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Abstract

Robotic writing is a very challenging task and involves complicated kine-

matic control algorithms and image processing work. This paper, alternatively,

proposes a robot calligraphy system that firstly applies human arm gestures to

establish a font database of Chinese character elementary strokes and English

letters, then uses the created database and human gestures to write Chinese

characters and English words. A three-dimensional motion sensing input device

is deployed to capture the human arm trajectories, which are used to build the

font database and to train a classifier ensemble. 26 types of human gesture are

used for writing English letters, and 5 types of gesture are used to generate 5

elementary strokes for writing Chinese characters. By using the font database,

the robot calligraphy system acquires a basic writing ability to write simple

strokes and letters. Then, the robot can develop to write complex Chinese char-

acters and English words by following human body movements. The classifier

ensemble, which is used to identify each gesture, is implemented through using

feature selection techniques and the harmony search algorithm, thereby achiev-

ing better classification performance. The experimental evaluations are carried

out to demonstrate the feasibility and performance of the proposed method. By

following the motion trajectories of the human right arm, the end-effector of

the robot can successfully write the English words or Chinese characters that
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correspond to the arm trajectories.

Keywords: Robotic writing, Robotic Calligraphy, Human-robot interaction,

Human gesture recognition, Classifier ensemble

2010 MSC: 00-01, 99-00

1. Introduction

Handwriting is a highly demanding task involving both dynamics and kine-

matics, and is therefore normally regarded as a typically human motion [1, 2].

The kernel technology of robotic writing is to combine a number of basic actions

(for instance, letters of the alphabet or Chinese character strokes) in order to5

generate complex functions (such as full sentences). A secondary goal would be

to optimise the visual quality of the robotic output, with the help of human ex-

pert selection. Moreover the process should be easily adaptable, that is human

users require robots to be able to quickly learn to handle new characters, or new

motions. Such kernel technology can be exported to many other domains, par-10

ticularly where there is a high demand for robotic imitation of repeated human

movements. Notable examples would include medical rehabilitation training,

where robotic movements could take advantage of scaling and repeated move-

ments to assist patient to rehabilitate from small to large movements, as well

as customised painting in automotive design finishes, or industrial welding of15

non-linear specialised shapes. With this in mind, the following work on robotic

writing should be viewed as the test bed for a much wider range of practical

applications.

The process of robotic handwriting requires the robot to obtain trajectory

information, whether the strokes of Chinese characters, or the shape of English20

letters. A number of recent approaches have applied direct programming meth-

ods to embed a font database within the robot’s control systems, which require

complicated mathematical calculations and image processing work [3, 4]. How-

ever, the imitation of human actions is considered as an effective learning method

to transfer skills and knowledge from human beings to robots [5, 6, 7, 8, 9].25
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A wide range of applications using 3D human activity recognition has been

introduced in recent years [10]. It is very useful for robots to acquire new skills

without the need of complex programming and implementations [11]. Human

users also prefer a convenient and natural way to directly control robots to copy

characters and letters [12, 13, 14]. In particular, applying pen-tablets to obtain30

trajectory information [15] is also a fast and even more natural way to write

[16, 17, 18]. However, using human gestures will provide more fine information

towards controlling robots to write characters, e.g. wrist and elbow positioning

data can be used to support robotic posture control. Beyond robotic writing,

the ability to learn general human gestures should allow the proposed method35

to be adapted to handle dynamic robotic manipulations, such as the capturing

and grasping of physical objects. Further, human gesture information can be

effectually represented by medical EEG or EMG signals. Thus, this research

grounds for EEG or EMG controlled robotic writing, a practical version of mind

control.40

Strokes of both Chinese characters and English letters can be represented

by human arm trajectories. English consists of 26 different letters, which can

be represented by 26 classes of human arm gestures. All Chinese characters are

constructed by strokes. Yao et al. used 28 strokes to construct all of the Chi-

nese characters [19]. Compared with writing English letters by hand to writing45

Chinese characters by hand, robots not only need to know how to write the

strokes of a character, but also need to consider the layout of each character’s

stroke. In addition, if human gestures are applied to represent strokes and let-

ters, the gesture recognition problem must still be considered. In particular,

gesture information is presented by a large group of three-dimensional points;50

thus, a recognition mechanism is required to identify each gesture precisely. The

advantage of human gestures is to build a robotic action database through imi-

tations. A robot develops a more complex action by assembling simple actions

from the database. Thus the more actions there are included in the database,

the better the resulting operational ability the robot can achieve.55

This paper proposes a novel approach to robotic handwriting based on our
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initial preliminary work [20, 14]. In the previous work, all the strokes had

to be pre-programmed by human engineers, and only the writing actions were

controlled through direct human gestures. The previous work had the obvi-

ous limitation that significant additional human programming was required to60

simply add a new font to the robot’s database.

The work reported in [14] successfully supported free writing without re-

peated training or complex programming. However, because the robotic arm

simply followed the demonstrator’s movements, it was very difficult to improve

the writing quality of the strokes. In this paper, the trajectories of human65

hand movements have two uses: (1) the trajectories can be recognized by a

robot’s classification methods; and (2) the trajectories are the font shapes of

the characters themselves. A number of different methods to classify gestural

expressions have been reported in the literature [21, 22, 23, 24, 25, 26], including

“human gesture corpora based methods” [27], “Dynamic Bayesian Networks”70

[28], “Gaussian mixture modeling” [29], “3D extremity movement observation”

[30], and “Hidden Markov Models” [31][32]. However, this research is inspired

from Schumacher et al.’s work [33], i.e. the problem is addressed by classifying

trajectory segments comprising a fixed number of sampling points of human

gestures.75

Generally speaking, any conventional classifier could be used to recognize

human hand gestures. A classifier ensemble can improve the performance of

a single classifier system. However, an ensemble with too many classifiers may

demand a large computational time. Classifier Ensemble Reduction (CER) aims

to reduce the redundancy in a pre-constructed classifier ensemble, so as to form80

a much reduced subset of classifiers that can still deliver the same classification

results [21, 34, 35]. It is an intermediate step between ensemble construction

and decision aggregation. Efficiency is one of the obvious gains from CER.

Removing redundant ensemble members may also lead to improved diversity

within the group, and further increase the prediction efficiency of the ensemble85

[36]. Existing literature approaches include techniques that employ clustering

[37] to discover groups of models that share similar predictions, and subsequently
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prune each cluster separately. Other approaches use “Reinforcement Learning”

[38] and “Multi-label Learning” [39] to remove redundancy. In this paper, a

new approach for CER that builds upon the ideas from existing feature selection90

techniques [34, 40] is applied to classify a human demonstrator’s gestures, so as

to achieve a higher recognition rate for robotic writing.

