
Aberystwyth University

Perception of Localized Features During Robotic Sensorimotor Development
Giagkos, Alexandros; Lewkowicz, Daniel; Shaw, Patricia; Kumar, Suresh; Lee, Mark; Shen, Qiang

Published in:
IEEE Transactions on Cognitive and Developmental Systems

DOI:
10.1109/TCDS.2017.2652129
10.1109/TCDS.2017.2652129
Publication date:
2017

Citation for published version (APA):
Giagkos, A., Lewkowicz, D., Shaw, P., Kumar, S., Lee, M., & Shen, Q. (2017). Perception of Localized Features
During Robotic Sensorimotor Development. IEEE Transactions on Cognitive and Developmental Systems, (99),
127-140. https://doi.org/10.1109/TCDS.2017.2652129, https://doi.org/10.1109/TCDS.2017.2652129

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326672063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TCDS.2017.2652129
https://doi.org/10.1109/TCDS.2017.2652129
https://doi.org/10.1109/TCDS.2017.2652129
https://doi.org/10.1109/TCDS.2017.2652129


IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 2, JUNE 2017 127

Perception of Localized Features During Robotic
Sensorimotor Development

Alexandros Giagkos, Daniel Lewkowicz, Patricia Shaw, Suresh Kumar, Mark Lee, and Qiang Shen

Abstract—The understanding of concepts related to objects
are developed over a long period of time in infancy. This
paper investigates how physical constraints and changes in visual
perception impact on both sensorimotor development for gaze
control, as well as the perception of features of interesting
regions in the scene. Through a progressive series of develop-
mental stages, simulating ten months of infant development,
this paper examines feature perception toward recognition of
localized regions in the environment. Results of two experi-
ments, conducted using the iCub humanoid robot, indicate that
by following the proposed approach a cognitive agent is capa-
ble of scaffolding sensorimotor experiences to allow gradual
exploration of the surroundings and local region recognition,
in terms of low-level feature similarities. In addition, this
paper reports the emergence of vision-related phenomena that
match human behaviors found in the developmental psychology
literature.

Index Terms—Biologically inspired feature extraction, concep-
tual learning through development, generation of representation
during development, motor system and development, multimodal
integration through development, robots with development and
learning skills, visual system and development.

I. INTRODUCTION

THE ABILITY to track and identify different visual
objects is extremely useful for humans in order to per-

form adaptive behaviors in constantly changing environments.
This ability relies on the capacity of a cognitive system to
capture and maintain stable representations of separated enti-
ties from a continuous streams of visual input. One major
challenge for cognitive robotics is the learning of perceptual
skills and, in turn, the capacity of artificial systems to trans-
form percepts into concepts. This paper considers how models
of human development can be adapted and applied to robotics
to start to address this challenge.

The human world consists of extended surfaces popu-
lated with distinct and separable objects. Gibson’s ecological
theory of perception [1] is based on the fact that the light,
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as received by the eyes, is not random and disorganized.
Rather it reflects how the physical environment is structured. It
bounces off objects in invariant ways, depending on their phys-
ical characteristics and situation in the layout. According to
Gibson, humans perceive the object world primarily by detect-
ing this invariant information. Human infants are perceptive
to the object world, making some basic sense of it despite
their marked visual immaturity during the first post-natal
months [2].

The main objective of this paper is not to redefine the con-
cepts of objects on a perceptual or psychological level. Instead,
this contribution is an attempt to implement the necessary
components for the processing of object qualities in embod-
ied agents, whose cognitive processes are defined with simple
rules and partially predetermined. As a result, this paper is
asking the question about the understanding of the physical
proprieties of stimulating regions in the scene through the
systematic observation of their underlying structures. These
apparent structures are a complex combination of perceptual
scale changes during development and fortuitous repetitions
in the visual input while observing a natural scene. Indeed,
the opportunity to explicitly model some early properties of
the human visual system in a developmental robotic platform
enables the investigation of the effects of early visual and
sensorimotor development on the understanding of objects.
Moreover, patterns of sensorimotor contingencies in the rep-
resentational structures of an agent’s cognitive system during
its interaction with the environment can be directly observed
and described.

Applying the proposed architecture and following a lon-
gitudinal approach, an embodied agent is shown to be able
to acquire visual experiences to scaffold its understanding
and, in turn, build knowledge of its immediate world. This
is achieved online and in a computationally inexpensive man-
ner, with no prior knowledge or supervision. The results
highlight that when maturing according to the proposed devel-
opmentally plausible time-line, an agent is able not only to
gain sensorimotor experiences by visually interacting with
the environment, but it is also able to facilitate recognition
of stimulating regions as well as detecting dramatic changes
that may occur. While currently limited to visual stimuli, this
approach lays the foundation to expand to multimodal repre-
sentations that can gradually be developed and refined through
the accumulation of experiences, the range of which is steadily
increased over time.

This paper is organized as follows. Section II describes
the time-line of development observed in infants for both
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sensorimotor and feature perception, followed by Section III
which discusses the development’s application to a robotic
platform. Section IV presents experimental results evaluating
the developmental progression and localized region recogni-
tion, finishing with a discussion in Section V.

II. BACKGROUND

A. Time-Line of Visual Development

In most mammal species, visual development is delayed due
to the limited visual input in the womb as well as the limited
availability of patterns being perceived. One major discovery
of the early visual neuroscience is the example of visually
deprived cats with one eyelid sutured shut at birth or dur-
ing development and the discovery of sensitive periods for
the maturation of the primary visual cortex [3]. In humans,
the experiments of Maurer et al. [4] demonstrate that acuity
does not improve post-natally until the nervous system receives
patterned visual input. For deprivation (surgical removal of
cataractous lens, leaving the eye with no means to focus on
images) up to nine months after birth, acuity remains close
to the newborn’s level. However, at this age, patterned visual
input can alter the nervous system rapidly and sufficiently to
support better acuity as early as 1 hour later and to induce
further improvement over the next months [4].

Newborns’ visual acuity or their ability to detect variations
in fine detail, is approximately 40 times poorer compared to
adults with healthy vision. It is only by the end of the first
year that infant visual acuity approaches the adult level [5].
No matter what method is used to measure it, visual acuity is
poor at birth; the smallest stripes to which newborns respond
are approximately 40 times larger than what can be resolved
by individuals with adult vision [6]. There is at least a fivefold
improvement in acuity by six months of age, although it takes
several more years for acuity to reach adult levels [7].

Poor acuity at birth is likely caused both by immaturities
in the size and arrangement of retinal cones and by addi-
tional limitations beyond the retina [8]. The rapid improvement
in the first six months reflects, in part, the development of
foveal cones so that they filter out less information and allow
finer and finer detail through to tune cells in the visual cor-
tex [8], [9]. Maurer and Lewis [6], Mayer et al. [10], and
Courage and Adams [7] provided an accurate time-line to
simulate the important acuity changes in the first six months
of life.

