√
κeiφβ (t)

]
dt

+

√
κ

2 (1 + n+m)
(W (t) + V (t)) dW1 (t)

+
1

i

√
κ

2 (1 + n−m)
(W (t)− V (t)) dW2 (t)

We now compute V (t). We have

dπt (a∗a) = −
[
κπt (a∗a) +

√
κπt (a) e−iφβ (t)

∗
+
√
κπt (a∗) eiφβ (t)

]
dt+ · · · .

Here, and in the following, expressions of the form dPt = Gtdt+ · · · retain drift
terms, that is, the terms proportional to the increments of the innovations are
indicated by the ellipsis. From the Itō product rule,

dV (t) = dπt (a∗a)− [dπt (a∗) πt (a) + πt (a∗) dπt (a) + dπt (a∗) dπt (a)]
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Note that
dπt (a∗) dπt (a) = Γ (t) dt

where

Γ (t) =
κ

2 (1 + n+m)
|W (t) + V (t)|2 +

κ

2 (1 + n−m)
|W (t)− V (t)|2

=
κ (1 + n)

∆

(
V (t)

2
+ |W (t)|2

)
− 2κm

∆
V (t) ReW (t) (28)

and this leads to
dV (t) = −κV (t) dt− Γ (t) dt+ · · · .

The non-drift term in fact vanishes. To see this we would have to look at the
additional terms in dπt (a∗a) proportional to the increments of the innovations.
To this end we need to calculateHαt (a∗a) which in this case involves cubic terms
πt
(
a∗a2

)
, πt
(
a∗2a

)
, πt
(
a3
)
and πt

(
a∗3
)
. However, we may reduce this to first

and second order conditional expectations using (25) and (26). By inspection,
the coefficients of dW1 and dW2 vanish identically.

Similarly we have

dW (t) = dπt
(
a2
)
− [2πt (a) dπt (a) + dπt (a) dπt (a)]

This time we have
dπt (a) dπt (a) = Σ (t) dt

where

Σ (t) =
κ

2 (1 + n+m)
(W (t) + V (t))

2 − κ

2 (1 + n−m)
(W (t)− V (t))

2

=
2κ (1 + n)

∆
W (t) V (t)− κm

∆

(
W (t)

2
+ V (t)

2
)
.

This leads to the SDE

dW (t) = −2
(κ

2
+ iω

)
W (t) dt− Σ (t) dt+ · · · .

Once again, the cubic terms appearing may be replaced using (25) and (26)
with the overall result that the drift terms vanish identically. We can now give
the explicit form for the filter.

Proposition 2 (With real squeezing parameter m.) The filtered estimate πt (a)
for the cavity mode satisfies

dπt (a) = −
[(

1

2
κ+ iω

)
πt (a) +

√
κeiφβ (t)

]
dt

+

√
κ

2

1

(1 + n+m)
(W (t) + V (t)) dI1 (t)

+
1

i

√
κ

2

1

(1 + n−m)
(W (t)− V (t)) dI2 (t) (29)
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where V (t) and W (t) are deterministic functions satisfying the ODEs

d

dt
V (t) = −κV (t)− κ (1 + n)

∆

(
V (t)

2
+ |W (t)|2

)
+

2κm

∆
V (t) ReW (t) , (30)

d

dt
W (t) = −2

(κ
2

+ iω
)

W (t)− 2
κ (1 + n)

∆
W (t) V (t)

+
κm

∆

(
V (t)

2
+ W (t)

2
)
, (31)

with initial conditions V (0) = E [a∗a]−E [a∗]E [a] and W (0) = E
[
a2
]
−E [a]

2.
The innovations are given by

dI1(t) = dY1(t)−
√

2

[√
κ

2
πt(a+ a∗) + Re{eiφβ(t) + α(t)}

]
dt

dI2(t) = dY2(t)−
√

2

[√
κ

2
πt

(
a− a∗

i

)
+ Im{eiφβ(t) + α(t)}

]
dt.

The generalization to complex m is straightforward, but algebraically more
involved due to the fact that the innovations are now correlated.

3.2 Quantum filtering with direct squeezed input
Our results also apply to the situation where we apply a squeezed field as input
to a system. In this can there can be no scattering. This falls into general
situation covered in Theorem 1 where we now ignore the Fock field B (unless
we wish to include further unmodelled dissipation). The output field will of
course be squeezed and we measure the quadrature

Y (t) = e−iθAout(t) + eiθAout (t)
∗
.

We therefore set S = I, L = 0 with R, the coupling operator to the single
(squeezed) input, nonzero.

Figure 4: System driven by a squeezed input (no scattering allowed!).

