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Could Miscanthus replace maize as the preferred
substrate for anaerobic digestion in the United
Kingdom? Future breeding strategies
SARAH J . PURDY , ANNE L . MADD I SON , CHR I STOPHER P . NUNN , ANA WINTERS ,

EMMA T IMMS -TARAVELLA , CHARLOTTE M . JONES , JOHN C . CL I FTON -BROWN ,

IA IN S . DONN I SON and JOE A. GALLAGHER

Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Ceredigion SY23 3EB, UK

Abstract

Fodder maize is the most commonly used crop for biogas production owing to its high yields, high concentra-

tions of starch and good digestibility. However, environmental concerns and possible future conflict with land

for food production may limit its long-term use. The bioenergy grass, Miscanthus, is a high-yielding perennial

that can grow on marginal land and, with ‘greener’ environmental credentials, may offer an alternative. To com-

pete with maize, the concentration of non-structural carbohydrates (NSC) and digestibility may need to be

improved. Non-structural carbohydrates were quantified in 38 diverse genotypes of Miscanthus in green-cut bio-

mass in July and October. The aim was to determine whether NSC abundance could be a target for breeding
programmes or whether genotypes already exist that could rival maize for use in anaerobic digestion systems.

The saccharification potential and measures of N P and K were also studied. The highest concentrations of NSC

were in July, reaching a maximum of 20% DW. However, the maximum yield was in October with 300–400 g

NSC plant�1 owing to higher biomass. The digestibility of the cell wall was higher in July than in October, but

the increase in biomass meant yields of digestible sugars were still higher in October. Nutrient concentrations

were at least twofold higher in July compared to November, and the abundance of potassium showed the great-

est degree of variation between genotypes. The projected maximum yield of NSC was 1.3 t ha�1 with significant

variation to target for breeding. Starch accumulated in the highest concentrations and continued to increase into
autumn in some genotypes. Therefore, starch, rather than sugars, would be a better target for breeding improve-

ment. If harvest date was brought forward to autumn, nutrient losses in non-flowering genotypes would be

comparable to an early spring harvest.
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Introduction

Miscanthus is a bioenergy grass predominantly used for

heat and power (Jensen et al., 2016). It is a perennial

species that produces high annual yields and requires

very low chemical inputs (Lewandowski et al., 2000).

There are two main subspecies of Miscanthus: M. sinen-

sis and M. sacchariflorus. The commercially grown geno-

type, M. x giganteus, is a hybrid between the two

species. M. x giganteus genotypes are the progeny of a

tetraploid, Japanese M. sacchariflorus, and a diploid,

Japanese M. sinensis; this combination has proved to

produce high-yielding plants from multiple, indepen-

dent crossing events with different parents (Wang et al.,

2008a; Jezowski et al., 2011; Purdy et al., 2013). As a

member of the subtropical Poaceae, Miscanthus is

related to two other major food and bioenergy crops:

maize and sugarcane (Hodkinson et al., 2002).

The soluble sugar content of actively growing M. x

giganteus clones has been reported to be approximately

6% DW (Purdy et al., 2013; de Souza et al., 2013). In a

study of four genotypes of Miscanthus representing both

species and an M. x giganteus, peak-soluble sugar con-

tents were 6–8% (Purdy et al., 2014). This is comparable

to sugarcane progenitors (Wang et al., 2008b; Lingle

et al., 2009; de Souza et al., 2013), which has led to the

proposition that Miscanthus could be bred to produce a

temperate sugarcane (de Souza et al., 2013). However,

unlike sugarcane, Miscanthus also accumulates starch to

concentrations ranging between 2% and 7% DW in the

shoots depending upon genotype (de Souza et al., 2013;

Purdy et al., 2014). This then raises the possibility that

instead of breeding for soluble sugars, with potential

problems of feedback inhibition of photosynthesis, the

focus could switch to increasing starch content. Elevated
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levels of nonstructural carbohydrates (NSC) would

broaden the potential uses of Miscanthus from being

burnt for fuel, to being a feedstock for anaerobic diges-

tion (AD). Anaerobic digestion is the decomposition of

organic matter in an anaerobic environment to produce

biogas that is usually around 60% methane and 40%

carbon dioxide (DECC & DEFRA, 2011, Whittaker et al.,

2016). Biogas can be produced from a variety of organic

wastes, animal manures or energy crops (Amon et al.,

2007). Forage maize is the most commonly used crop

for AD (Mayer et al., 2014a) and plant breeders have

bred tailored varieties specifically for AD. New varieties

of forage maize for AD are early maturing, have a high

dry matter (DM) yield (>30%), high starch yield of

~6 t ha�1, high digestibility and high metabolizable

energy (ME; BSPB, 2016). The use of forage maize for

AD has increased rapidly across Europe, particularly in

Germany, but this has raised concerns about the nega-

tive effects on soil and waterway health and competi-

tion between land for fuel and food (Weiland, 2006;

Klimiuk et al., 2010; Mayer et al., 2014b; Kiesel &

Lewandowski, 2016). In a study into soil health and

land use in south-west England, soils under maize and

potatoes had the most degraded soils, with 75% of sites

exhibiting erosion (Palmer & Smith, 2013). This is linked

to increased overland flow of water across fields and

into waterways which, in turn, causes water pollution

and localized flooding (Palmer & Smith, 2013). Miscant-

hus has been identified as being the most promising

alternative to maize for biogas yield compared to 13

other possible AD substrates (Mayer et al., 2014b). The

higher yields of Miscanthus in continental Europe mean

that Miscanthus can already compete with the biogas

yields of maize, with methane yields of 6153 m3 ha�1

and 6008 m3 ha�1 for Miscanthus and maize, respec-

tively (Kiesel & Lewandowski, 2016). In a recent study,

forage maize had sugar and starch contents of ~8% and

~18%, whereas M. x giganteus has sugar and starch con-

tents of ~5% and 4%, respectively, and a BMP of less

than half that of maize (Whittaker et al., 2016). The

study concluded that to compete with maize for AD,

Miscanthus yields would have to be increased from ~14
to 19–26.5 t ha�1 (Whittaker et al., 2016), but another

possible scenario would be to also increase the concen-

tration of starch and/or soluble sugars in Miscanthus

through breeding.