The visual field is restricted at birth in comparison to the
visual field of adults and shows considerable expansion over
the first months of age. Later, the visual field expands from
approximately 75% of adults at 7–9 months to nearly 100% by
2.5 to 3 years [11]. Despite the few measurements and varia-
tions in methods (e.g., intensity of lights and size of stimuli),
it has been generally found that babies orient toward targets
from between 0◦ and 30◦ at birth to between 90◦ and 105◦ at
six months [12]. A detailed review of these results in the first
month of age is provided in [13]. For this paper, inspiration is
take from these time-lines to provide an accurate simulation
of infant visual input for the system (see Table I, as it will be
explained in Section III-C).

Infant color vision is poor at birth and most psychophysical
experiments agree that infant color vision emerges between the
age of three weeks and three months [14]. The overall insensi-
tivity of infants to contrast is likely to provide an explanation
of the poor color vision of infants [15].

Before two months of age, infants do not consistently
demonstrate the ability to discriminate stimuli that differ in
hue only. Older infants, however, can reliably discriminate
these differences in color [16], [17]. However, the extent to
which younger infants use pattern and color features when
they reason about physical events is not immediately apparent.
Although there is evidence that surface features can, in some
instances, influence infants’ performance on physical reason-
ing tasks [18], their use by infants has not been systematically
explored. The lack of evidence may suggest that, in many
physical situations, surface features are simply irrelevant to
the outcome of the event. For example, the color of the ball
would not alter its ability to fit in the opening [19]; likewise,
no matter if the rabbit’s body was striped, dotted, or plain,
it would not affect its ability to appear in the window [20].
Hence, infants may not be practised at determining when sur-
face features provide important information and at using this
information effectively [21].

According to [2], the way in which poor vision of neonates
might help constrain them to infer and represent some invari-
ant principles and to figure out the physical world, is still an
open and stimulating question. “Like astrophysicists theoriz-
ing about invisible worlds by inferring from the poor visual
information provided by telescopes, infants would likewise
be constrained to infer from the poor perceptual informa-
tion they are able to gather.” Whereas this question cannot be
directly tested in human infants, it is now possible to perform
experiments on robotic surrogates. For example, a system that
explicitly modeled the formation of object percepts through
distinctive stages of visual development, might be able to
shed some light on the invariant underlying structure of the
visual input despite the massive developmental changes briefly
exposed above.

However, one important question regarding such a system
is the amount of a priori information and its initial abilities
as a starting point for the vision development to be able to
systematically investigate its effect on object perception. In
order to avoid the nativist/empiricist debate which is out of
the scope of this paper, focus is put on the most common
abilities that are mentioned in the developmental psychology
literature and some of the best arguments in favor of a few
prenatal visual abilities even prior to the onset of the patterned
visual input [22].

First, the ocular-motor system is sufficiently functional
to react to high saliency targets. The classical types of
particularly salient targets are high-contrasts edges, motion,
and face (not relevant to this contribution). Thus, in the
presented model, camera input is separated into four channels:
1) brightness; 2) color; 3) motion; and 4) edges.

Second, the organized activity in visual pathways from
early on, that contribute to retinotopic “mapping” preserve
the sensory structure, e.g., relative positions of neighbor-
ing points of visual space from retina through the thalamus,
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visual cortex and higher visual regions. Thus, correlated inputs
would remain coupled and dissimilar inputs could become
dissociated. This has two consequences for the proposed
model:

1) an ability to link the visual features close to each other in
regard to their relative location in the developing notion
of the immediate physical space;

2) the idea that “edges” should be defined as simple, local
interactions in the input enabled by a very simple feed-
forward calculation.

Third, there is evidence of a very simple but still present
system of short term memory at birth. For example the effects
of habituation, recognition and differentiation of familiar or
novel patterns and the interest toward new stimuli is often
exploited by experimentalist to indirectly measure other cog-
nitive abilities by comparing how long a baby will fixate a
target. In the presented model, this can be seen as both abil-
ity to collect simultaneous information about targets and to
confirm its persistence if this information is already seen.

A newborn baby is equipped with perceptual and cognitive
mechanisms sufficient to begin the process of learning about
objects by detecting edges, tracking motion, recognizing famil-
iar items, discriminating items presented simultaneously or in
sequence, and so forth. Having these concepts in mind, the ini-
tial stage and the incremental changes of the proposed model
are presented in the next sections.

III. SENSORIMOTOR CONTROL AND

REGION PERCEPTION THROUGH

STAGED DEVELOPMENT

In this section, a system able to build sensorimotor
as well as region perception experiences according to the
human developmental time-line discussed above, is presented.
Reflecting the system’s modular design, each component is
described separately.

A. Robotic Vision

A vision module is developed to model a close approxima-
tion of the infant’s visual ability at each month of development,
in connection to the psychological literature. It is designed to
provide two core functionalities.

1) A way to configure filters that alter the field of view
(FOV), acuity and contrast of input images according to
the developmental time-line.

2) Four low-level feature extraction mechanisms that detect
features and measure their quantities.

Currently, the module is capable of locating stimulating tar-
gets based on their color, level of brightness, motion activity
as well as their edges. As long as they satisfy the module’s
minimum region thresholds, red and green targets are identi-
fied in each image. Color detection is achieved by comparing
the hue, saturation, and value (HSV) attributes of each pixel
against the range that define each color in the HSV color space.
Subsequently, the centroid of each target as well as its size (in
pixels) is reported, followed by the mean hue and saturation
values. This approach not only allows the system to recognize
colored targets per se, but it also offers the ability to ultimately

distinguish between targets of the same color, based on the
detailed color information.

In the same vein, brightness detection is achieved by mea-
suring the average value attribute of each of the identified
targets and matching it with an acceptable range in the HSV
color space. In order to reduce environmental noise, regions
smaller or larger than predefined size thresholds are ignored,
making sure that only reasonable targets are seen within a very
noisy environment. The brightness filter reports the centroids
and sizes as well as the average value of each target.

For edge detection, the module employs the Canny edge
detection algorithm [23]. Noise is reduced by excluding
regions that do not satisfy size thresholds and are not clearly
defined by their detected edges, that is, not all of the
pixel points of the region belong to the same convex set.1

Additionally, once such a target region is identified, the vision
module calculates its perimeter and the Euclidean distance
between pairs of extreme points, namely top and bottom as
well as left and right extremities. The horizontal and vertical
distances as well as the perimeter of the region, clearly iden-
tified by its edges, are reported. In the proposed system, this
edge detection is considered as a precursor for a more mature,
shape-detection ability, as it gives some insight related to the
shape of a potential object in the scene.