The filter equation then simplifies to

dπt(X) = πt(LX) dt+Ht (X) dI (t) , (32)
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where
LX = R00X + α∗(t)R10X +R01Xα(t)− i [X,H]

Ht (X) = πt(XL̃1 + L̃∗1X)− πt(X)(L̃1 + L̃∗1) + πt([X, R̃1]) + πt([R̃
∗
1, X]) (33)

where
L̃1 = eiθ(R+ α (t)), R̃1 =

(
eiθn+ e−iθm∗

)
R. (34)

and we require

L̃ ≡ 1

K
L̃1, R̃ ≡ 1

K
R̃1

with K = 1 + 2n+ 2 (m′ cos 2θ +m′′ sin 2θ). The innovations process is now

dI(t) = dY (t)− πt(L̃+ L̃∗) dt, (35)

and we (dI)
2

= K dt.
Again we specialize to the case of a cavity and take

R =
√
γa, H = ωa∗a.

The filter equation is

dπt (X) =
γ

2
(1 + n)πt ([a∗, X] a+ a∗ [X, a]) dt

+
γ

2
nπt ([a,X] a∗ + a [X, a∗]) dt

−γ
2
m∗πt ([a,X] a+ a [X, a]) dt

−γ
2
mπt ([a∗, X] a∗ + a∗ [X, a∗]) dt

−iωπt ([X, a∗a]) dt

+

√
γ

K

{
πt(e

iθXa+ e−iθa∗X)− πt(X)πt(e
iθa+ e−iθa∗)

+
(
eiθn+ e−iθm∗

)
πt([X, a]) +

(
e−iθn+ eiθm

)
πt([a

∗, X])
}
dI (t) .

For X = a we obtain

dπt (a) = −
(

1

2
γ + iω

)
πt (a) dt

+

√
γ

K

{
e−iθ (V (t)− n) + eiθ (W (t)−m)

}
dI (t) .

Observing that

dπt (a∗) dπt (a) =
γ

K

∣∣e−iθ (V (t)− n) + eiθ (W (t)−m)
∣∣2 dt,

and

dπt (a∗a) = γ(n− πt (a∗a)) dt

+

√
γ

K
{eiθπt

(
a∗a2

)
− eiθπt (a∗a)πt (a)

+e−iθπt
(
a∗2a

)
− eiθπt (a∗a)πt (a∗)

−
(
eiθn+ e−iθm∗

)
πt (a)−

(
e−iθn+ eiθm

)
πt(a

∗)}dI (t)
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we see that

dV (t) = dπt (a∗a)− [dπt (a∗) πt (a) + πt (a∗) dπt(a) + dπt (a∗) dπt (a)]

= −γ (V (t)− n) dt− γ

K

∣∣e−iθ (V (t)− n) + eiθ (W (t)−m)
∣∣2 dt,

where we use the identity (25) again.
Similarly, we find

dπt
(
a2
)

= −2

(
1

2
γ + iω

)
πt (a) dt+ γmdt+ · · · ,

and
(dπt (a))

2
= − γ

K

{
e−iθ (V (t)− n) + eiθ (W (t)−m)

}2
dt,

so that

dW (t) = dπt
(
a2
)
− [2πt (a) dπt(a) + dπt (a) dπt (a)]

= −2

(
1

2
γ + iω

)
W (t) dt+ γmdt

− γ

K

{
e−iθ (V (t)− n) + eiθ (W (t)−m)

}2
dt.

Proposition 3 The filtered estimate πt (a) for the cavity mode satisfies

dπt (a) = −
(

1

2
γ + iω

)
πt (a) dt

+

√
γ

K

(
e−iθ(V (t)− n) + eiθ(W (t)−m)

)
dI(t) (36)

where V (t) and W (t) are deterministic functions satisfying the ODEs

d

dt
V (t) = −γ(V (t)− n)− γ

K

∣∣e−iθ(V (t)− n) + eiθ(W (t)−m)
∣∣2 , (37)

d

dt
W (t) = −2iωW − γ(W (t)−m)

−κ
2

(
e−iθ(V (t)− n) + eiθ(W (t)−m)

)2
, (38)

with initial conditions V (0) = E [a∗a]−E [a∗]E [a] and W (0) = E
[
a2
]
−E [a]

2.

Acknowledgement The authors would like to thank the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for support and hospitality
during the programme Quantum Control Engineering where work on this paper
was completed. JG is grateful to the organizers of the meeting "Mathematical
Aspects of Quantum Modeling, Estimation and Control" in Padua, June 2013,
where this work was begun, and wishes to thank Sebastian Hofer for raising the
squeezed filtering problem there, and AD for support of London Mathematical
Society scheme 3 grant.

17



References
[1] V.P. Belavkin, Quantum filtering of Markov signals with white quantum

noise. Radiotechnika i Electronika, 25, 1445-1453 (1980).

[2] V.P. Belavkin, Quantum continual measurements and a posteriori collapse
on CCR. Commun. Math. Phys., 146, 611-635 (1992).

[3] V. P. Belavkin, Quantum stochastic calculus and quantum nonlinear filter-
ing. Journal of Multivariate Analysis, 42, 171-201(1992) .