In this work, a three-dimensional vision sensor, “Kinect”, is deployed to

detect human right hand gestures. Kinect devices are widely applied in many

robotic systems [41, 42]. The human hand’s trajectories must be consistent with95

the character’s trajectories. The robot system captures the human gestures,

and controls the robotic arm to write the designated trajectories. In particular,

the captured trajectories are then converted to an array of hand trajectory

data. A novel reduced classifier ensemble for recognition is used to improve

the gesture recognition accuracy. The classifier ensembles are known to usually100

improve recognition performance in a wide range of pattern recognition tasks

[34]. A robot with a five DOFs arm receives the captured stroke trajectories,

and kinematic algorithms are used to convert the stroke trajectories to the

arm’s joint values; then, the robot completes the writing task. This approach

reduces the complexity of creating robotic writing, thereby enabling robots to105

exhibit higher flexibility. Additionally, the robotic writing guided by human

gestures can introduce a natural and convenient way to control robots to execute

complicated tasks. The main contributions of this paper are summarized as

follows:

• The method for automated generation of robot’s font database of Chinese110

character strokes and English letters from human arm’s gestures (Sections

2 and 3.2).

• The method for empowering the robot’s Chinese character and English

word writing ability through the exploitation of the learned font database

and given human gestures (Section 3).115

The remainder of this paper is organised as follows. Section 2 describes

the proposed framework and methodology used for robotic hand writing. In
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Section 3, human hand gestures and robot arm control are introduced. Section

4 presents the experimental results and discusses their implications. Finally, a

brief conclusion and potential future work are given in Section 5.120

2. The Proposed Approach

2.1. Robotic Handwriting Framework

Fig. 1 describes the framework of the robotic handwriting. First of all, a

human demonstrator stands in front of the robotic system. The human uses one

arm to perform predefined poses. The Gesture Sampling module is implemented125

by a Kinect device, which only captures the skeleton information of the human’s

poses. The skeleton information is sent to the Trajectory Capture module, in

which the captured gestures are presented in 2-dimensional point arrays of the

human’s right arm trajectories. Then, the remaining approaches are divided into

two phases: (1) the training phase, which includes classifier learning, classifier130

ensemble reducing, and obtaining trajectory information; and (2) the control

phase, which uses the reduced classifier ensemble to identify the human gestures,

and invokes the obtained trajectory information to write the identified strokes

and letters.

In the first phase, the trajectory’s point arrays are retained in a Training135

Dataset module. The dataset is then applied to train a classifier ensemble. A

new ensemble reduction method, rather than a conventional ensemble approach,

is applied to train the classifier ensemble. The new method is implemented by

feature selection and harmony search techniques [34]. After the training, a re-

duced size classifier ensemble with high recognition accuracy is obtained for the140

second phase. Note that to gather enough training data, the demonstrator must

repeat the gesturing of each letter and Chinese stroke many times. Addition-

ally, the captured gestures are also retained in a Font Database module, from

which the robot can obtain trajectory information. Therefore when the classi-

fier ensemble produces a prediction of an input gesture, the robot can search145

the database for the font information that corresponds to the prediction. In
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Figure 1: The flowchart of the robotic handwriting. The approach consists of the training

phase and the control phase.

order to beautify the font, a Trajectory Optimization module is applied to filter

unexpected noise.

In the second phase, the human demonstrator does not need to repeat the

gesturing of predefined patterns. The demonstrator merely performs each stroke150

and letter in sequence. The Kinect device converts the gesture trajectories to

skeleton data that are directly sent to the reduced classifier ensemble. Because

the classifier ensemble has been trained in the first phase, the ensemble can

generate the type of stroke or letter that is related to the gesture. Then, the

Font Pattern module finds the saved trajectories from the first phase. The robot155

motor system applies inverse kinematic calculations to convert the trajectories

to the robotic arm’s joint values. The robot finally executes the arm joint values

to write the strokes and letters.

Two different behaviorial patterns are applied to control the robot. (1) For

writing Chinese characters: Chinese characters are disassembled into five ele-160

mentary strokes. In this case, each Chinese character’s writing is formed by

writing different strokes in different positions. Thus, five classes of human ges-
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tures are assigned to five types of strokes. In addition, each gesture’s starting

and end positions are also kept. To implement the entire character, a human

demonstrator performs diverse poses to represent the corresponded strokes. (2)165

For writing English letters: the demonstrator merely performs the English let-

ter’s shape directly. Therefore, 26 classes of human gestures represent 26 En-

glish letters. All the modules and the experimental system given in Fig. 1 are

described in the following sub-sections:

2.2. System Configuration170

Fig. 2 illustrates the entire experimental system. The hardware system

consists of an industrial robotic arm, a Kinect device, a PC controller, and

a writing board. The human demonstrator stands within the detection range

of the Kinect device. The robotic arm system is placed in a fixed position

facing the writing board. A controlling computer is used to control the Kinect175

and the robotic arm. During the experiments, the Kinect’s sampling rate is

approximately 30 frames per second, and its image output resolution is 320×240.

Figure 2: The experimental system consist of consists of an industrial robotic arm, a Kinect

device, a PC controller, and a writing board.

Fig. 3 shows the layout of the demonstrator and the robot system. The

robot system contains a five-DOF robotic arm. The arm is mounted in a fixed180

position on a frame, and four DOFs of the arm are applied to produce writing
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movements. A marker pen is mounted on the top of the robotic arm. The writing

board is placed vertically within the arm’s working range. This setup supplies

the robot system with sufficient DOFs to act in 3-dimensional environments. In

addition, each rotational motor of the robot arm contains a motor driver and185

an encoder that detects the motor’s angle.

Write
Board

Robotic
Arm

Pen

Figure 3: The robotic system and the writing board.

2.3. Gesture Sampling

The gesture sampling module receives raw data from the Kinect device, fil-

ters the noise, and generates the captured trajectories for the remaining modules

of the approach. The trajectory information is presented by the 3-dimensional190

trajectories of the human’s right hand. Additionally, because two different be-

haviorial patterns are used, one to present Chinese characters and the other to

present English letters, the font database is also implemented diversely.

The demonstrator performs a character and a letter by her right arm. Each

Chinese character consists of a number of strokes, and each stroke of the char-195

acter has its unique starting and end positions. In the control phase, the human

demonstrator needs to provide the all the stroke information to the robot. Be-

fore performing a Chinese character’s gestures, the human demonstrator needs
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to decide each stroke’s size and position of the character, and then uses her right

arm to perform all the strokes according to the character’s writing sequence.200

To write each stroke, the robot needs to move the pen over the stroke’s

starting position and then, to move the pen vertically until it touching the

white board. After this, the robot horizontally moves the pen from the starting

position to the end position, and subsequently uplifts the pen, moving it to the

next stroke’s starting position. The robot has to repeat the above procedure to205

complete all component strokes. To train the robot, the human demonstrator

needs to provide it with the starting and end positions of each stroke and also,

the stroke trajectory. The latter (stroke trajectory) is provided with the human

hand’s trajectory while keeping the arm straight. Therefore, only straight line

gestures are correctly presumed.210

In this work, the human demonstrator is requested to provide the relevant

stroke information to the robot to facilitate learning. This includes the decision

on each stroke’s size and position regarding a given training character, and then

the use of the demonstrator’s right arm to show all the strokes according to

the character’s writing sequence. During this process, the human demonstrator215

needs to keep arm bent to move towards the next stroke’s starting position; when

the demonstrator considers that their hand has reached the correct position, the

arm is straighten and ready to show the next stroke’s trajectory.