Finally, the motion extraction mechanism compares two
consecutive images. To decrease resolution, both images are
blurred and turned into gray scale. The comparison identifies
the centroids as well as the sizes (in pixels) of the regions that
differ. This approach is suitable for seamlessly detecting any
target region that is perceived due to some motion activity,
including flashing lights.

Notice that the vision module provides only low-level image
processing and is capable of reporting feature-related informa-
tion for multiple targets continuously. The rest of the system
is responsible for analyzing, storing and associating the data.
It is through the representation of the data and the correlations
being made while the cameras observe the environment that
the system builds its understanding about interesting areas in
the scene.

The data structures are described in the next section.

B. Maps, Fields, and Links

Both eye and head control learning as well as the
region perception are based on a mapping module. Several
multidimensional structures or maps are used in order to rep-
resent sensorimotor as well as feature-related search spaces
within the system. Instead of points, each map consists of
small overlapping regions or fields, whose center points and
radii allow them to represent closely related values within the
particular search space.

Although within the developing brain, the structure of the
receptive fields and neurons is closely related to the acuity
and FOV, within this system fields represent regions of equiv-
alence that could be loosely considered as receptive fields.
Notice that this paper does not focus on producing a neurally

1This is a connected set in which lines can be drawn between any two
points without leaving the set.
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accurate model, rather it takes inspiration from psychology
and neuroscience.

In the maps technology, fields can be connected using
explicit links. More specifically, when a stimulating target is
identified by the vision module (described in Section III-A),
a representation of it is created in the retina map. This
map arranges fields in a polar grid, where each radius is
proportional to the distance between the centroid of the corre-
sponding field and the center of the image, based on images
of resolution 360 × 240. The motor values of the eyes and the
head are also accommodated in two polar motor maps, whose
dimensions are defined by their joints’ range of values (i.e.,
pan and tilt joints).

Through the process of motor babbling, links between retina
and eye motor as well as retina to head motor maps are gradu-
ally learned [24]. Links are used not only to make correlations
between regions of different spaces, but also to allow travers-
ing between experienced regions within a single map. In the
context of the sensorimotor control, links connect retina fields
with their correlated eye motor fields, associating relative eye
motor movements for fixation with what is visually observed.
Links are also used to construct eye and head movement tra-
jectories utilizing relative movement information found in the
motor fields, toward successful fixations on targets. In more
detail, when a stimulus appears in the retina, the corresponding
retina field is activated. By accessing it, links to the corre-
sponding eye and head motor fields point to the appropriate
adjustments to apply to the current eye and head configuration
in order to perform a saccade toward the target. If no previous
information exists, neighboring retina fields are used instead,
if available. That ensures that the target is brought closer to
the foveal area. However, if due to insufficient number of
fields the target cannot be centered, the learning algorithm
triggers a random babbling behavior to promote learning of
new sensorimotor experiences.

During head motor movements the vestibulo-ocular reflex
acts to maintain the eye fixation on the target. The internal
mechanisms and the algorithms of this learning approach as
well as the formulas for calculating the gaze shift (i.e., con-
tribution of eyes and head to perform successful fixations) are
found in [24]. Notice that in the eye and head motor maps, the
number of new links decreases over time as existing ones are
used, giving a level of body-related saturation in the mapping
module [25].

Similar to the learning of sensorimotor control, localized
region perception uses map structures in order to store and
correlate collected features from targets that define aspects of
a small region within the observable space, for example, the
immediate environment of the robotic platform containing an
object with multiple visual features detectable from it. Four
Cartesian feature maps exist in the system.

1) A 2-D map is used to accommodate feature values
related to the brightness of located stimulating targets.
The dimensions of the map are defined by the range of
the value element of a pixel in the HSV model (0–255)
and the size of the target region in pixels (0–5000).
Feature fields in the brightness map represent targets
that differ in size and in level of brightness. Their radius

Fig. 1. Illustration of the gaze space and associations between sensorimotor
control maps as well as feature maps linked to gaze space for localized region
perception. The agent fixates on a stimulating area (red patch) and extracts
any available low-level information (color and edge features).

is fixed to 5 units, due to the narrow range of values
expected for the value element. That allows the system to
better distinguish between targets of different brightness,
yet of similar size.

2) A color map is designed to represent color informa-
tion for colored targets. Its fields are defined by the hue
and saturation elements, with ranges 0–1802 and 0–255
defining the map dimensions, respectively. Similar to
brightness, the radius of each field is fixed to 5 units.

3) A single dimension motion map is able to accommo-
date information about mobile targets. Its dimension
ranges from 0–5000 and corresponds to the size of a
target region in number of pixels. Here, due to the large
range of dimension and the expected fluctuation related
to region sizes, the radius of each field is 20 units.

4) An edges map is designed to represent information
related to target regions defined by their edges. This is
a 3-D map where fields are defined by the perimeter of
the identified target region as well as its horizontal and
vertical distances, as they are received from the vision
extraction mechanism. The field radius used in this map
is 20 units.

Along with the feature maps, there exists a Cartesian map to
represent an ego-centric gaze space consisting of gaze fields,
where spatial locations of targets relative to the robotic plat-
form are recorded. This map is 2-D and its fields are defined
by the gaze pan and tilt coordinates as described by the gaze
orientation of the eyes and the head. Through the process
of feature collection from targets identified by vision, fea-
ture fields are created and linked to the particular gaze fields,
which in turn are excited to represent and locate stimulating
regions that are both in and out of the retina. The system is
able not only to know the spatial location of stimuli previously
experienced, but also to describe each stimulating region by

2Notice that the typical hue range is scaled down, due to the use of OpenCV
for image processing.
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Fig. 2. Effect of the staged vision development on perceiving the world. The order of the development is depicted from months 1 (left) to 10 (right). The
black circle in the center of each image marks the fovea of the eye, with the cross in the center being the fixation point.

TABLE I
STAGED VISION DEVELOPMENT

revisiting the collection of features it has stored. The system is
better illustrated in Fig. 1 where the agent is shown to fixate
on a particular stimulating region in its immediate environ-
ment, activating the corresponding gaze field. Notice that the
retina of the agent follows the agent’s gaze within its egocen-
tric space. The head configuration (i.e., eye and head motor
fields) is associated with the activated gaze field. In terms of
perception, the agent is shown to extract color and information
for edges, activate the appropriate feature fields and link them
with the gaze field of the fixation.