A major difference between Miscanthus and maize is

the concentration of starch and cellulose. Miscanthus

predominantly accumulates cellulose (~35% DW) rather

than starch (~4% DW) whereas maize accumulates a

higher proportion of starch (~18% DW) compared to cel-

lulose (13% DW; Whittaker et al., 2016). Although starch

and cellulose are both polymers of glucose, starch is the

preferred substrate for AD because it is easier to

breakdown (Montgomery & Bochmann, 2014). The lim-

iting factor for cellulose is its physical and chemical

association with lignin which is not digestible in anaero-

bic conditions and impedes the breakdown of the cell

wall polysaccharides (Weng et al., 2008). When using

lignocellulosic materials, such as straw, in an AD sys-

tem, the high levels of recalcitrance mean that only 40–
50% of the feedstock is converted to biogas and the rest

is unused (Ahring et al., 2015). Conversely, a reactor fed

on late-harvested maize achieved 84% of the theoretical

biogas potential (Bruni et al., 2010). Therefore, a higher

abundance of starch, rather than lignocellulose, and

high digestibility are desirable for maximizing biogas

outputs.

At present, the concentration of starch in M. x

giganteus at peak yield in west Wales is approximately

5% DW. With peak autumn yields of 16 t ha�1, this

equates to approximately 0.8 t ha�1 which is 7.5-fold

less than the yield of starch from forage maize. How-

ever, most studies of NSC concentrations in Miscant-

hus have focussed on a limited range of genotypes

(mainly M. x giganteus), and the amount of natural

diversity in NSC content available in other genotypes

is unclear. To address the possibility of identifying

genotypes better suited to AD or exploiting natural

diversity to breed new varieties, we sought to quan-

tify soluble sugars and starch in a diverse range of

germplasm.

Miscanthus is usually harvested at the very end of

winter (January–March in the northern hemisphere)

when it is fully senesced. By this time, carbohydrates

and mineral nutrients accumulated over the growing

season have been remobilized to the underground rhi-

zome, and the stems are dry (Robson et al., 2012; Purdy

et al., 2014). Therefore, if carbohydrates were to be cap-

tured, the crop would have to be harvested green. This

then presents a number of dilemmas; a major attribute

of Miscanthus is its low (usually nil) fertilizer demands

owing to its efficient recycling system. If the stems are

harvested before nutrient remobilization has taken

place, the essential nutrient elements such as nitrogen

(N), phosphate (P) and potassium (K) may also be

removed and will require replacement with fertilizers to

restore productivity. If Miscanthus is harvested green, it

also needs to be stored to prevent nutrient losses neces-

sary for the AD process. Studies have now shown that

Miscanthus can ensile well-producing good-quality

silage but quality depends upon harvest date (Klimiuk

et al., 2010; Whittaker et al., 2016). It has previously been

shown that in four genotypes of Miscanthus, rhizome

NSC had been replenished to winter levels by Septem-

ber suggesting that harvesting after this month may not

leave the rhizome depleted of carbohydrates (Purdy

et al., 2014). To address the implications of early

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12419
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harvesting on elemental nutrients, we quantified N, P

and K from samples harvested in July, November–
December and January over 2 years.

If harvest date was to be shifted to capture NSC for

AD, the biomass must be readily digestible to maximize

yields of biogas as biomethane production is influenced

by lignocellulosic digestibility (Hendriks & Zeeman,

2009). However, as with all lignocellulosic fermentation,

the challenge is releasing the carbohydrates from their

recalcitrant form to increase availability to the microbial

population. As the plant matures, the composition of

the cell wall also changes (da Costa et al., 2014). In Mis-

canthus, lignin increases during maturity and this is neg-

atively correlated with biogas production as it blocks

access to the cellulose chains by cellulases (Klimiuk

et al., 2010; Ngoc Huyen et al., 2010). To assess whether

there would be an advantage of shifting the harvest

date on the saccharification potential, we analysed this

parameter at the two time points.

The questions that we addressed in this study were

as follows:

1 What is the range in variation for NSC abundance

across diverse genotypes?

2 If harvest date was to be moved to capture maximum

NSC, when should this occur?

3 What are the implications for saccharification poten-

tial and N P and K removal of harvesting at earlier

time points?

Materials and methods

Nonstructural carbohydrate composition and saccharification

potential.

Plant material

Details of all the individual genotypes used in these experi-

ments are shown in Table 1.

Mixed population

In 2004 at Aberystwyth, west Wales, United Kingdom, a total

of 244 Miscanthus genotypes were collected and planted as

spaced plants as previously described (Allison et al., 2011; Jen-

sen et al., 2011; Robson et al., 2012). From this population, 18

genotypes representing 10 M. sinensis, four M. sinensis x M. sac-

chariflorus hybrids and four M. sacchariflorus were selected.

Three biological replicates per genotype were harvested from

blocks 1, 2 and 3 of the trial. The numbering system for the

four M. sacchariflorus genotypes is Sac 2-Sac 5 with no Sac 1.

This is because ‘Sac 5’ has been previously included in other

studies (Purdy et al., 2013, 2014, 2015), and so to maintain con-

sistency, genotypes were numbered to include Sac 5 which

meant omission of a ‘Sac 1’.

Mapping family

A total of 102 genotypes from a paired cross between a diploid

M. sinensis, similar to Sin 5, and diploid M. sacchariflorus robus-

tus genetically indistinguishable from Sac 4 were sown from

seed in trays in a glasshouse in 2009. In 2010, individual plants

were split to form three replicates of each genotype and then

planted out into the field in a spaced-plant randomized block

design comprising three replicate blocks. The field site is

located 300 m to the south from the mixed population (de-

scribed above), and therefore stone content and soil types are

as described previously (Allison et al., 2011).