2.3.1. Arm Configuration

Therefore, only straight arm gestures (the pose in Fig. 4-B) are accepted220

and processed to generate the font trajectories. In order to start a new stroke or

letter in a different position, while the arm is moving to a new starting position,

the demonstrator must bend her arm (the pose in Fig. 4-A). Therefore, a

detection algorithm is built to determine whether the arm is bent or straight.

Fig. 4 illustrates the arm gesture configuration. The picture is mirrored by

the Kinect: the human’s left arm in the figure is actually her right arm. The solid

lines drawn on the demonstrator’s arm represent the arm’s skeleton information.

“L1” denotes the distance between the demonstrator’s right shoulder and right
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A B

Right shoulder

b

S1

S2

L1

L2

L

d
Right elbow

Right wrist

Figure 4: The gesture configuration. Panel A shows the bent arm gesture and Panel B shows

the straight arm gesture.

elbow. “L2” denotes the distance from the right elbow to the right wrist. The

dashed line between the demonstrator’s shoulder and right wrist is an auxiliary

line. Point “b” is a floating point within the auxiliary line; its position is

determined in an appropriate ratio based on the lengths of “L1” and “L2”.

“S1” and “S2” denote the distances from the human’s right shoulder to point

“b” and from point “b” to the wrist, respectively. Thus, the position of point

“b” can be obtained by the following equations:

γ =
L1

L1 + L2
(1)

where, γ is the distance proportion of “S1” and “S2”, the proportion is deter-225

mined by the distances of “L1” and “L2”.

The position vector of “b” in the x, y, and z axes are defined by:

−→
b =

−−−−−−→
shoulder + (

−−−→
wrist−

−−−−−−→
shoulder) · γ (2)

where:
−−−−−−→
shoulder and

−−−→
wrist denote the position vectors of the right shoulder and

wrist, respectively. Thus, by using Eq. 2, the x, y, and z coordinates of point

“b” is determined. After that, the distance d between point “b” and the right

elbow is also determined by using Euclidean distance calculation.230

In particular, the human demonstrator needs to keep the arm bent to move

to each stroke’s starting position. During the moving process, several bent arm

gestures might be incorrectly recognized as the straight state. Such incorrect
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recognitions also exits in the straight arm’s moving process. Therefore, another

arm gesture, “slightly bent arm”, is required to eliminate the incorrect recogni-235

tions. The angle of the slightly bent arm gesture is larger than that of the bent

arm gesture, but less than that of the straight arm gesture. Once a gesture is

recognized as the slight bent state, the sampling module will use the gesture’s

previous state as the arm’s current state.

2.3.2. Arm State Determination240

An arm state determination mechanism is required to check whether the

demonstrator’s arm is bent or straight. Our previous work on such mechanism

[43] requires two thresholds, δmax and δmin, to determine the arm’s state. If d

is larger than δmax, the state of the right arm is bent. Else, if d is less then

another threshold, δmin, the state of the arm is straight. Otherwise, the state is245

regarded as a slightly bent state, then, the output of the mechanism is the arm’s

previous state. However, in this method, the values of δmax and δmin must be

defined manually .

To avoid such human intervention and enhance the system’s capacity, an

Multilayer Perceptron (MLP) network is introduced in this paper to learn from250

sampled human gestures. Thus, the detection mechanism is learnt by the robot

itself, rather than defined by human engineers. The network’s input is the

distance d (the distance between point “b” and the right elbow); the network’s

output is the arm’s status (bent, slight bent, or straight). 150 gestures, including

50 gestures of bent arm, 50 gestures of straight arm and 50 gestures of slightly255

bent arm are used to train the network.

The MLP network has one hidden layer with 20 hidden neurons and one

output layer with three neurons. For this MLP network, implemented with the

popular sigmoid activation function and the randomly generated initial weight,

the conventional Back-propagation algorithm is used for training. The three260

output neurons indicates the bent, slightly bent and straight arm states.
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2.4. Trajectory Optimization

The Kinect device detects the human demonstrator’s right hand position

hand(x, y, z). Because the robot writes characters and letters on the 2-dimensional

writing board, the trajectory optimization module uses the x and y values only;265

thus, the depth value z of the hand position is redundant in the work. However,

during the phase while the demonstrator is gesturing characters or letters, the

Kinect may fail to detect the hand’s position. Therefore, a number of unex-

pected large range changes of the hand position may appear. The unexpected

changes badly disturb the captured shapes of strokes and letters. These unex-270

pected changes can be regarded as sharp pule signals. The amplitude-limiting

filtering algorithm can simply filter such sharp pule signals.

Therefore, the amplitude-limiting filtering algorithm is used to filter out

the unexpected changes. The distance ω between two consecutive positions

(pprevious and pcurrent) is calculated to determine whether an unexpected change275

takes place. If ω is less than a threshold δ, the current position (pcurrent) will be

maintained; otherwise, the next hand position is loaded as pcurrent. The entire

method is demonstrated in the following pseudo code:

Algorithm 1 The trajectory optimization procedure

1: Calculate the distance ω = ‖pprevious − pcurrent‖

2: if ω < δ then

3: let pprevious = pcurrent

4: else

5: load the next point as pcurrent

6: end if

7: start a new iteration

3. Gesture Recognition and Robot Control

3.1. Gesture Recognition and Categories280

For writing Chinese characters, a set of five emblematic command gestures

are chosen to present five elementary Chinese strokes. The five gesture examples
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are shown in the five panels of Fig. 5. The gestures are: (1) Horizontal stroke

gesture (Panel A in Fig. 5); (2) Vertical stroke gesture (Panel B); (3) Left falling

down stroke gesture (Panel C); (4) Right falling down stroke gesture (Panel D);285

and (5) Folder stroke (Panel E). Other research indicated that the fundamental

Chinese strokes should have 28 types[44]. However, this paper can use the above

five strokes to construct the 28 strokes. In addition, the paper will adopt a scale

function to adjust each stroke’s length; therefore, the basic five strokes are able

to implement complex Chinese characters.290

For gesturing these strokes, the demonstrator needs to perform as follows:

(1) For the first stroke, raise the forearm to approximately shoulder height, then

perform a horizontal waving motion. (2) For the second stroke, raise the arm

to head height, and then wave vertically parallel to the body. (3) For the third

stroke, raise the forearm towards head height, then push the hand downwards295

to the left side of the body. (4) For the fourth stroke, raise the forearm towards

head height, then push the hand downwards to the right side of the body. (5)

Regarding the fifth stroke, this gesture is a combination of the horizontal and

vertical strokes.