C. Vision Development

Vision development is designed to progress in stages
(reflecting months) according to Table I, with both FOV and
acuity affecting the visual perception of the system. Note that
the maximum FOV of the eye cameras used in this paper
approximately correlates to that of an one year old child, rather
than the full adult level described in Section II-A. The level
of acuity was measured using a series of infant acuity tests,
based on the examples provided by the Vision Research Group
at Ulster University [26].

Acuity is simulated by applying a smoothing operation to
the input image. The operation involves linear convolution
with a Gaussian kernel, the size of which is determined by
the aperture width, represented in the model by the acuity
parameter. The range of the latter is 1–100, with 100 being dra-
matically affected and 1 resulting in applying no smoothing.
Again, the values of the acuity parameter in Table I are care-
fully chosen to match the time-line discussed in Section II-A.
Fig. 2 depicts the effect of the vision development between
months and the impact it has on the quality and level of
detail, thus the perception ability of the environment through
the system cameras.

D. Sensorimotor Control Development

As the impact of the vision development to both eye and
head sensorimotor control and learning of feature clusters is
investigated in this paper, it is important to define the con-
ditions and constraints that make the system experience the
infants’ development at each month. For this purpose a lift
constraint, act, and saturate [27] approach is followed. Apart
from the vision staged development described in Section III-C,

TABLE II
SATURATION TYPES AND THRESHOLDS

a head movement constraint is applied and lifted at just after
the third month of age. This is to reflect the infants physi-
cal inability to effectively control the neck muscles till later
months.

In order to define a level of saturation for each month, four
performance metrics are considered:

1) the number of links that exist between retina and eye
motor maps;

2) the number of links between retina and head motor
maps;

3) the number of those links that are reused;
4) the number of saccades that are performed using links

that involve both eye and head maps simultaneously.
These metrics are used as indicators for the maturity of the
system, because they are attributed to the particular visual as
well as physical conditions of the system at each month.

A large number of links between the retina and the eye
motor maps suggests an equally large number of eye-related
sensorimotor experiences, collected as a result of frequent eye
babbling and successful fixations. As the number of successful
eye saccades increases, the development of the sensorimotor
control also increases, rendering the system mature enough to
progress to the next month.

Once links are added, repeated use of these links acts to
confirm their correctness and thus proving their success in
leading to fixations between targets. As not all of the links
are ultimately reused, the number of those that are is signifi-
cantly less than the total number. As a result, the sensorimotor
control performs less motor babbling and more targeted eye
movements as more links are reused. This is due to the utiliza-
tion of successful links, allowing the eyes’ position to change
according to consecutively linked fields in the motor space.

“Combined” saccades are the saccades where links from
both eye and head control are utilized in order to change
between two successfully fixating gaze directions. Combined
saccades are themselves an indication that the maturity level
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Algorithm 1 Regional Perception Mechanism
Require: A successful saccade leading to target T

1: if isFixating(T) not true then
2: return // lost stimulus
3: end if
4: N ← getNeighbouringTargets(T)
5: for ∀n ∈ N do
6: t← determineType(n)
7: access ft ∈ Ft and g ∈ G
8: l← createLink(g, ft)
9: l.confirm← l.confirm+ 1

10: l.timestamp← timeNow
11: end for
12: g.confirm← g.confirm+ 1
13: g.timestamp← timeNow

of the system is such, that enough reused links exist for both
eye and head control, demonstrating a level of gaze control.

Table II summarizes the saturation types and thresholds that
are used for each month of development. Notice that after
month three, the development of the eye motor control is close
to a satisfactory level of saturation. In fact, half of the motor
map is populated and the number of reused links is enough
to allow direct transitions of the eyes between two fixations.
Between months 4 and 7, saturation is mostly concentrated on
the head motor control which, taking advantage of the progress
the eye motor control has made thus far, is expected to develop
quickly. Given the particular visual constraints at each month,
the thresholds are finalized based on the inability of the system
to achieve better performance.

E. Modeling Regional Perception and Recognition

It is clear that both learning of sensorimotor control and
regional perception of feature clusters depend on the effective
population of the underlying maps, as well as the number of
links that connect corresponding fields together. The two learn-
ing mechanisms are designed to work in parallel, so that the
development of the one directly affects the development of the
other. As previously shown in [24], [25], and [28], motor bab-
bling has been effectively used to drive the discovery of new
experiences between a robotic platform’s sensors and motor.
This mechanism has been previously evaluated and shown its
effectiveness in being a competent approach to achieve robotic
sensorimotor learning. In this paper, focus is given on the
process of: 1) discovering such sensorimotor experiences dur-
ing the staged development of infant’s vision and 2) building
knowledge related to stimulated regions within the gaze space
of the system.

In particular, gradually building knowledge about stimu-
lated regions primarily consists of feature extraction, analysis,
manipulation and association of feature data. Given that the
vision is stimulated by targets consisting of features of cer-
tain types (i.e., brightness, color, motion, and edges), when
the eyes fixate on a region, e.g., as a result of a successful
saccade performed by the sensorimotor control, the system is
expected to extract at least one feature within the region of
fixation. The latter is considered as the eye’s fovea and has a
fixed radius of 10% of the image width.

Fig. 3. Illustration of mappings between feature fields (e.g., color, brightness,
etc.) and gaze fields. These are created as the system explores, extracting
clusters of localized visual features in regions of gaze space.

The system is capable of collecting neighboring features
related to the same small region in the gaze space. In spite
of the single feature extraction, which confirms the existence
of a stimulus and in turn excites the corresponding gaze field,
the region perception mechanism is designed to extract neigh-
boring features in an attempt to learn as much as possible
during a single fixation. Neighboring features are those within
the foveal region. That is, if two or more feature-related tar-
gets are found within the fovea, they are considered to be
neighbors. The regional exploration mechanism is shown in
Algorithm 1. The results of the iterative process that aims at
gathering and analyzing extra stimulus found within the fovea
with g is depicted in Fig. 3, where excited fields from feature
spaces (e.g, color, brightness, etc.) are associated with gaze
fields in the gaze space.

When the eyes fixate on a stimulating region, as a result of
an identified target T, information is collected. For example,
if a red target is responsible for eye fixation, the color infor-
mation is used to excite an existing color field f in the feature
map Ft (f ∈ Ft), where type t is now color. Notice that in
order to facilitate the identification of the fixated target in the
foveal area, the feature type is mainly used for target matching.
Furthermore, if no existing color field is present, the mapping
system will create a new one in order to accommodate the
color information. To associate the feature information with
the current position in the gaze space, a link l is made to con-
nect ft, that is a feature field of type t (e.g., t is “color” for
fields in the color map) with the appropriate gaze field g ∈ G,
with the latter being the egocentric gaze space. If such a link
is already present, then it is reused to enhance the particular
visual experience in G.