Destructive harvests

A single stem that was representative of canopy height was

selected from each plant, cut at a height of 10 cm from the

base and then flash-frozen before freeze-drying. As NSC show

diurnal fluctuations in Miscanthus (Purdy et al., 2013), the two

sets of plants were harvested on different days in July and

October so that each harvest could be completed within a 2-h

window at the same time of day (Zt 8–10 of a 16-h photope-

riod).

Annual yield harvest: The mixed population and mapping

family were destructively harvested for yield in March 2014

(following the 2013 growing season). Biomass was dried to a

constant weight, and then the average DW weight per plant

(kg) was calculated.

Non-structural carbohydrates (NSC) compositional
analyses

Soluble sugars and starch were analysed as previously

described (Purdy et al., 2014, 2015). Soluble sugar extraction:

Approximately 20 mg DW (actual weight recorded) of each

cryomilled (6870 Freezer Mill, Spex, Sampleprep, Stanmore,

UK) plant tissue sample was weighed into 2-mL screwcap

microcentrifuge tubes. Sugars were extracted four times with

1 mL of 80% (v/v) ethanol and the resulting supernatants

pooled; two extractions were at 80 °C for 20 min and 10 min,

respectively, and the remaining two at room temperature. A

0.5-mL aliquot of soluble sugar extract and the remaining pellet

containing the insoluble fraction (including starch) were dried-

down in a centrifugal evaporator (Jouan RC 1022, Saint

Nazaire, France) until all the solvent had evaporated. The

dried-down residue from the soluble fraction was then resus-

pended in 0.5 mL of distilled water. Samples were stored at

�20 °C for analysis.

Soluble sugar analysis: Soluble sugars of samples extracted

in the previous step were quantified enzymatically by the step-

wise addition of hexokinase, phosphoglucose isomerase and

invertase (Jones et al., 1977). Samples were quantified photo-

metrically (Ultraspec 4000; Pharmacia Biotech, Sweden) by

measuring the change in wavelength at 340 nm for 20 min after

the addition of each enzyme. Sucrose, glucose and fructose

were then quantified from standard curves included on each

96-well plate. Soluble sugar data shown in this paper are the

sum of these three sugars.

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12419
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Starch quantification: Starch was quantified using a modi-

fied Megazyme protocol (Megazyme Total Starch Assay Proce-

dure, AOAC method 996.11, Megazyme International,

Wicklow, Ireland). Briefly, the dried pellet was resuspended in

0.4 mL of 0.2 M KOH, vortexed vigorously and heated to

90 °C in a water bath for 15 min to facilitate gelatinization of

the starch. A total of 1.28 mL of 0.15 M NaOAc (pH 3.8) was

added to each tube (to neutralize the sample) before the addi-

tion of 20 lL a-amylase and 20 lL amyloglucosidase (Mega-

zyme International). After incubation at 50 °C for 30 min and

centrifugation for 5 min, a 0.02-mL aliquot was combined with

0.6 mL of GOPOD reagent (Megazyme). A total of 0.2 mL of

this reaction was assayed photometrically (Ultraspec 4000;

Pharmacia Biotech, Uppsala, Sweden) on a 96-well microplate

at 510 nm against a water-only blank. Starch was quantified

from known standard curves on the same plate. Each sample

and standard was tested in duplicate. Each plate contained a

Miscanthus control sample of known concentration for both

soluble sugars and starch analysis.

Total cell wall sugars

Approximately 60 mg DW (actual weight recorded) of plant

cell wall material was purified by sequential ethanol extrac-

tions to remove soluble sugars, followed by starch digestion.

1.5 mL of chloroform/methanol (1 : 1 v : v) was then added to

the pellet, vortexed and centrifuged. The supernatant was dis-

carded, the pellet was washed with distilled water, vortexed

and centrifuged, the supernatant discarded, and this step was

repeated twice more. The purified cell wall-enriched fractions

were hydrolysed with 0.6 mL of 72% H2SO4, vortexed and left

to incubate whilst shaking at 200 rpm for 1 h at 30 °C. After

incubation, samples were diluted with 16.8 mL of deionized

H2O. Tubes were then capped and autoclaved at 121 °C for

1 h. Once cooled, an aliquot of 0.65 mL was neutralized with

30 mg CaCO3 and centrifuged to pellet the CaCO3, and the

supernatant was removed to a fresh tube. Glucose, xylose and

arabinose content quantified on a Jasco HPLC system (Jasco

Ltd, Great Dunmow, Essex, UK). Samples were prepared by

Table 1 Details of the Miscanthus genotypes used in the four experimental procedures

Species Ploidy

Country of origin

(where known)

Field trials and genotypes

previously cited in

Name Experiment: nonstructural carbohydrate and saccharification

Sin 1 sinensis 2 Allison et al. (2011), da Costa

et al. (2014), Jensen et al. (2011),

Jensen et al. (2013), Robson

et al., (2013a,b)

Sin 2 sinensis 2

Sin 3 sinensis 2

Sin 4 sinensis 2

Sin 5 sinensis 2 Japan

Sin 6 sinensis 2 Japan

Sin 7 sinensis 2 South Korea

Sin 8 sinensis 2 South Korea

Sin 9 sinensis 2 South Korea

Sin 10 sinensis 2 South Korea

Hyb 1 sinensis x sacchariflorus 3

Hyb 2 sinensis x sacchariflorus 3

Hyb 3 sinensis x sacchariflorus 3

Hyb 4 sinensis x sacchariflorus 4

Sac 2 Sacchariflorus var lutarioriparius 2 China

Sac 3 sacchariflorus 2 China

Sac 4 Sacchariflorus var robustus 2 China

Sac 5 sacchariflorus 4 Japan

Goliath sinensis 3 Japan

Hyb 5–23 sinensis x sacchariflorus var robustus 2

Name Experiment: N, P and K analysis

Sac 5 sacchariflorus 4 Japan Davey et al., (2016), Purdy et al.