For writing English letters, the human demonstrator merely straightens her300

arm, and moves her arm by following each English letter’s shape. Two gestures

are required to write the five letters, “f”, “i”, “j”, “t”, and “x”. When the

demonstrator finishes the first gesture, she must fold her arm and straighten

it again to finish the rest of the gesture. In the experiment, time unit is used

for gesture sampling. The demonstrator must gesture each character and letter305

within one time unit. The length of each time unit is two seconds. Note that:

even a letter containing two gestures, the demonstrator also need finish gesturing

in two seconds.

To train the classifier ensemble, the output of the training dataset module

consists of a gesture’s trajectory point vector
−→
P and the stroke or letter type

Ts/l that is assigned to the gesture. Hence, the data structure of the output is

presented as Dtraining(
−→
P , Ts/l). Each point vector

−→
P contains fifteen points,

and each point is 2-dimensional with (xr, yr) values. Note that (xr, yr) values

14



A B

C

D E

Figure 5: The examples of human gesture categories. Panel A: Horizontal stroke gesture;

Panel B: Vertical stroke gesture; Panel C: Left falling down stroke gesture; Panel D Right

falling down stroke gesture; and Panel E: Folder stroke.

indicate the relative position from the demonstrator’s right hand to the right

shoulder. (xr, yr) values can be simply obtained by:xr = wristx − shoulderx

yr = wristy − shouldery
(3)

Thus, the point vector has thirty dimensions. In addition, the stroke type

contains only one element. Therefore, each training data Dtraining(
−→
P , Ts/l)310

consists of 31 elements in total. Additionally, when the classifier has been built,

the module’s output will no longer contain the stroke label. Thus, the output

during this phase is presented as Dworking(
−→
P ), and has thirty elements. Both

the Chinese and the English training data sets share the same data structure.
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3.2. Font Database315

The data structure of the font database is slightly different from the training

pattern’s. For writing English letters, the database requires the starting point

position xs, ys of each letter. Each point of the remaining fourteen points relies

on its previous point. In other words, except for the first position, the remaining

positions are relative values (∆xn,∆yn) between the current position and the

previous one. For example, the second position is the accumulation of the first

position and the second position’s relative value. Therefore, The English letter’s

data structure is presented as:

Tl : [(xs, ys), (∆x1,∆y1), (∆x2,∆y2), · · · , (∆x14,∆y14)]

where, Tl is the letter type that is used as search index.

For writing Chinese characters, the data structure also adopts the same

relative value structure as for English writing. However, in contrast to the

English alphabet, one fixed type of Chinese stroke can differ markedly from one

character to another. High quality Chinese writing cannot be simply achieved

with only a single shape for each stroke. In this case, the five elementary strokes

are implemented to have a scale function to construct various shapes of one type

of stroke. Therefore, the database’s input must include the starting position

xs, ys and the end position xe, ye for each stroke. The stroke’s data structure is

presented as

Ts : [(xs, ys), (xe, ye), (α∆x1, β∆y1), (α∆x2, β∆y2),

· · · , (α∆x14, β∆y14)]

where, Ts is the predefined stroke type that is used as the search index, (xe, ye)

denotes the end position of each stroke. α and β are each point’s scaling pa-

rameters defined by: 
α =

‖x′s − x′e‖
‖xs − xe‖

β =
‖y′s − y′e‖
‖ys − ye‖

(4)

where: x′s, y
′
s and x′e, y

′
e are the new input stroke’s starting and end positions,

respectively, during the control phase. xe, ye denote the end positions during
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the training phase. In this case, the human demonstrator uses different stroke’s

starting and end positions to control the stroke’s shape.320

3.3. Classifier Ensemble

This module receives human gestures and produces the predictions of the

gesture types. In terms of the system design, the gesture data contains 31

dimensions and 31 categories (26 letters and 5 strokes). A single conventional

classifier may be unable to produce very accurate results. Therefore, In order325

to improve the prediction and reduce the robotic computational cost, in this

work, a classifier ensemble method, developed in our previous work [34, 40], is

applied to achieve better performance.

Before the ensemble produces predictions, a reduction process is invoked.

This is because a classifier ensemble with a large group of classifiers can pro-330

duce higher accuracy. However, eliminating redundant members can reduce the

ensemble’s complexity so as to save computational cost. Therefore, the funda-

mental concept and goals of ensemble reduction and feature selection are the

same [34]. Each ensemble member is transformed into an “artificial feature”,

and such feature values are generated by collecting the respective classifier pre-335

dictions. Feature selection algorithms can then be used to remove redundant

features, so as to select a minimal classifier subset while preserving ensemble

prediction accuracy.

In addition, because the harmony search algorithm exhibits a simplistic

structure and powerful performance [45], it is applied to solve feature selection340

problems.

Fig. 6 illustrates the following four key steps of the classifier ensemble re-

duction approach used in this paper. Producing a diverse base classifier pool is

the first step in producing classifier ensembles. Once the base classifiers have

been built, the classifiers’ decisions on the training instances are also collected.345

A feature selection algorithm is then performed on the collected data set to

generate an optimal classifier ensemble. Then, the classifier is ready to recog-

nize human gestures in the control phase. The details of the four key steps are
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34

Figure 6: The flowchart of the classifier ensemble reduction. The flowchart consists of four

steps.

described as follows:

Base Classifier Pool Generation: The first step is to form a diverse350

base classifier pool. The base classifier algorithm is C4.5. The conventional

method – bagging algorithm – is used to build the base classifier pool. The

ensemble diversity is achieved through selecting classifiers from different schools

of classification algorithms.

Classifier Decision Transformation: This step combines the trajectory355

training pattern Dtraining(
−→
P , Ts/l) and the classifier decisions with the classi-

fier’s format. Once the base classifiers are built, the classifier decisions on the

captured trajectories are also gathered. For supervised feature selections meth-

ods, a class label (Ts/l) is required for each type of trajectory, and each single

classifier’s decision of a training instance is retained with the class label. A new360

dataset is therefore constructed where each column represents an artificially

generated feature, and each row corresponds to a training instance.

Feature Selection: A new feature selection algorithm “Feature Selection

with Harmony Search”(HSFS) [36] is then performed on the artificial dataset,

evaluating the emerging feature subset using the predefined subset evaluator.365

HSFS optimizes the quality of discovered subsets, while trying to reduce subset
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Table 1: Harmony Search Parameters

HMS Mu HMCR K

10− 20 25 0.5− 1 1000

sizes. When the harmony search algorithm terminates, the best harmony is

translated into a feature subset and returned as the feature selection result.

Ensemble Decision Aggregation: When the classifier ensemble is con-

structed, new gesture trajectories are classified by the ensemble members, and370

their results are aggregated to form the final ensemble decision output. The

final aggregated decision is the winning classifier that has the highest averaged

prediction across all classifiers.

In the training phase, this module will not provide any output, but only

receives Dtraining(
−→
P , Ts/l) from the Gesture Sampling Module. However, in375

the control phase, the module receives Dworking(
−→
P ) and gives its prediction

result T (s/l) to the trajectory pattern module.