As previously stated, the sensorimotor control and regional
perception mechanisms depend on each other, with the first
acting as the driving force of the agent’s attention. While
learning sensorimotor control, the agent employs random
movements as well as calculated saccades resulting from
previously learned links. Both drive the attention of the eyes to
stimulus that, when in the center of the fovea, allows feature
extraction to be performed. Notice that at this current stage of
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the architecture, there is no excitation mechanism to drive the
attention of the system to particular stimuli, rather learning of
the environment is dictated purely by the sensorimotor control
mechanism.

An exception to the above is when the agent is forced to
drive its attention to similar regions. As this paper focuses
on region perception, designing a system capable of perceiv-
ing similar regions within the immediate space is taken into
consideration. Driven by a simple mechanism that identifies
similarities in regions, the system allows the artificial infant
to shift its gaze toward those regions that are found similar.

The concept of similarity as well as the mechanism to com-
pare two regions depend on the low-level feature collection.
Remember that feature maps are employed to accommodate
values received from the four vision inputs when the eyes fix-
ate on a region of interest. For example, when a bright object
is placed in front of the infant it is perceived as an interest-
ing region that contains (at least) a brightness related target.
When the eyes fixate on it, its value and size create or trigger
existing fields in the brightness map which are linked with a
gaze field that represents the particular region’s position in the
gaze space. Notice that several brightness fields may be linked
to a particular region, as a result of being seen and perceived
multiple times. In addition, similar features may have been
seen in different positions resulting in links to multiple gaze
fields.

Therefore, comparing two regions in terms of a low-level
feature is achieved by: 1) calculating the overall feature
information that is associated with each of the regions and
2) measuring the distance between the two. Following the
mapping approach, the Euclidean distance between two aver-
age brightness fields in a brightness map is used to quantify
how different two regions are with respect to brightness. Two
overlapping average brightness fields is an indication that the
two regions are similar in terms of brightness (i.e., value and
region size).

Notice that the overall feature information is measured by
calculating the weighted average of the feature fields found
linked with a region, where the number of link confirmations
are used as the weights for averaging. For instance, if the
link between a gaze field and a particular brightness field is
confirmed multiple times, it should have a stronger presence
when calculating that region’s brightness information

F̄t =

n∑

i=0

(
Ft(0) × ωi

)

n∑

i=0
ωi

, . . . ,

n∑

i=0

(
Ft(k) × ωi

)

n∑

i=0
ωi

. (1)

Equation (1) is used for calculating the weighted average.
Here, t is the type of the feature, n is the total number of
feature links associated with g, and k is the number of ele-
ments included in the particular feature field Ft according to
the information it accommodates (e.g., k = 2 for brightness;
value and size elements). Hence, in the example of brightness
information, Ft(0) would be equal to the value element of the
first brightness field.

Looking for similar regions in the gaze space is shown in
Algorithm 2, which is supplementary to Algorithm 1 to allow

Algorithm 2 Exploring Similar Regions
14: S← getSimilarRegions(g) // algorithm 3
15: for ∀g′ ∈ S do
16: applyHeadConfiguration(g′)
17: T ′ ← getClosestTarget(g′)
18: repeat steps 4− 11 for T ′ and g′
19: memoryDecay(g′)
20: applyHeadConfiguration(g)
21: memoryDecay(g)

Algorithm 3 Recognizing Similar Regions
1: S← 0
2: F̄c, F̄b, F̄m, F̄e ← avgFeature(g, {c, b, m, e})
3: for ∀g′ ∈ G do
4: for ∀t ∈ {c, b, m, e} do
5: F̄t

′ ← avgFeatureField(g′, t)
6: dt ← dist(F̄t, F̄t

′
)

7: if dt ≤ Ft.radius then
8: S← S ∪ g′
9: return S

Algorithm 4 Memory Decay
1: L← linksAssosiatedWith(g)
2: for ∀l ∈ L do
3: ts_offset← (timeNow− l.timestamp)
4: if (tsoffset > (Thresh× l.confirm)) then
5: l.confirm← l.confirm− 1

region perception and recognition. Once all possible features
within the foveal area are extracted, the agent is forced to
recall similar regions that have been previously experienced,
and drive its attention toward them, updating features recorded
for each of them.

Algorithm 3 is utilized to return the regions whose feature
information overlaps with the region associated with g. While
iterating though similar regions, the system collects informa-
tion about them, repeating the exploration mechanism. This is
found to be very important as it allows the system to revisit
previously discovered regions and identify any differences in
the way they are perceived.

Notice that the perception of the environment changes
according to the vision development, thus past and recent
experiences are fixed when calculating the average feature
information. If during early stages a region is visited multiple
times, then the impact of the links made to the weighted
average will be stronger. Through development, this impact
is transferred to later stages rendering the system prone to
making mistakes when comparing regions that are changed
or perceived differently. Undoubtedly, the ability to forget in
order to effectively use past experiences is important. This is
achieved by enabling a memory decay mechanism at lines 19
and 21 in Algorithm 2. The internals of this mechanism are
depicted in Algorithm 4, where the time when each link was
last confirmed is examined. A time offset is calculated based
on each link’s confirmation number multiplied by an arbitrary
fixed threshold (3 min). In this fashion, memories of features
that are observed more will last longer and will have a higher
contribution to the averaging. This simple technique allows
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the system to forget feature correlations that are not persistent
during the development or experienced only once.

The current design offers a level of data transparency that
renders the system able to reason about specific regions in
terms of their associated features. Given sufficient time and
exposure to an environment with enough stimuli, data patterns
start to emerge highlighting feature aspects related to the sur-
face and shape of experienced regions. As more refined data
is collected, the stronger the system’s ability to describe what
is visually observed becomes.

IV. EXPERIMENTS AND RESULTS

This section is organized as follows. First, the experimen-
tal methodology is described, including the description of the
environmental conditions and set up as well as the steps taken
to conduct a longitudinal study using a robotic platform. Next,
results related to the learning of sensorimotor control and the
effect vision development has to its progress are reported.
Finally, observations and results about the ability of the system
to perceive the stimulating regions within the environment are
given and analyzed.

A. Experimental Methodology

In order to evaluate the system, two experiments following
a longitudinal approach using the iCub humanoid robot are
conducted. The robot’s vision is achieved by two DragonFly2
cameras of low resolution (320×240, 25 frames/s). The robot
is placed in a laboratory with typical indoor light conditions.
Several targets are placed in front of the robot in order to
stimulate the vision and exercise the feature extraction mech-
anisms. Namely, red and green targets that vary in HSV values,
shape and size are placed within the scene. Flashing lights,
including the robot’s own LEDs situated on its arms, are used
to represent targets in motion. Finally, bright targets are natu-
rally present due to high value element (considering the HSV
model) of regions in the scene (e.g., pink and light green
regions) and the illumination in the room. Thus, the robot is
exposed to a high level of noise arising from a natural, highly
dynamic environment.