(2013, 2014, 2015)Gig-311 sinensis x sacchariflorus 3 Japan

EMI-11 sinensis 2 Japan

Goliath sinensis 3 Japan

Name or number

in each species

Experiment: modelling crop yield as % of final harvest mass

3 sacchariflorus 4

1 sacchariflorus robustus 2 China

5 sinensis x sacchariflorus 2

Goliath sinensis 3 Japan

3 sinensis Unknown

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12419
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combing 250 lL of extract with 750 lL of 5 mM H2SO4, contain-

ing 5 mM crotonic acid as an internal standard. Sugars were

separated on a Rezex ROA-Organic Acid (150 9 7.8 mm) col-

umn with a mobile phase of 5 lM H2SO4 at 0.6 mL min�1.

Quantification was based on standard curves prepared using

sugar standards.

Saccharification potential

Saccharification potential was estimated by measuring enzy-

matic digestibility of cell wall polysaccharides from cell wall-

enriched fractions. Prior to enzymatic hydrolysis, samples were

subjected to a mild acid pretreatment. Approximately 50 mg

(actual weight recorded) of cell wall-enriched fractions was

suspended in 1.6 mL of 1.5% sulphuric acid (w/w) in a screw-

cap microfuge tube and subsequently autoclaved at 121 °C for

20 min. Pretreated samples were neutralized by the addition of

28 mg of calcium carbonate. An enzyme cocktail, comprised of

Accellerase 1500 and Accellerase XY (kindly supplied by

DuPont, USA) and Depol 740 L (a ferulic acid esterase; kindly

supplied by Biocatalysts Ltd., Cardiff, UK), was made up in

0.1-M sodium citrate buffer pH 4.8 at the manufacturers’ recom-

mended application rates. Enzymatic hydrolysis was carried

out by the addition of 300 lL of the enzyme cocktail to each

tube with incubation for 72 h at 50 °C. After this period,

enzymes were inactivated by incubation for 10 min at 80 °C.

Enzyme digests were analysed for glucose, xylose and arabi-

nose on the Jasco HPLC system as described above with the

exception that samples were prepared by adding a volume of

50 lL of sample to 950 lL of a solution of 5 mM H2SO4 with

5 mM crotonic acid. The extent of hydrolysis was estimated as

a percentage of the total cell wall sugar content.

Quantification of N, P and K

Field trial. The four genotypes and trial site used for the quan-

tification of N, P and K are as previously described (Purdy

et al., 2014; Table 1). In May 2009, as part of the BSBEC-Bio-

MASS project (http://www.bsbec-biomass.org.uk/), a dedi-

cated trial was established at the Institute of Biological

Environmental and Rural Sciences (IBERS), Aberystwyth, west

Wales (52.4139’ N, �4.014’ W). The trial was a randomized

block design consisting of four blocks, each block containing

four plots, one for each Miscanthus genotype described in

Table 1. Each plot contained 121 plants with areas designated

to nondestructive measurements, annual yield harvest and

destructive harvests. Plants were grown from rhizome pieces

and cut from mature stands in modules before planting at a

density of two plants per m2. Surrounding each plot was a row

of guard plants of the same genotype. The soil type at Aberyst-

wyth is classified as a silty clay loam.

Destructive harvests. Whole plants were harvested in July

2011, November 2011, January 2012, July 2012, December 2012

and January 2013 as follows: plants within the designated

destructive harvest area in each plot were assigned a number.

Harvest sequence was then determined using a random num-

ber generator thereby assigning a particular individual to a

specific harvest date. At each harvest, a single plant per plot

was harvested (n = 4). The total above-ground biomass was

then harvested at 10 cm, the material was chipped, and a sub-

sample was taken, flash-frozen and stored on dry ice until

freeze-drying.

N, P and K analyses. Mineral elements were analysed by an

in-house analytical chemistry service. All samples were har-

vested and milled as described above. Nitrogen (N) was anal-

ysed by a rapid combustion method using a LECO FP-428

analyser (LECO Corp., St. Joseph, MI, USA). For the determina-

tion of potassium (K) and Phosphorous (P), 1 g of sample was

weighed into 100-mL Kjeldahl tubes, and 15 mL aqua regia

(780 mL HCl; 500 mL HNO3; 720 mL H2O) was added and

allowed to soak overnight. Samples were digested on a heating

block at 120 °C for 3 h, allowed to cool and then quantitatively

transferred to 50-mL volumetric flasks. The solutions were fil-

tered through Whatman No 1 filter paper and then analysed

using a Varian Liberty ICP-AES (Agilent Technologies, Santa

Clara, CA, USA).

Yield modelling

Field trial. A randomized block design field trial was planted

at Aberystwyth in May 2012. Each of the replicate blocks con-

tained 15 plots measuring 5 m by 5 m and containing 49

plants, making a planting density of approximately 2 m�2. The

selected germplasm was a mix of M. sacchariflorus, M. sinensis

and interspecies hybrids of M. sacchariflorus with M. sacchari-

florus var robustus and M. sinensis (Table 1). The plots were

planted as plug plants, propagated either by in vitro cloning or

from seedlings.

Harvesting method. In 2014 and 2015, at monthly intervals,

stems were harvested from each plot to measure the changing

stem mass. Two stems were selected at random from four

plants in the inner border of each plot. To prevent damage to

the plants, the row sampled rotated, with each plant only being

sampled twice in a growing season. A final comparison sample

was also taken directly prior to the yield harvest in spring. The

annual yield harvest was taken in early spring in 2014 and

2015. Total biomass was harvested from nine plants per plot.

Samples were weighed for fresh weight then oven dried and

weighed again for dry weight and moisture content.

Modelling. To model yields through the growing season, the

ratio of the sample dry weights to the harvest sample dry

weight was calculated for every plot at each time point. These

ratios were fitted to a curve using a loess smooth in the R pack-

age GGPLOT2 (Wickham, 2009). Yields were modelled by species,

to find the rate of growth, peak yield date and rate of change

in biomass from emergence to harvest.