Table 1 gives the operating parameters of HSFS. In this study, HSFS applies

four parameters: (1) the harmony memory size HMS, (2) the maximum number

of iterations K, (3) the number of feature selectors Mu, and (4) the harmony380

memory considering rate HMCR. A parameter adjustment scheme for HMS,

and HMCR is used to dynamically change the two parameters. Please refer to

[36] for further details of the dynamic change schema. In this paper, the value

of K is fixed as 1000 and the value of Mu is set to 25.

3.4. Trajectory Pattern385

The trajectory pattern module uses, as indices to search the font database,

the identified gesture type Tsl that the classifier ensemble produces. The font

database that contains the trajectory information of the English letters and the

Chinese characters is established in the system’s training phase. After searching,

the trajectory pattern module produces the font’s trajectories that correspond390

to the gesture types. The trajectories are then delivered to the robotic control

module to drive the robot.
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Because the gesture trajectory data supplied by the Kinect device is based

on the Kinect’s coordinate system, human gesture trajectories cannot be used

as the robot control module’s input directly. The following equation is applied

to complete the conversion:

px = 700

py = 200 · (xs +

14∑
n=1

∆xn)

pz = 200 · (ys +

14∑
n=1

∆yn + ψ)

(5)

where: xs and ys are the stroke’s starting position; ∆xn and ∆xn are the

subsequent relative points of the stroke; n denotes the nth point; px is the

distance between the drawing board and the robot base; py is the horizontal395

position of the drawing pen; pz indicates the the vertical position of the drawing

pen. ψ is an offset parameter to adjust the robotic writing position; the value

of ψ is set to 1.

By using Eq. 5, each human gesture is converted from a two-dimensional

array to a three-dimensional array of points that is sent to the robotic arm con-400

trol module. However, the robot motors executes joint values only. Therefore,

the inverse kinematic algorithm is applied to transform the array to the robotic

arm’s joint values. The transformation and the control algorithm are introduced

in the following section.

When the robot starts to write a new stroke or the second trajectory of the405

five letters consisting of two trajectories, the pen must be disengaged from the

writing board. The disengagement movements are easily generated by setting a

“standby” position. The position’s py and pz values are not changed; only the

px is given a −200 value. The procedure for writing one entire character is as

follows: The robot writes the character’s first stroke and, when finished, moves410

to the standby position. The robot then writes the character’s second stroke;

and again when finished, moves to the standby position. The robot continues

this cycle until all the character’s strokes are written.
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More details on the robotic control systems are specified in the Appendix

section.415

4. Experimental Results and Analysis

Because the approach, as mentioned in Fig. 1, consists of the training phase

and the control phase; the experimental procedure is also divided into the fol-

lowing two parts: (1) Classifier ensemble training part, and (2) Human gesture

guided robotic writing part. In Part 1, four persons join the experiment to420

perform 31 predefined gestures. Each person performs about 70 times for each

type of gestures. The captured dataset is used to train the classifier ensemble.

In Part 2, only one human demonstrator stands in front of the Kinect device to

perform Chinese characters and English letters with her right arm. The demon-

strator is not one of the four persons in Part 1; therefore, 5 persons are involved425

in the experiments. Once it receives the stroke’s trajectories, the robotic arm

starts to move. Because the robot’s writing speed is slower than that of the

human’s gesturing, the robotic writing actions have a very short delay. Usually,

when the demonstrator finishes performing a character or letter’s strokes, the

robot still requires a bit of more time to complete the writing.430

Based on the experimental procedure, the performance of the classifier en-

semble is first tested after gathering the human’s gesture. Then, the font

database is evaluated to check whether the approach can retain correct En-

glish letter and Character stroke information. Next, the robotic arm system is

enabled to write actual Chinese characters and English letters on the writing435

board. Two simple and one complex Chinese characters, the 26 English let-

ters, and three English words are used to evaluate the entire approach. Each

evaluation is illustrated in the following sections.

4.1. Classifier Ensemble Performance for Gesture Classification

Table 2 lists the number of samples of the five elementary stroke gestures and440

the 26 English letter gestures. In order to extend the classifier’s generalization,
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Table 2: Number of Sampling Gestures

Strokes Horizontal Vertical Left Falling Right Falling Fold

Instances 310 317 300 319 306

Letters “a” “b” “c” ... “z”

Instances 300 300 300 ... 300

the gestures are performed by four different persons. Each category consists

of more than 300 samples. Hence, the entire training dataset contains more

then 9,300 samples in total 1. In fact, the ensemble learning process might not

require such a large number of training samples, using more than 300 samples445

for each class is to improve the classification accuracy.

To demonstrate the capability of the proposed CER framework, a number of

experiments are conducted. The main ensemble construction method adopted

is the bagging approach, and the base classification algorithm used is C4.5. The

correlation-based feature selection algorithm (CFS) is employed as the feature450

subset evaluator. The HSFS algorithm then works together with the various

evaluators to identify quality feature (classifier) subsets. In order to show the

scalability of the framework, the base ensembles are created in three different

sizes, 50, 100, and 200.

Table 3 summarizes the five sets of resulting classifiers (CFS, Random, Full,455

C4.5, and a MLP neural network). Several general observations can be drawn

across all four setups. The prediction accuracies of the constructed classifier

ensembles are universally superior to those achieved by a single C4.5 classifier

and a MLP network. The accurate rates of the three types of C4.5 and MLP

are less than 75%. For the ensemble of size 50, 100, and 200, CER with CFS460

achieves the highest accuracy among the five types of classifiers. Although the

randomly formed ensemble are manually set to be of similar size to that used

by CFS (e.g. when CFS is set to 41.7, 60.6, and 78.6, Random is set to 40, 60,

1The dataset’s link: https://www.dropbox.com/s/fb75rn16twm43p4/gesturedata.zip?

dl=0
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and 80, correspondingly), the accuracy of Random is still worse then that of

CFS. The full base classifier pool ensemble has similar performance with CFS;465

however, the ensemble size is much larger than that of CFS. A larger ensemble

size tends to require a larger computational cost. Therefore, CER with CFS is

the best choice for this robotic calligraphy system.

This result confirms the benefit of employing classifier ensembles. The result

also demonstrates substantial ensemble size reduction, showing clear evidence470

of dimensionality reduction. Based on Table 3, in order to use the smallest

ensemble size to achieve relatively good performance, the ensemble size is set as

40.

Table 3: C4.5 based ensemble classification accuracy result comparison

CFS Random Full

Pool Size Acc.% Size Acc.% Size Acc. Size C4.5 MLP

50 87.35 41.7 86.56 40 87.29 50

100 87.58 60.6 87.08 60 87.50 100 74.48 74.76

200 87.76 78.6 87.13 80 87.49 200

The confusion matrix in Fig. 7 illustrates the distributions of the classifier

ensemble’s errors. In this paper, the 10-fold cross-validation method is used475

to train the ensemble candidates, while another testing dataset, performed by

the fifth demonstrator, is used to generate the confusion matrix. In the dataset,

each class contains 50 samples. Both Axis x and y are the 26 English letters and

the five elementary strokes. Therefore, the confusion matrix contains 31 × 31

grids. Labels “a - z” stands for the 26 English letters, and Labels “H”, “V”,480

“L”, “R”, and “F” stands for the horizontal, vertical, left falling, right falling,

and folder strokes.