The first experiment is designed as follows. For each stage
of development, the learning of sensorimotor control and fea-
ture perception are performed in parallel. The duration of each
stage is dominated by the corresponding saturation types and
level thresholds found in Table II. As the development pro-
gressively moves from one stage to the other, data collected
during previous stages is utilized, allowing the robot to grad-
ually and cumulatively build on top of previous sensorimotor
experiences. However, in terms of regional perception the data
previously collected is not utilized. Rather, the system has to
relearn its environment by observing the extracted features
related to specific regions within its gaze space. As the focus
of this experiment is: 1) to examine how the development of
vision affects the sensorimotor learning and 2) to evaluate how
the system progressively perceives the environment and scaf-
folds its knowledge about it during stages, no memory decay
and comparison of similar regions are employed. Rather, the
robot is exploring its surroundings purely based on its ability to

extract low-level features from interesting regions, thus utiliz-
ing only Algorithm 1. Notice that no regions change between
stages, as a result of moving objects around, and the motion
filter is mainly triggered by the mobility effects of the robot,
flashing lights and general noise in the environment.

It is also worth mentioning at this point that targets, inde-
pendent of their type, are detected within most of the scene.
Inevitably, the amount and type of information to be returned
purely depends on the visual ability of the system at each
stage. Having regions identified by different feature types
being located very close to each other, is an expected phe-
nomenon. For instance, a cubic object of both red and green
facets within a region is characterized by at least two pieces of
color plus edge information. Color-wise, information regard-
ing stimuli of green and red regions will be linked to the same
gaze field and as far as the system’s ability to reason based
on color is concerned, distinguishing between colors is subject
to the number of link confirmations as well as the perceived
level of color details.

Furthermore, none of the targets are placed within reach-
able distance. Depth, although factored out when defining the
gaze space of the robot at this level (i.e., the gaze space is
represented as a 2-D space), is responsible for the grouping
of neighboring feature targets together, as they are mislead-
ingly perceived by the individual cameras. When this situation
occurs, it is considered as noise that the experimental config-
uration tolerates in order to simulate a realistic as possible
environment with lack of depth perception in the first months.

At the end of each stage, data in the form of maps and links
between their fields is stored and analyzed. Results in terms of
the effect and the impact of vision development to learning of
sensorimotor control and object perception are presented and
discussed in the next section.

Finally, the results of a second experiment designed to eval-
uate the capacity of the system in recognizing similar regions
and identifying changes related to low-level feature collection
are included. The second experiment is conducted following
a methodology similar to the first experiment; however, now
the system’s ability to perform simple memory management
and to compare previous knowledge with newly collected fea-
tures is evaluated. Hence, during experiment two, the system
identifies similar regions within the scene as described in
Algorithms 2–4. Results on the recognition of similar regions
are discussed in Section IV-D.

B. Results on Sensorimotor Control

During the development of the vision, with FOV and acuity
values moving closer to those of an adult, noticeable effects on
the learning of sensorimotor control are observed. While sac-
cading between two fixation points, the robotic eyes and head
apply a series of motor configurations that are associated, or
linked, with corresponding excited retina fields. The number
of links to be utilized is proportionate to the eye and motor
experiences the robot has previously acquired. Undoubtedly,
the amount of experiences depends the system’s ability to ulti-
mately fixate, which in turn is firmly related to the accuracy
and efficiency of the vision.
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TABLE III
AVERAGE NUMBER OF EYE MOTOR LINKS THAT ARE

REQUIRED TO COMPLETE A SACCADE

Fig. 4. Sensorimotor links between retina and eye/head motor spaces created
at the end of each month. Filled regions depict the amount of reused links
for eye (E) and head (H) control, respectively.

In this context, Table III shows the average number of steps,
i.e., retina to eye motor links, that are required to complete a
successful saccade. During the first months, the eyes need to
make more steps in order to detect and fixate on a particular
target, as a result of the underdeveloped vision. As expected,
while the vision develops the number of steps decreases.
Reused links between retina and eye motor maps are utilized
to drive the robot’s gaze so that the target is centered. The nar-
rowed and blurry vision during the first month (as depicted at
the far left of image 2), coupled with the locked neck restrict
target detection, with an average of four links being required
for each saccade. In the contrary, during month ten the robot
is capable of performing single step saccades most of the time,
an indication that a large number of links are developed even
for remote targets.

In Fig. 4, the progress made during the learning of the
sensorimotor control is analyzed in terms of the number of
reused links, as compared to their total number of links cre-
ated. Results for both eye and head maps are depicted. Notice
that no head data is present until month three, when the neck
lock constraint is lifted, and that the learning follows a cumu-
lative fashion. The ratio between the reused and total links
changes according to the maturity level, with the system being
able to reuse approximately 40% of the total eye and head links
that it progressively generates.

The dense distribution of retina fields very close to the cen-
ter of the input image, as seen in Fig. 5, also highlights the
negative effect of the underdeveloped vision to the sensorimo-
tor control to explore a broader view. The concentration around
the fovea during the first months of development implies that

Fig. 5. Retina map population during development. The fields are plotted
in reverse to clearly depict the concentration of those generated during early
months close to the foveal area. This is an emergent effect of the narrow FOV
during early months.

Fig. 6. Usability of existing fields as compared to the total fields created
during the ten stages of development in the retina map. The percentage of
existing fields used to saccade during each month is also shown.

less eye to motor links are created and confirmed, a result
which is also demonstrated in Fig. 4.

The learning progress is also observed when considering
Fig. 6. The percentage of retina fields that are reactivated is
shown compared to the number of total fields present for each
month. The generation of new retina fields is found to reduce
in rate after month five. This is explained due to the head
which becomes more active as its motor map is gradually pop-
ulated. Despite the ability to develop the eye control further,
the system starts to focus more on acquiring combined eye and
head movement experiences. In connection to a wider FOV,
saccades are performed by making use of past experiences
more often when controlling the eyes, whilst the head contri-
bution is added to the gaze shift. Together, eyes and head allow
fixations on targets at the peripheral region. This emergent
behavior confirms that defining a saturation type and threshold
for the eye control after month three, becomes irrelevant.

The distribution of the retina fields as a result of the nar-
rowed FOV during early months is also seen when considering
Fig. 7. As the neck is still locked (months 1–3) and the vision
is still underdeveloped (months 4 and 5), retina fields follow an
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Fig. 7. Maximum distance of retina fields from the center of the input image
as a function of the different months of development.