Statistical analyses

Differences between genotypes and harvest dates for NSC, struc-

tural carbohydrates, saccharification potential and NPK were
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determined from ANOVAs using genotype and date as treatment

factors (P =≤ 0.05). All analyses were performed using GENSTAT

(13th Edition) (VSN International, Hemel Hempstead, UK).

Results

The average daily temperature for July in 2013 was

17 °C, whereas in 2011 and 2012 July was cooler at

14 °C (Fig. 1). In October, the temperatures in 2011 and

2013 were similar, 12 °C, but 2012 was 2 degrees cooler

(10 °C). In 2013, the average daily rainfall was lower

than 2011 and 2012 at 1.5 and 1.9 mm in July and Octo-

ber, respectively. Rainfall in 2012 was unusually high,

exceeding 150 mm in June, September, October and

December. The average daily PAR in 2013 was 9.9 and

2.5 MJ m�2 in July and October, which was consider-

ably higher than the summers of 2011 and 2012 which

both averaged 7 MJ m�2 in July. PAR was similar in

October in 2013 and 2012 but lower in 2011. Therefore,

the summer of 2013 was brighter, warmer and drier

than the two previous years.

Quantification of non-structural carbohydrates

The concentration of soluble sugars and total non-struc-

tural carbohydrates (NSC) was significantly higher in

both field trials in July compared to November (Date,

P =< 0.001; Fig. 2 and Table 2). However, in the four

hybrid genotypes of the mixed population and three of

the four M. sacchariflorus genotypes, the concentration of

starch increased between July and October. Therefore,

whilst differences in date for this set of plants were not

significant (P = 0.062), a significant interaction between

genotype and date was observed (geno 9 date

P =< 0.001; Table 2). This trend was not observed in the

mapping family. In the mixed population, the majority

Fig. 1 Climatic conditions at Aberystwyth for the years 2011, 2012 and 2013. (a) monthly average air temperature, (b) monthly rain-

fall and (c) average daily PAR.
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of NSC was in the form of soluble sugars at both time

points. The exceptions to this were the M. sacchariflorus

genotypes numbers Sac 3, 4 and 5 in October in which

the abundance of sugars and starch was similar. In con-

trast to this, the majority of NSC in the mapping family

was in the form of starch in July whereas in October sol-

uble sugars tended to be slightly higher or similar to

starch. The exceptions to this were Hyb 8, 16 and 21 in

which starch remained the more predominant carbohy-

drate into autumn (Fig. 2). The maximum concentration

of soluble sugar in July was 120 mg g DW�1 in Sac 2 of

the mixed population and the lowest at 30 mg g DW

was from Hyb 8 of the mapping family. Interestingly,

the second highest maximum concentration of starch

was also observed in Hyb 8 suggesting that there may

Fig. 2 The concentration of non-structural carbohydrates in a mixed population and a mapping family of Miscanthus in July and

October and the % change between the two dates. N = 3 � SE.

Table 2 Statistical analyses of non-structural carbohydrates

(NSC). The effect of harvest date and genotype on NSC. Tests

are a two-way ANOVA with date and genotype as factors.

P = ≤ 0.05

F pr

Soluble sugar Starch Total NSC

Mixed population

Genotype <0.01 0.012 <0.01

Date <0.01 0.062 <0.01

Geno 9 Date 0.001 <0.01 0.02

Mapping family

Genotype <0.01 <0.01 <0.01

Date <0.01 <0.01 <0.01

Geno 9 Date <0.01 <0.01 <0.01
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be a trade-off between soluble sugars and starch. The

maximum concentration of NSC was in the mapping

family in July at 200 mg g DW from Hyb 22, and this

genotype also retained the highest concentration in

October. The lowest concentration of NSC in July was

in Sin 5 with 60 mg g DW and in October it was in Sac

4 with 70 mg g DW�1 (Fig. 2).

Biomass yield

The highest yielding plants in spring 2014 (following

the 2013 growing season when plants were sampled for

NSC in July and October) were the four hybrid geno-

types of the mixed population at 3–5 kg DW plant�1

(Fig. 3). The highest yielding hybrids of the mapping

family were similar in final yield to Sin 1–5 of the mixed

population. The lowest yielding plant was Hyb 21 at

0.07 kg (70 g) DW plant�1. The M. sacchariflorus

genotypes were also generally low yielding, especially

Sac 2–4 (Fig. 3).

The samples used for the analysis of carbohydrates

were taken from single stems harvested in July and

October 2013. To project the yields of total carbohydrate

in July and October, sequential harvests were taken

from a separate field site over a two-year period

(Table 1). The genotypes used were M. sinensis, M. sac-

chariflorus, M. sinensis 9 M. sacchariflorus hybrids and

an M. sacchariflorus var robustus which were representa-

tive of those in the mixed population and mapping

family. At the end of each growing season (January–
March), an area of each plot was harvested to give a

yield for each genotype in t ha�1. The weight of each

individual plant at each time point was then modelled

as a % of the final harvest mass (Fig. 4a). Although

autumn yields have been reported or calculated as a %

of final yield in previous publications (Clifton-Brown

et al., 1998; Whittaker et al., 2016), July yields have not.

The mean value of the four genotypes in July was 50%

of the final harvest mass which was, on average, 30% of

peak, autumn biomass (Fig. 4b). In October, yields were

projected to be an average of 40% higher than harvest

weight (Fig. 4a). This finding is in close agreement with

Kiesel & Lewandowski (2016) who observed that har-

vested biomass was 39% higher in October compared to

February in M. x giganteus in Germany.