The color depth of each grid represents how many instances are classified

correctly. Fig. 7 shows that almost all the instances are classified correctly.

However, a small number of “j” instances are recognized as “i”, and several485
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Figure 7: The confusion matrix of the strokes and letters.

“h” instance are incorrectly placed into the “n” category. Moreover, several

“vertical strokes” are recognized as “l”. Therefore, in order to avoid these types

of mistakes, the demonstrator must perform the “j” and “h” letters slowly and

carefully; in addition, the demonstrator must use markedly different gestures to

assign the letter “l” and the vertical stroke.490

In addition, the performance of deep neural networks is usually much better

than that of the conventional classifiers. In the paper, C4.5 is chosen as the base

classifier, the applied ensemble framework can select a number of base classifiers

to form a classifier ensemble. Table 3 proves that the ensemble’s performance

usually is better than that of the single base classifier. Also, if a deep neural495

network is used as the base classifier, after the ensemble process, an ensemble of

deep neural networks is obtained. We believe that such ensemble can also have

a better performance than that of a single deep neural network.
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4.2. Gesture Sampling Results of the Font Pattern

Fig. 8 presents the sampling result of the 26 English letters. The letters are500

chosen randomly from the training dataset. The trajectories of the letters are

optimized by the noise filter algorithm: as such, the shapes are smooth enough

for the robot to write. In particular, the output shapes of the letters “a, e,

f, q, s, t, y” are clearly recognisable and resemble their block letter shapes.

However, the “j, l” letters are not recognized easily. Letters of poor quality may505

be replaced, at human discretion, by choosing another instance of the same type

from the training dataset. The poor quality letter can also be discarded from

the training dataset at this point.

a b c d e

f g h i j

k l m n o

p q r s t

u v w yx z

Figure 8: The sampling results of the 26 English letters.

To show the sampling differences among human demonstrators, more sam-

pling results are presented in Fig. 9. The figure shows the sampling results510
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of five letters: “a”, “l”, “f”, “t”, and “z”. Each letter has five samples, which

are generated by different human demonstrators. For each letter, the sampling

results are slightly different from each other (although the differences are not

large). If a human user is not satisfied with a sampling result, the user can

select another sample result for the robot to write.515

Figure 9: Different sampling results of five English letters.

Fig. 10 demonstrates the sampling result of the five elementary Chinese

strokes. Standardised print versions of these strokes are presented alongside

the captured samples, to the left. Note that although the resulting samples are

correctly recognisable, they are unlikely to match the print templates precisely.

The output depends instead on the demonstrators’ versions during the training520

module. Herein lies the novelty of this approach, wherein the robotic system can

capture and reproduce human expertise: for example, future medical surgical

applications are likely to based off of human surgical motions, which cannot
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have any “standard” template.

The flexibility between untrained users are not evaluated in this paper. How-525

ever, based on our previous research on classifier ensemble [34], one significant

benefit is that the generalization ability is better than that of single classifier.

In this case, an untrained user might also own high recognition accuracy. Af-

ter testing the performance of the classifier ensemble and the font pattern, the

experiment switches to Part 2.530

Horizontal Stroke

Left Falling Stroke Right Falling Stroke

Vertical Stroke

Horizontal & Fold Stroke

Figure 10: The writing results of the 5 elementary strokes.

4.3. Robotic Writing Results

Fig. 11 illustrates the robotic writing results of the 26 English letters. All

the letters are easily recognised. Comparing with Fig. 8, where the writing

shapes basically follow the captured trajectories, only the letter “w” displays a

mismatched appearance. In particular, the starting position is slightly different535

from the the captured trajectory. This situation may be caused by errors in the

inverse kinematic calculations, or caused by the robotic arm’s motion accuracy.

Fig. 12 demonstrates the robot’s writing results of the five elementary

strokes. To evaluate the writing results, a simple wavelet transform evaluation
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Figure 11: The robotic writing results of the English letters.

method [46] is applied. The evaluation results are used to present the writing540

quality. The writing quality is presented as scores, from 0 to 99, where a high

score denotes better quality and low scores denote poor quality. The sampling

results of the five strokes are listed on the left side of the writing results. The

shape of the writing results are very similar to the sampling shapes. In addi-

tion, the scores of the horizontal, vertical, and fold strokes range from 85 to545

90. Therefore, the writing quality of such strokes are satisfactory. However, the

quality of the left falling and the right falling strokes is low: the scores of the

two strokes are around 60. This low quality writing might be solved by adding

more sampling points for the Chinese strokes.

Fig. 13 shows the writing results of two Chinese characters. The first char-550

acter contains seven strokes, and the second character has five strokes in total.

The characters in the left column of the figure are the printed style of the two

Chinese characters. The robot generates the characters in the right column.

Because these two characters are assembled by relatively simple strokes, the

Kinect device can easily capture the human gestures.555
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Horizontal Stroke

Left Falling Stroke Right Falling Stroke

Vertical Stroke

Horizontal & Fold Stroke

Figure 12: The sampling results of the 5 elementary strokes.

For those sequential gesture trajectories, the classifier ensemble algorithm

also produces high recognition accuracy; except for the first stroke (labeled as

1©) of Character 1, the remaining strokes of the two letters are recognized cor-

rectly. The correct type of Stroke 1© is the left falling; however, it is recognized

as a vertical stroke. This situation also occurred in Fig. 7, the proposed CER560

method has a few prediction errors, especially for the Chinese vertical stroke.

The overall Chinese character is however recognisable: indeed even in day-to-

day writing, one or two wrong strokes may not destroy an entire character.

Moreover, because it is difficult to use the elementary five stroke to construct

Stroke 2© of the print version, the shapes of Stroke 2© in the left and middle565

columns are not identical. This special stroke is replaced by the vertical stroke

in the experiments.

In Character 2, the trajectory of Stroke 3© is not straight. The reason is

that the scaling function of the font pattern can enlarge the size of strokes;

meanwhile, small errors are also enlarged. The enlarged errors result in the570

non-straight trajectory of Stroke 3©. In contrast, Stroke 4© is well written. In

fact, Stroke 4© is an enlarged fold stroke. In addition, the layouts of the strokes
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of both characters are exactly correct. In the second character, especially, the

starting and end positions of each stroke almost match. This indicates that the

approach’s trajectory conversion algorithm works properly.575

Also in Fig. 13, Stroke 1© in Character 1 is slightly different from Stroke

3© in Character 2. However, based on the proposed approach, the two strokes

should be identical. The difference is caused by the robotic arm’s repositioning

accuracy. In addition, the writing board is not strictly vertical, this may also

bring a little distortion to the strokes.580

Character 1

Character 2

① 

② 

③ 
④ 

① 

② 

③ 

④ 

Figure 13: The writing results of two simple Chinese characters.