Fig. 8. Gaze space population during early months of development. The
system is initially capable of observing features related to regions within its
direct environment, as a result of: 1) the immature vision with fewer senso-
rimotor control links being learned and 2) the head constraint. However, the
gaze space is expanded as the system further develops and constraints are
lifted.

expanding trend when populating the retina map. After month
four, the head starts to contribute thus expanding the retina
map more is not necessary.

C. Results on Region Perception

The system’s ability to identify stimulating regions in front
of the robot and to excite appropriate gaze fields is shown
in Fig. 8, where the gaze space is illustrated. The robot is
found to focus more on its proximate environment during the
first months and gradually expands its understanding about the
world as it further develops. The results show that in the first
months, the excited fields are closer to the straight ahead direc-
tion than in the last months. The average distance from origin
is smaller in months 1–3 than 8–10 (1:25.1; 2:24.6; 3:22.5 px;
versus 8:36.1; 9:39.3; 10:37.2 px). Again, the underdeveloped
vision in terms of FOV and the neck constraints are responsi-
ble for limiting the system’s ability to explore the surroundings
and locate stimulating regions.

Two interesting observations are made when considering the
results in Table IV and Fig. 9, regarding the effectiveness of

TABLE IV
LINKS BETWEEN FEATURE TYPES AND GAZE SPACE

Fig. 9. Feature distribution as a function of developmental stages, using the
number of links associated with each feature. The bars depict the total number
of links created for each feature of all stimulated regions in the environment.

Fig. 10. Mean hue value as a function of months shows the color develop-
ment. The second degree polynomial fits for the top-half and the bottom-half
of the dataset are shown.

feature collection. First, brightness is found to be the most
dominant feature, because associated targets can be met on
both colored regions and bright regions (e.g., computer mon-
itor). Second, it is observed that despite the existence of
colored objects in the environment from the first month of
development, color cannot be perceived. This is an emergent
behavior of the system and an immediate result of the poor
acuity during early stages, which matches findings reported
in [15], [29], and [30].

The data collected is analyzed further in terms of color per-
ception. It is observed that color is perceived according to three
distinct stages during development. As previously stated, no
color perception is achieved during months 1–3, resulting from
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TABLE V
EXAMPLES OF TYPICAL FEATURE COLLECTION AS PERCEIVED DURING DEVELOPMENT

Fig. 11. Size of bright regions as they are perceived during all months of
development. The linear fit of the mean values shows that in later months the
system is able to detect and observe smaller regions, as compared to early
months.

the poor acuity. During months 4–8, color information starts
to appear in the system; however, it cannot be used to clearly
distinguish between the two main colors presented. The typ-
ical range of hue values for red (0–15) and green (90–140)
cannot be clearly differentiated, as is shown in Fig. 10. The
last stage is seen when considering months 9 and 10, with the
distribution of hue values starting to express a bimodal com-
ponent, gradually increasing the separation between the two
ranges of values connected to the gaze fields.

Being a dominant feature, brightness is further analyzed
in Fig. 11, where the size of perceived bright regions across
all months is depicted. Development is found to have a pro-
gressively increasing effect on the ability of the system to
accurately understand about sizes of bright regions. The lin-
ear fit shows that the system fixates and extracts brightness
information on gradually smaller regions. Nevertheless, this
result does not necessarily mean that the system perceives
new regions each time, rather it is an indication that the same
gaze fields are linked to brightness fields which represent more
refined data.

Examples of feature data collected when observing two spe-
cific regions in the scene across the development of the system
are given in Table V. Two gaze fields are selected from the
gaze space to reflect two interesting regions in the scene. The
fields’ collections of features are retrieved using the connect-
ing links that were built at different months of development.
Each row summarizes the average values for separate feature
quantities. Thus, the table is a low-level illustration of how
the system progressively perceived a specific region, based on
the features it was able to extract. In the context of comparing
and identifying two similar regions in the scene, such data is
used to access the two regions’ average feature fields in the
associated feature maps (e.g., color map) and subsequently to
measure the distance between them, along with any overlaps
in the feature space.

One aspect to notice is that not all of the features are always
present when the region was revisited by the robot. Some of
the features are found to remain more constant that others.
For example, the edge component (perimeter) seems less vari-
able than color values, which in turn are more constant than
brightness and motion values.

This may happen due to: 1) the underdeveloped vision (e.g.,
the inability to detect colors during first months); 2) the incon-
sistency of features due to environmental noise; or 3) the
region not being revisited as other targets drove the gaze to
other directions (as in the case of region 1 in month 8).

Nevertheless, there exists information that stays persistent
during all months of development. For instance, when per-
ceived, the perimeter of targets defined by their edges is clearly
a strong aspect to consider when describing observed regions.
Other similar information is found to be the value of the bright-
ness, which coupled with an also persistent hue and saturation
shows a potential for recognizing similarities between features
in different regions.

D. Results on Region Recognition

Understanding previously experienced regions at a sufficient
level in order to be able to identify similarities between them
is an important aspect of the proposed system. As previously
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Fig. 12. Variations of acquired color information for a sample gaze field (stimulated region). All links to color information of this particular region are
plotted between months 3–9. The height of a bar is the relative distance of newly received information to the current accumulated average in the color space.
The dotted line indicates the simulated month in which links are created. Note the peaks at the beginning of a new stage and the decrease within a stage,
revealing behaviors related to region recognition.

discussed, the system is further designed to compare known
regions and drive its attention toward them while it explores
the environment (please see Section III-D). This implies that
when the system visually revisits an interesting region, the
new feature information that is received is being compared
with what the system already has experienced at this region
before. Coupled with the memory decay mechanism, by which
the system gradually forgets what it knows about a particular
region, two behaviors can emerge. First, the system familiar-
izes itself with a region of interest, if no noticeable changes
are depicted. Second, the system can suddenly be aware of
rapid changes to a region if the new information is noticeably
different from what it already has in its memory.

These two behaviors are both results of recognizing regions,
after conducting an experiment with memory decay and com-
paring similar regions features enabled (Algorithms 2–4). The
results are depicted in Fig. 12, where perceiving the color
information differences of a particular (sample) region of
interest in the scene is shown. The distance of new color infor-
mation from the average color information built cumulatively
in memory captures the familiarity of the system with the
region. An increase in this distance implies that the very same
region (gaze field) is perceived differently from the weighted
average of previously perceived features at this very position.
Hence, “unexpected” events are illustrated by the peaks scored
at the beginning of each new stage. In more detail, consid-
ering the gradual vision development as it is illustrated in
Fig. 2, extracted features that are associated with a particu-
lar area are perceived differently at each simulated month. In
technical terms, when the eyes observe the area of a colored
object, the color information that they receive is different from
the previous month’s observations, leading to the activation of
new color fields and their correlation to the area. The new
links contribute to the weighted average of color information,
therefore the perception of the color is unexpected (peaks), but
becomes gradually refined. In fact, the robot can also be “sur-
prised” when the information related to previously observed
areas is suddenly perceived differently in the same simulated
month, as one calculation of the distance between new and
accumulated color information is enough to highlight a sub-
stantial change in color. Undoubtedly, observations made in
the same month are expected to activate and confirm existing
fields and links, respectively, minimizing the divergence in the
color perception per observation (decrease of the distance to
the average). Indeed, the distance drops as links are created or
reused allowing the system to converge to a particular space
in the color feature map, as a result of familiarization to the
color information it perceives.