[4] V.P. Belavkin, Stochastic calculus of input-output processes and non-
demolition filtering, Reviews of the Newest Achievements in Science and
technology, Current Problems of Mathematics VINITI, Ed. A.S. Holevo,
36, 29-67, (1989)

[5] R.L. Stratonovich, On the Theory of Optimal Nonlinear Filtering of Ran-
dom Functions, Teor. Veroyatn. Primen., No. 2, 239-242 (1959)

[6] R.L. Stratonovich, Conditional Markov Processes and Their Application to
the Theory of Optimal Control, New York: Elsevier, (1968)

[7] M. Zakai, On the optimal filtering of diffusion processes. Z. Wahrsch. th.
verw. Geb., 11, 230-243 (1969)

[8] H.J. Kushner, Jump-diffusion approximations for ordinary differential
equations with wideband random right hand sides. SIAM J. Control Optim.
17, 729-744, (1979)

[9] H.J. Kushner, Diffusion approximations to output processes of nonlinear
systems with wideband inputs and applications. IEEE Trans. Inf. Th. 26,
715-725 (1980)

[10] M.H.A. Davis and S.I. Marcus, An introduction to nonlinear filtering. In
M. Hazewinkel and J. C. Willems, editors, Stochastic Systems: The Math-
ematics of Filtering and Identification and Applications, pages 53-75. D.
Reidel, (1981)

[11] A. Barchielli, Direct and heterodyne detection and other applications of
quantum stochastic calculus to quantum optics. Quantum Opt., 2, 423-441.
(1990)

[12] A. Barchielli, V.P. Belavkin, Measurements continuous in time and poste-
rior states in quantum mechanics, J. Phys. A, Math Gen 24 (12), 1495-1514
(1991)

[13] H.M. Wiseman and G.J. Milburn, Quantum theory of field-quadrature mea-
surements. Phys. Rev. A, 47, 642-662( 1993)

18



[14] M.A. Armen, J.K. Au, J.K. Stockton, A.C. Doherty, and H. Mabuchi,
Adaptive homodyne measurement of optical phase. Phys. Rev. Lett.,
89:133602, (2002)

[15] L.M. Bouten, M. I. Guţă, and H. Maassen, Stochastic Schrödinger equa-
tions. J. Phys. A, 37, 3189-3209 (2004)

[16] L.M. Bouten, S.C. Edwards, and V.P. Belavkin, Bellman equations for
optimal feedback control of qubit states. J. Phys. B, At. Mol. Opt. Phys.,
38:151160 (2005)

[17] A.C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S.M. Tan, Quantum
feedback and classical control theory. Phys. Rev. A, 62:012105 (2000)

[18] J. Gough, V.P. Belavkin, and O.G. Smolyanov, Hamilton-Jacobi-Bellman
equations for quantum filtering and control. J. Opt. B: Quantum Semi-
class. Opt. 7, S237-S244 (2005)

[19] R. Van Handel, J.K. Stockton, and H. Mabuchi, Feedback control of quan-
tum state reduction. IEEE Transactions on Automatic Control, 50, 768-
780, (2005)

[20] L. Bouten, R. van Handel, M. R. James, An introduction to quantum
filtering SIAM J. Control Optim. 46, 2199-2241 (2007).

[21] V. P. Belavkin, P. Staszewski, Nondemolition observation of a free quantum
particle, Phys. Rev. A 45, 1347–1356, (1992)

[22] J.E. Gough, Optimal Quantum Feedback Control for Canonical Observ-
ables in Quantum Stochastics and Information: Statistics, Filtering & Con-
trol, pp. 262-279 Eds. M. Guta and V.P. Belavkin, World Scientific (2008)

[23] J.E. Gough, M.R. James, H.I. Nurdin, J. Combes, Quantum Filtering for
Systems Driven by Fields in Single Photon States and Superposition of
Coherent States, Phys. Rev. A 86, 043819 (2012)

[24] M. Yanagisawa and H. Kimura. Transfer function approach to quantum
control-part I: Dynamics of quantum feedback systems. IEEE Trans. Au-
tomatic Control, (48):2107-2120, 12 (2003)

[25] M. Yanagisawa and H. Kimura. Transfer function approach to quantum
control-part II: Control concepts and applications. IEEE Trans. Automatic
Control, (48):2121-2132, 12 (2003)

[26] S.G. Hofer, W. Wieczorek, M. Aspelmeyer, K. Hammerer, Quantum en-
tanglement and teleportation in pulsed cavity-optomechanics, Phys. Rev.
A 84, 052327 (2011)

[27] R.L. Hudson, K.R. Parthasarathy, Commun.Math.Phys. 93 301-323, (1984)

19



[28] R.L. Hudson, J.M. Lindsay, A non-commutative martingale representation
theorem for non-Fock quantum Brownian motion, J. Funct. Anal. 61,
202-221 (1985)

20


	1 Introduction
	2 Quantum Filtering for General Gaussian States
	2.1 Gaussian Input States
	2.1.1 The Quantum Ito Table

	2.2 The Heisenberg-Langevin Equations
	2.3 Output Processes
	2.4 The Filter
	2.5 Derivation of the Filter
	2.6 The Example

	3 Belavkin-Kalman Filters
	3.1 Cavity mode driven by Fock input whose output is mixed with squeezed noise
	3.2 Quantum filtering with direct squeezed input