Fig. 14 shows the writing progress and result of a complex Chinese charac-

ter “Yong”. In the Chinese calligraphy, the “Yong” character is very significant

to calligraphy beginners. Although the character consists of only eight type-

s of strokes, these eight are the most important elementary strokes that can

construct almost all Chinese characters. Therefore, if the robot can write the585

“Yong” character, in theory, the robot will be able to write all the Chinese char-
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acters. In the experiment, the “Yong” is simplified into six strokes. Step 1 is to

write a right falling stroke; Step 2 is a fold stroke, Step 3 is a horizontal stroke,

Step 4 is a left falling stroke, Step 5 is another left falling stroke, and Step 6 is

a right falling stroke. Each stroke is correctly recognized, and its writing effect590

is good. The writing result of the entire “Yong” character (the last picture

in Fig. 14) is excellent; the topological structure of the character is accurate;

each stroke’s position is also accurate. Based on the figure, the robot’s arm can

produce high quality writing and has the potential to write complex Chinese

characters. This is evidence of how the proposed methods may be adapted to595

tackle complex multi-part robotic actions, for example the industrial welding of

non-standard shapes.

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Final Result

Figure 14: The robotic writing results of the typical Chinese characte.r

Fig. 15 shows the robotic writing results of three English words “let”, “big”,

and “tea”. For each word, the demonstrator sequentially performed the three

letters. For the output, the starting positions of the letters must be different;600

otherwise, the letters will overlap each other. The three words are written clearly

and are recognizable. Because the robot invokes the saved human gestures as

the font trajectory information, the shape of the letters are very close to the

writing results presented in Fig 11. However, the size of the letters are changed

a little bit, and is determined by how large the demonstrator writes. The results605

prove that the robotic writing system can not only write letters, but also write
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English words. [46]

“let” “big” “tea”

Figure 15: The robotic writing results of three English words.

In summary, the robotic system’s classifier ensemble module succeeds in

recognising the human demonstrator’s gestures, the font database module cor-

rectly saves the trajectory information that has been performed by the demon-610

strator, and the font pattern generates accurate letter and character trajectories.

The approach allows humans to conveniently control a robot to write many En-

glish words and Chinese characters.

4.4. Discussion and Comparison

Based on the above experimental observations, the proposed approach is615

successful in generating robotic writing. This work significantly differs from

existing work: our robot uses human gestures as the basis to collect trajectory

information of English letters and Chinese characters. The classifier ensemble

algorithm is also a novel and effective way for the robot to accurately recognise

the human gestures. The scaling function of the font database leads the robot620

to write different Chinese characters by using the five elementary strokes.

To further reflect the strengths of this research, a comparison with typical

robotic writing approaches is summarised. In particular, the comparison is

focused on the following three important features: 1) font acquirement method,

2) system expansibility, and 3) multiple language support. The comparison is625

summarized as follows:

• Font acquirement method: Many existing approaches prefer to apply a

direct programming method to implement font databases for robotic writ-
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ing. However, this paper’s approach is to use human gestures to obtain

trajectory information. Similar to the pen-tablet method, this human ges-630

ture guided method also brings personal style into robotic writing; thus,

the robotic writing can exhibit various styles, rather than exhibiting one

fixed method. In future work, as an extension to the proposed system,

the human gesture input can be conveniently replaced by EEG or EMG

signals. Therefore, by involving the Brain-Computer Interface, our sys-635

tem can be extended to implement the “human consciousness controlled

robotic writing” task, in other words: mind control.

• System expansibility: The overall robotic writing ability can be devel-

oped incrementally. Suppose the robotic system lacks letters or characters

that are not already in the database, e.g. capital English letters. Con-640

ventional methods require human engineers to rebuild the font database

through further programming. In contrast, our approach already con-

tains a training and control phase; our approach merely switches to the

training phase, and a human demonstrator performs new fonts in front of

the Kinect device. After that, the robot has obtained the new trajectory645

information.

• Multiple language support: Another point to note is that existing

methods do not show multiple language writing ability. Our approach

enables the robot to write both English letters (linearly) and Chinese

characters(inherently non-linear) by using one system. Because of the650

powerful performance of the classifier ensemble, developing further lan-

guage writing ability is transformed into adding more instances to the

classifier ensemble. Also, the human-interaction method reduces the work

complexity of implementing the new language font.

To further reflect the strengths of this research, a comparison with the state655

of the art methods with gesture recognition is summarised in Table 4. The

objectives of those methods are not the same, and therefore these state of the

art methods do not form one unified dataset as a benchmark. However, in terms
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of the dataset size and gesture category, several findings can be identified. For

example, the accuracy performance of the proposed approach (the first row in660

the table) is not the best; however, the recognisable gestures is the largest by

far. More gesture categories lead to higher classification difficulty. Therefore,

the classification performance of the proposed method is good enough.

5. Conclusion

This paper presented a human gesture guided approach to robotic handwrit-665

ing. The approach first used the shapes of the English 26 letters and 5 Chinese

strokes to define human gesture trajectories, and then applied a novel classifier

ensemble to recognize human gestures. A 3D vision sensor, Kinect, is used to

detect human arm motion trajectories, and the feature selection with a harmony

search method is deployed to optimize the recognition accuracy. Moreover, a670

noise filtering program, a stroke scaling function and inverse kinematic calcula-

tions are implemented to obtain robotic motor values. The experimental results

show that using human gestures can conveniently transform Chinese characters

and English letter trajectory information from human right arm motion to the

robot writing system; the classifier ensemble can recognize the human gestures675

with high accuracy; and the robotic system can easily write many Chinese char-

acters and English words without complex programming and image processing

work. In addition, the overall output writing quality is good; especially, each

Chinese stroke’s position is exactly correct and each letter of English words is

clearly written.680

While the proposed technique is promising, there is room for improvement.

Firstly, the current system places a number of restrictions on the human, for

example, the gesture trajectories are constrained in a 2D plane and the human

wrist information is ignored. Therefore, we plan to add a pressure sensor or a

visual feedback to adjust 3D positions, and use wrist information to control the685

robotic arm’s movements. Also, the system defined a sample time limitation for

human users, such limitation is not convenient; therefore, we plan to adopt left
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Method Data

Source

Dataset

Size

Gesture

Category

Accuracy

Reduced

Classifier

Ensemble

Captured by

Kinect

9352 31 87.43%

Human

gesture cor-

pora based

method [27]

ChAirGest

dataset

1200 10 93.3%

Gaussian

mixture

modeling

[29]

KTH dataset 2391 6 98.3%

3D extremi-

ty movemen-

t observation

[30]

HumanEva-I

Dataset

800 6 93.1%

Active

Learning of

Ensemble

Classifiers

[33]

HumanEVA

dataset

800 9 86%

Hidden

Markov

Models [32]

HumanEVA

dataset

800 9 89.8%

Dynamic

Bayesian

Networks

[28]

Seven videos

from seven

subjects

490 10 99.59%

Table 4: The comparison of gesture recognition
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hand gestures, voice commands, or EMG and EEG signals to solve this problem.