Projected NSC yields

Based on the modelled values and the final yield har-

vest the following spring (Figs 3 and 4), the mass of

plants at the two time points was calculated (Fig. 5) and

then used to calculate the DW g of carbohydrate plant�1

(Fig. 6). The plants that yielded the highest soluble sug-

ars and starch were the four hybrid genotypes (Hyb 1–
4) of the mixed population. The maximum yield of

sugar was 280 g plant�1 from Hyb 2, and the highest

yield of starch was from Hyb 4 at 148 g plant�1, both in

October. In the mixed population, starch contents

increased between July and October in all, except seven

genotypes, and they were Sin 5–10 and Sac 4. In the

mapping family, starch declined between July and Octo-

ber in all genotypes except Hyb 5 and 21. The parents

of the mapping family are phylogenetically similar to

Sac 4 (female parent) and Sin 5 (male), and so in show-

ing a decline between the two time points the mapping

family behaved like the two parental types but unlike

the hybrids of the mixed population. The maximum

NSC was 410 g plant�1 in Hyb 2 in October. The four

hybrids of the mixed population produced the highest

yields of NSC but after them was Hyb 13 of the

Fig. 3 Final yield (kg plant�1) for a mixed population and mapping family harvested in spring 2014 following the 2013 growing sea-

son. N = 3 � SE.
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mapping family in July (151 g plant�1) which was also

the highest yielding plant of the mapping family. If har-

vests were to be shifted to capture maximum NSC (with

no other considerations), the mixed population should

be harvested in October, but the mapping family should

be harvested in July.

To compare how yields of carbohydrate from Miscant-

hus compared with maize, the maximum yield of carbo-

hydrate in t ha�1 was projected. The plants used in

our study were spaced plants so it was not possible to

calculate yields in t ha�1 from the values of individuals.

However, in a study comparing 15 diverse genotypes

harvested in autumn (September–October), a maximum

yield of 19 t ha�1 was reported (Clifton-Brown et al.,

2001). This maximum value is in agreement with

the spring yields of M. x giganteus in the United King-

dom being reported at ~14 t ha�1 which +40% for an

autumn harvest equals 19.6 t ha�1. Yields in July were

considered to be 30% of peak harvest mass (Fig. 4b),

which equalled 5.7 t ha�1. The genotypes that produced

the highest yields were the hybrids of the mixed popula-

tion (Hyb 1–4); therefore, their average carbohydrate

concentrations were used to calculate potential maxi-

mum yields. The maximum potential yield of total

NSC in July was 0.56 t ha�1, nearly all of which (0.52 t)

was in the form of soluble sugar (Table 3). In October,

potential yields of total NSC were 1.3 t ha�1, 68% of

which was soluble sugar and the other 32% was starch

(Table 3).

Saccharification potential

The accessibility of the cell wall carbohydrates at the

two time points was assessed by calculating the

Fig. 4 Modelled prediction of biomass as a % of final yield (4a) and (4b) modelled prediction of biomass as a % of peak yield. Data

are the mean of 5 9 hybrids, 3 9 M. sacchariflorus (Sacc), 1 9 M. sacchariflorus var robustus (Sacc/Rob) and 3 9 M. sinensis.
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saccharification potential of cell wall-derived glucose

and xylose. The amount of total cell wall glucose and

xylose yielded from acid hydrolysis generally increased

between July and October in the mixed population and

was significantly different between genotypes and date

(P = 0.005 and P < 0.001, respectively, for glucose

yields, and P = 0.011 and P < 0.001, respectively, for

xylose yields; Table 4). No significant differences

between genotypes in acid-released glucose or xylose

were detected for the mapping family (Table 3). In con-

trast to the acid-released glucose and xylose (in the

mixed population), the amount of enzymatically

released glucose declined in both sets of plants

(P < 0.001 for both mix population and mapping fam-

ily), with a single exception (Hyb 16) between the two

time points (Table 3). The amount of enzymatically

released xylose generally increased in both sets of plants

between July and October but the exception to this was

Hyb 1, 2 and 3 in which yields of xylose slightly

declined. These differences were significant between

time points for both sets of plants (P < 0.001) but were

not different between genotypes of the mapping family

(P = 8.12 and P < .001 for mapping family and mixed

population, respectively; Table 3). In July and October

in the mapping family, the amount of carbohydrate

released by the enzymes was greater than acid hydroly-

sis (Table 4). In July, the difference was within the

degree of error but in October the difference between

enzyme and acid hydrolysis was >20 mg day�1 DW. A

possible explanation could be a greater degree of acety-

lation in October which would make the samples more

resistant to acid hydrolysis (Chen et al., 2012). An ester-

ase enzyme was included in the enzyme cocktail which

would have helped hydrolyse ester bonds in enzyme-

treated samples (Pawar et al., 2013).

The % digestibility of cell wall glucose significantly

declined between the two time points for both sets of

plants whereas the % digestibility of xylose showed a

nonsignificant change between July and October. The

average difference in % digestibility of glucose was

�16% of July levels in October for the mixed population

and �7% of July levels in October for the mapping fam-

ily. However, as biomass increased by 70% between

July and October, yields of digestible sugars in October

will still greatly exceed yields in July.

Nutrient remobilization

The nitrogen (N), phosphorous (P) and potassium (K) of

the total above-ground material was analysed at six

time points over 2 years: July (2011 & 2012), November

(2011), December (2012) and January (2011 & 2012;

Fig. 7). The climate data are shown in Fig. 1. Significant

differences were observed between the harvest dates for

all nutrients in both years (P =< 0.01; Fig. 7). In July

2011 and 2012, N concentration was 13–21 g kg�1 but

by January this had declined three- to fourfold to be

only 5 g kg�1. A similar fourfold decline was also seen

in P over both years. No significant differences were

observed between genotypes for N and significant dif-

ferences between genotypes were only observed for P in

2012 (P = 0.05; Fig. 7). However, the decline of K was

different between genotypes. In both years, the abun-

dance of K in Sac 5 and Gig 311 declined by ~50%
between July and January whereas EMI-11 declined by

~80% and Goliath declined by 77% in 2011–2012 and

55% in 2012–2013 (Fig. 7). Potassium was the only nutri-

ent to show a significant difference between genotypes

for both years (P =< 0.01). With the exception of P in

2012, no interactions between date and genotype were

Fig. 5 Predicted mass of plants in July and October. Values are based on plants weighting 50% of final harvest mass in July and

+40% of harvest mass in October.
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detected for any element in either year. In 2011, EMI-11

and Goliath showed a clear downward trend for K from

November to January but this was not observed in Sac-

5 or Gig-311. In 2011, the maximum change in N and P

from November to January was <0.3 g kg for all geno-

types whereas K in EMI-11 and Goliath declined by an

average of 3 and 5 g kg, respectively. In 2012, no

changes in nutrient concentrations were observed

between December and January with the exception of

EMI-11 (very slightly) for N and more clearly for K.