V. CONCLUSION

A major challenge in robotics is the ability to construct
stable representations of the world’s content and underlying
properties from a continuous stream of information. The major
challenge of an autonomous system is to be able to learn
about region properties with neither explicit supervision, a
priori knowledge, tuning nor extensive training. In this con-
text, learning ought to be cumulative and incremental, and
being triggered only by a primitive set of examples, which are
acquired by the system itself.

The system presented in this paper takes inspiration from
early infant development where such conditions apply. It
extends previous investigations by combining components for
eye and head coordination as well as gaze control with fea-
ture extraction mechanisms, within an extended design that
promotes region perception that aims toward object recog-
nition and use. The use of the mapping system entitles the
investigation of the invariance in continuous visual input,
and the resulting transparent structures provide the means
toward an effective object perception mechanism for embodied
systems.

The experiments presented in this paper provide evidence
to how the changes in visual inputs can affect the learning
of a sensorimotor controller. First, as the vision become more
accurate and the FOV widens, the eccentricity of the retina
positions linked to a relative eye position increases. The abil-
ity to move toward one particular point in space and observe
its content progresses rapidly in parallel with a decrease in the
amount of steps to perform a saccade between two separated
points. Second, the sensorimotor development affects the abil-
ity of the system to acquire knowledge about regions from
more distant locations. As the vision and the motor control
progress, the system becomes able to locate and fixate fur-
ther peripheral targets and simultaneously collect information
of distant targets and their surroundings. Thus, the egocen-
tric gaze space is enriched both in quantity and content (i.e.,
the correlated feature map values of a particular part of the
space). Third, when observing the information describing a
region along the development, one has a direct access to its
internal projections. Then, in turn, can observe its proximity
to previous observations or its proximity to other observations
from a different point in space.

Also, the results of an experiment designed to highlight the
ability of the system to recognize regions, be familiar and/or
surprised with it, depending on the current perception capabil-
ity is shown. It is shown that with the proposed architecture,
the artificial infant is capable of detecting rapid changes at a
region, which currently occur due to its developmental changes
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in vision, and gradually refine its understanding about the same
region while revisiting it.

Another interesting point in these results is the fact that it
enables the possibility to drive the future region-related cog-
nition of the robot. For example, if the robot has to perform a
visual search of a particular target, it can internally set its own
range of tolerance based on the ranges and the consistency of
the values it has observed on the previous occurrence of the
target and the correlated features that it was able to acquire.
Moreover, the system might be able to deliberate on a partic-
ular target to decide if it has acquire enough data for being
able to identify it later.

The experiments also show that very fast online learn-
ing with successful space representation and regional feature
acquisition can be performed in less than 5 h. Indeed, longer
experiments are now needed to be able to test new hypothe-
sises about how knowledge related to regions of interest can
be acquired in real time.

The experiments give a full demonstration of a longitudi-
nal development of both sensorimotor development and early
region perception on the iCub humanoid robot. They show how
vision development (such as acuity or FOV) can constrain and
structure the content of visual information. But more work is
now needed to be able to use these results to perform visual
search of a previously seen interesting region.

Finally, similarities in color and brightness perception as
compared to human findings in literature confirm and validate
the choices made in terms of the developmental time-line.
This, coupled with the ability of the system to gradually
mature and scaffold sensorimotor as well as perception knowl-
edge, enhances the hypothesis that developing a cognitive
agent in a stage by stage approach is capable of producing
fully autonomous behaviors of recognition as the first step
toward gaining affordances and achieving object perception.

Our results show that the robot is able to concurrently dis-
cover its sensorimotor abilities and to familiarize itself with the
scene, making use of all identified visual features. The memory
decay mechanism within months also allows the system to
better refine its understanding and, coupled with the similarity
mechanism, it becomes aware of visual changes that affect its
perception and understanding of the world. When comparing
to infant studies, the model and results presented here help
to develop an understanding of how infants can start to build
up representations of proto-objects based on recognition of
similar features in the environment.

A. Future Work

The presented system consists of mechanisms that deal with
the simultaneous learning of sensorimotor control and region
perception. It is evident that the two functionalities interfere
with each other, as the efficiency as well as the internal mech-
anisms of one affects the other. It is seen that while the
increasing development of vision is an important factor for
performing successful saccades, the latter is the only avail-
able mechanism to drive the attention of the system toward
stimulating regions.

Although the simultaneousness of the two functionalities
holds for infants during their first months of development,

simulating a month in infancy to investigate the details of
sensorimotor and cognitive developmental progress is not a
straight forward process. Still, both functionalities need to
coexist in the same lifespan, a fact that highlights the impor-
tance of a design that orchestrates both according to some
infant play strategies that will allow the system to spend time
and observe interesting regions in the scene. Instead of depend-
ing on the learning of sensorimotor control to shift the system’s
gaze toward some visual stimuli, an excitation approach needs
to be employed by which the system will be able to achieve
fixations that target to specific regions.

To achieve such an excitation mechanism, several design
aspects need to be taken into consideration. Although access
to low-level features is given at the current state, the amount of
information being collected is not noise-free and thus can eas-
ily be misleading. Furthermore, data representing a region is
collected through multiple fixations that were not all achieved
by a similar head configuration (i.e., eyes’ and head’s pan
and tilt) nor were they subject to the same environmen-
tal conditions. Undoubtedly, the way regions are perceived
changes, bearing in mind that in a natural environment light-
ing conditions alter during the day. Thus, mechanisms to
organize and validate sets of co-existing and persistent fea-
tures related to particular regions are important. Once such
abstractions and generalized concepts of regions are present,
representing proto-objects, they can be used to stimulate
saccades and even affect the learning of the sensorimotor con-
trol. Furthermore, sequences and coherences identified in the
gaze space, attributed to abstractions expressing invariabilities
and/or other relative properties (e.g., keeping a similar distance
while in motion) are expected to gradually allow the system to
achieve a better understanding of objects moving in the scene.
This, combined with the ability to interact with these areas,
e.g., reaching toward and grasping, is expected to improve the
understanding of proto-objects.
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