Furthermore, the median filter is a better choice to replace the amplitude lim-

iting filter, so as to obtain smoother trajectories. Finally, the font information690

database contains only one type of handwriting style; if a human user performs

dramatically different handwriting styles, our robot might not generate correct

writing. With the font database increasingly being provided with more font

information, the robot can gradually handle more different, and difficult, hand-

writing styles. The ability to automatically enrich the font database remains an695

important further work.
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Appendix705

Robotic Kinematics. Fig. 16 demonstrates the robotic arm’s configuration,

which includes the setup of the arm’s joints, links and orientations. The robotic

arm has four links, labeled l1, l2, l3 and l4, with lengths of 150mm, 375mm,

354mm, and 175mm, respectively. Fig. 16 also indicates each joint’s coordinate

frame. The robotic arm’s origin coordinate frame of the robotic arm is based710

on the first joint. The x0 axis is vertical to the writing board; the z0 axis is

vertical to the ground, and the y0 is vertical to the plane that is defined by the

axes x0 and z0. Although the arm contains five rotation joints, four of which

labeled J1, J2, J3, and J4 are applied for the writing system. In fact, three

joints are sufficient for the robot to act in 3 dimensional workspace; however,715
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Figure 16: The configuration of the robot arm.

another joint is used to make the pen move vertically to the z0 axis, thereby

achieving high quality writing. The four joints work simultaneously to write

each character or letter.

In order to control the robotic arm, the Denavit and Hartenberg (D-H)

convention is used to analyze the direct and the inverse kinematics of the robot.720

Based on the coordinate systems illustrated in Fig. 16, the D-H parameter table

is shown in Table 5. In the table, θi denotes the rotation angle from the xi−1

axis to the xi axis along the zi−1 axis; d denotes the distance from the origin of

the (i− 1) coordinate system to the intersection of the zi−1 axis and the xi axis

about the zi−1 axis; a denotes the distance from the intersection of the zi−1 axis725

and the xi axis to the origin of the ith coordinate system about the xi axis; α

denotes the rotation angle from the zi−1 axis to the zi axis along the xi axis.

The rotation angle change occurs only in the first joint; thus, θ1 = −90◦.

In addition, the arm contains one more rotation joint, which is ignore in this

work. Therefore, the ignore joint is regarded as a part of the link “l4”; also, the730

joint is not included in the D-H parameter table. The working ranges of the

four joints are [−120◦, 120◦], [−90◦, 90◦], [−90◦, 90◦], and [−45◦, 45◦].

The overall function of the motor system module is to produce the robotic

arm’s joint values; the input of this module is actually the pen’s expected posi-

tion. The values of θ1, θ2, θ3, and θ4 are obtained by using Eqs. 6, 7, 8 and 9.
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Table 5: D-H parameter table

Joint No. θ d a α Range

1 θ1 0 150 −90 [−120◦, 120◦]

2 θ2 0 375 0 [−90◦, 90◦]

3 θ3 0 354 0 [−90◦, 90◦]

4 θ4 0 175 0 [−45◦, 45◦]

θ1 = arctan
px
py

(6)

θ2 = arcsin−

a2pz + a3 cos θ3pz + a3 sin θ3
√
a22 + a23 + 2a2a3 cos θ3 − p2z

a22 + a23 + 2a2a3 cos θ3

(7)

θ3 = arccos
(px cos θ1 + py sin θ1 − a4)2 + p2z − a22 − a33

2a2a3
(8)

θ4 = −θ2 − θ3 (9)

The robotic control system is divided into two parts: (1) a hardware con-

troller, and (2) a controlling computer. The hardware controller receives com-

mands from the controlling computer, and converts the commands into the735

values that can be accepted by the robotic arm’s motors. A driver program is

built for communications between the computer and the hardware controller.

The algorithm computer handles high level programs such as Kinect gesture

recognition, a noise filter algorithm, classifier ensemble algorithm, and inverse

kinematics calculations. The controlling computer uses a USB cable to con-740

nect the Kinect device and uses a CAN-Bus socket to communicate with the

hardware computer. As for the software, the programs in the controlling com-

puter are developed by using the C# programming language and the “Microsoft

Kinect SDK 1.5”; the robotic control program is written in C++.
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[8] J. P. Bandera, J. A. Rodŕıguez, L. Molina-Tanco, A. Bandera, A survey765

of vision-based architectures for robot learning by imitation, International

Journal of Humanoid Robotics 9 (1) (2012) 1250006–1–1250006–40.

[9] Z. Lu, X. Chen, Q. Li, X. Zhang, P. Zhou, A hand gesture recognition

framework and wearable gesture-based interaction prototype for mobile

devices, IEEE Transactions on Human-Machine Systems, 44 (2) (2014)770

293–299. doi:10.1109/THMS.2014.2302794.

39

http://dx.doi.org/10.1109/THMS.2014.2302794


[10] M. Holte, C. Tran, M. Trivedi, T. Moeslund, Human pose estimation and

activity recognition from multi-view videos: Comparative explorations of

recent developments, IEEE Journal of Selected Topics in Signal Processing

6 (5) (2012) 538–552. doi:10.1109/JSTSP.2012.2196975.775

[11] M. A. Goodrich, A. C. Schultz, Human-robot interaction: A survey, Foun-

dations and Trends in Human-Computer Interaction 1 (3) (2007) 203–275.

[12] A. Matsui, S. Katsura, A method of motion reproduction for calligraphy

education, in: Proceedings of IEEE International Conference on Mecha-

tronics, IEEE Press, Vicenza, 2013, pp. 452–457.780

[13] C. Acosta-Calderon, H. Hu, Robot imitation: Body schema and body per-

cept, Applied Bionics and Biomechanics 2 (3) (2005) 131–148.

[14] F. Chao, F. Chen, Y. Shen, W. He, Y. Sun, Z. Wang, C. Zhou, M. Jiang,

Robotic free writing of Chinese characters via human robot interactions,

International Journal of Humanoid Robotics 11 (1) (2014) 1450007–1–26.785

[15] T. Kulvicius, K. Ning, M. Tamosiunaite, F. Worgötter, Joining movement

sequences: Modified dynamic movement primitives for robotics applications

exemplified on handwriting, IEEE Transactions on Robotics 28 (1) (2012)

145–157. doi:10.1109/TRO.2011.2163863.

[16] A. Billard, S. Calinon, R. Dillmann, S. Schaal, Survey: Robot programming790

by demonstration, Handbook of Robotics, . chapter 59, 2008 (2008).

[17] R. Dillmann, Teaching and learning of robot tasks via observation of human

performance, Robotics and Autonomous Systems 47 (2C3) (2004) 109 –

116, robot Learning from Demonstration.

[18] R. Dillmann, T. Asfour, M. Do, R. Jäkel, A. Kasper, P. Azad, A. Ude,795
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