These results suggest that for Sac-5 and Gig-311, mov-

ing harvest date back to autumn would not leave the

rhizome depleted of nutrients. However, an earlier har-

vest may have an impact on the M. sinensis genotypes,

particularly levels of K in EMI-11. If stems were

Fig. 6 Predicted mass of nonstructural carbohydrates per plant in July and October in a mixed population and hybrid mapping

family. Values are based on plants weighting 50% of final harvest mass in July and +40% of harvest mass in October (Fig. 2).

Table 3 Predicted yields (t ha�1) of nonstructural carbohy-

drates (NSC) from high-yielding hybrids

Projected yields t ha�1

Soluble sugar Starch Total NSC

July 0.52 0.04 0.56

October 0.89 0.41 1.30
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harvested in July, the addition of approximately 18 g

kg�1 of N, 1.6 g kg�1 of P and 13–20 g kg�1 of K would

be required to replenish the rhizome.

Discussion

NSC abundance

Two of the genotypes used in this study, Sac 5 and

Goliath, are the same as those used in previously pub-

lished studies of carbohydrate dynamics (Purdy et al.,

2013, 2014, 2015). Previously published reports from 2011

and 2012 of Sac 5 and Goliath found concentrations of car-

bohydrate to be 7% and 6% NSC in July and 3% and 5%

NSC in November, respectively. These are slightly lower

than the findings of this paper where Goliath had 10%

NSC and Sac 5 had 9% in July and Goliath had 3% and

Sac 5 had 8% in October. The summer values are higher

in our current study by about 30% for both genotypes,

and the autumn level was 40% higher in Sac 5 (Goliath

was the same in both studies in autumn). The difference

in the concentrations was probably caused by the

Fig. 7 Total N, P and K in above-ground material (leaf and stem) in summer, autumn and winter for 2 years. N = 4 � SE. Statistical

analyses show results of ANOVA (P = ≤ 0.05).
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warmer, drier summer in 2013 compared to 2011 and

2012. It has previously been shown that PAR and maxi-

mum temperature showed the strongest correlation with

NSC abundance in four genotypes of Miscanthus (Purdy

et al., 2014). Furthermore, in this aforementioned study,

Goliath and Sac 5 were grown in replicated plots at two

sites in the United Kingdom; one in west Wales and the

other in south-east England. The English site had higher

PAR and daily temperatures than the Welsh site (Cunniff

et al., 2015), and soluble sugars were on average 40%

higher in both Goliath and Sac 5 in July at the English site

compared to w. Wales (Purdy et al., 2014). Therefore, the

hotter drier summer probably resulted in the higher con-

centrations of carbohydrates observed in this study com-

pared to those of Purdy et al. (2014).

The timing of an autumn harvest is dependent on cli-

mate at the growing site as this will determine the rate

of carbohydrate remobilization from the stems to the

rhizome during senescence. In a comparison between

west Wales and south-east England, all genotypes in

Wales had retained carbohydrates in the stems at the

end of winter, whereas in s.e England nearly all carbo-

hydrate had been remobilized by November (Purdy

et al., 2014). This response was found to be correlated

with the minimum daily temperature which is lower in

s.e England than in w. Wales, which receives warmer

air from the Gulf Stream. Therefore, the potential yields

of carbohydrate in autumn will depend on the local cli-

mate, and harvest date will have to be optimized for

different regions.

According to the recommended maize variety list

released by the National Institute of Agricultural Botany

(NIAB), the t ha�1 of starch in forage maize varieties

averaged 6 t ha�1 on favourable sites (NIAB, 2016)

which is five times greater than the highest projected

yields of Miscanthus in our study. However, the eco-

nomic and environmental cost of growing forage maize

is greater than Miscanthus. Economically, it costs

£411 ha�1 to grow and harvest maize whereas it costs

£231 ha�1 to grow Miscanthus (Nix, 2016). Therefore, it

is financially cheaper to grow Miscanthus. Environmen-

tally, there is great concern about maize cropping

because it is associated with soil erosion, agrochemical

leakages into waterways and low biodiversity (EEA,

2006, Palmer & Smith, 2013). In a study of the bio-

methane potential (BMP) of a number of potential alter-

natives to maize, Miscanthus silage harvested in autumn

was identified as the most competitive candidate

(Mayer et al., 2014b). In Germany, the increased yields

of Miscanthus (26 t ha�1 in October) compared to the

United Kingdom already make it competitive against

maize for biogas production (Kiesel & Lewandowski,

2016). Miscanthus sequesters carbon in the soil, and N2O

emissions can be five times lower under unfertilized

Miscanthus compared to annual crops (Clifton-Brown

et al., 2007; McCalmont et al., 2015). Therefore, Miscant-

hus also ‘wins’ in terms of its environmental impacts.

However, the fact that cannot be denied is that the

yields of NSC which are positively correlated with BMP

(Whittaker et al., 2016) are currently at least five times

lower in Miscanthus.

Breeding potential

Miscanthus has undergone no selective breeding for

NSC composition unlike other grass crops such as sug-

arcane and high sugar Lolium Perenne (ryegrass). For

example, in Lolium, selective breeding led to a 31%

increase in water-soluble carbohydrates between 1994

and 2000 (Wilkins & Lovatt, 2011). The idea of breeding

Miscanthus as a temperate sugarcane has been previ-

ously suggested (de Souza et al., 2013), but in this study

we have shown that the highest concentration of NSC

found in any of our genotypes was starch which

reached concentrations of up to 20% DW in summer in

the mapping family. Sugarcane is exceptional amongst

grasses for storing its sugars in the central vacuoles of

the internode parenchyma, which is presumably an

adaptation that Miscanthus does not possess (Glasziou &

Gayler, 1972). The accumulation of high levels of sol-

uble sugars has been shown to repress photosynthesis

in a number of species including sugarcane. This has

been suggested to be the reason that yields of sugar in

sugarcane have only increased through increases in bio-

mass, not sugar concentrations, for several decades

(Jackson, 2005; McCormick et al., 2008). In contrast,

starch presents an inert form of stored glucose that

accumulates in the chloroplast (Zeeman et al., 2007). In

transgenic maize engineered to accumulate high levels

of leaf starch through RNAi of the GLUCAN WATER

DIKINASE gene, starch was increased 20-fold in the

transgenic plants with no impact on total biomass

(Weise et al., 2012). Therefore, rather than targeting sol-

uble sugars for improvement, it may be more logical to

target starch as a final product, avoiding repression of

photosynthesis. As has been previously observed, there

appeared to be a negative relationship between starch

and yield (Purdy et al., 2015); for example, Hybs 21 and

22 had the highest concentration of starch in July but

were amongst the lowest yielding plants. However,

there were exceptions to this trend; Hyb 5 was classified

as a medium-yielding plant and still contained 14%

starch in summer. Furthermore, in five plants of the

mixed population, starch levels in autumn were higher

than in summer indicating that this form of carbohy-

drate can be accumulated later into the year. For exam-

ple, if the later carbohydrate accumulating habit of the

high-yielding genotype Hyb 4 could be combined with

© 2017 The Authors GCB Bioenergy Published by John Wiley & Sons Ltd, doi: 10.1111/gcbb.12419
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the exceptionally high levels found in medium-yielding

Hyb 5, heterosis in the progeny could lead to high

levels of starch accumulation in autumn. The higher

levels of lignin in Miscanthus require a longer retention

time in digesters, and so targeting lignin reduction

through breeding would also increase digestibility (Kie-

sel & Lewandowski, 2016). The cutting tolerance of Mis-

canthus is dependent upon its rhizome carbohydrate

reserves (Kiesel & Lewandowski, 2016) which could

contradict our suggestion that starch should be targeted

for accumulation and removal during harvest. How-

ever, it has previously been shown that the high-yield-

ing M. x giganteus (Gig-311) and average yielding Sac 5

both retain carbohydrates in their stems in autumn and

winter even after frosts which would have killed the

stems and with them the starch digesting enzymes

required for conversion of starch to sucrose for trans-

port to the rhizome (Purdy et al., 2014). Therefore, it

appears that at least some genotypes can tolerate the

removal of starch without detriment to their ongoing

sustainability, probably owing to refilling earlier in the

year (Purdy et al., 2014) which is a characteristic that

should be retained in new varieties (Kiesel & Lewan-

dowski, 2016).

Saccharification potential and nutrient remobilization

As Miscanthus matures, changes occur within the cell

wall including the increased accumulation of cell wall

and ester-linked phenolic acids and lignin (Ngoc Huyen

et al., 2010; da Costa et al., 2014). The concentration of

lignin, its composition and the manner in which it binds

holocellulose within the cell wall are often seen as exac-

erbating factors of cell wall recalcitrance to enzymatic

deconstruction (da Costa et al., 2014). In agreement with

previous reports, the % digestibility of cellulose

declined between July and October. Therefore, if the

crop consisted of the mapping family (or a member

thereof), it would make most sense to harvest in July

because the total sugar yields and saccharification

potential are higher but analysis of the nutrient data

suggests that the impact of this decision could be con-

siderable. In contrast, in Gig-311 and Sac 5, no differ-

ences were observed in the concentrations of N, P or K

between November and December and January when

the crop is usually harvested for final biomass. The date

of the first frost in 2011 and 2012 was 07 November

2011 and 28 November 2012, respectively (Purdy et al.,

2014). The plants were harvested on 14 November 2011

and 04 December 2012. Therefore, in 2011, the plants

were harvested after the first frost which would have

killed the above-ground stems so any remaining carbo-

hydrates or nutrients could not have been remobilized

to the rhizome. The closeness of the point between our

harvests and the first frosts probably accounts for the

lack of change in N, P and K between autumn and early

spring (January).

Despite the decrease in saccharification potential in

autumn, the additional biomass yield compensates for

this decline. For example, the mean yield of enzyme-

digestible glucose from cellulose for both sets of plants

in July and October was approximately 32% and 29%

DW, respectively. If average July and October yields

of 4 and 12 t ha�1 are assumed, this equates to cellu-

lose yields of 1 and 3 t ha�1, in July and October,

respectively. Moreover, several studies have shown no

detrimental effect of autumn harvest on yield although

the duration of years that this practice can be main-

tained is unclear. In Germany, no negative effect on

yield was observed following 3 years of autumn har-

vests but in France yields were maintained for 4 years

with no additional fertilization but then suddenly

dropped in the fifth year and required the addition of

N to return to the previous tonnage (Mayer et al.,

2014b; Yates et al., 2015). In a recent study, yields of

M. 9 giganteus in the year proceeding an October har-

vest were actually slightly higher than when plants

had been harvested in winter (Kiesel & Lewandowski,

2016). Therefore, it is likely that, as with carbohy-

drates, the rate and timing of N P K remobilization

may well vary with site and climate and the sustain-

ability of shifting the harvest date forward would have

to be assessed at a wider range of locations. In agree-

ment with previous reports (Cadoux et al., 2012), the

recycling of K was less efficient and showed greatest

variation between genotypes. It is highly likely that

this results in different genotypic demands for replen-

ishment of K, regardless of whether the harvest is in

autumn or early spring, with genotype such as EMI-11

requiring less replenishment than a genotype such as

Gig-311. A major difference between EMI-11 and Gig-

311 is flowering; EMI-11 flowers early whereas Gig-311

rarely flowers at Aberystwyth, and if it does, it occurs

in autumn (Purdy et al., 2014). Therefore, effective

remobilization of nutrients may be linked to the com-

pletion of the annual life cycle (of a perennial) through

flowering.
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