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Abstract As a measure of regional importance in agree-
ment with human perception of 3D shape, mesh saliency
should be based on local geometric information within a
mesh but more than that. Recent research has shown that
global consideration has a significant role in mesh saliency.
This paper proposes a local-to-global framework for com-
puting mesh saliency where we offer novel solutions to solve
three inherent problems: (1) an algorithm based on statistic
Laplacian which does not only compute local saliency, but
also facilitates the later computation of global saliency; (2)
a local-to-global method based on pooling and global dis-
tinctness to compute global saliency; (3) a framework to in-
tegrate local and global saliency. Experiments demonstrate
that our approach can effectively detect salient features con-
sistent with human perceptual interest. We also provide com-
parisons to existing state-of-the-art methods for mesh saliency
and show improved results produced by our method.

Keywords Mesh saliency · Laplacian · Global distinctness

1 Introduction

In computer graphics, human perception can play an impor-
tant role in evaluating the results of many tasks such as fea-
ture detection, mesh segmentation, shape recognition, shape
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retrieval, shape-based morphing, mesh simplification and so
on. In these tasks, usually the ground truth is influenced
by human perception and thus subjective evaluation is used
when assessing the success of such methods. To the best of
our knowledge, the concept of mesh saliency was first in-
troduced by Lee et al. [19]. It is a computational measure
of regional importance on a mesh in accordance with hu-
man perception. The hope is to close the gap between the
humanly-judged ground truth and computational results.

Human perception of 3D shape is mainly visual. Conse-
quently, computational saliency attempts to predict human
visual attention which typically is affected by visual stimuli
caused by local geometric features. However, human per-
ception is also influenced by other global and higher-level
perceptual cues. For this reason, although some success has
been achieved, satisfactory computation of mesh saliency
remains a hard problem, and even state-of-the-art methods
have shortcomings.

1.1 Related work

Early work on saliency detection for 3D meshed surfaces
was largely inspired by related research on 2D images. Guy
and Medioni [10] took a scheme for computing a saliency
map based on local edges in a 2D image, and applied it to 3D
data; the goal was to smoothly interpolate sparse and noisy
3D data to obtain dense surface information. In [36], the
saliency of a 3D dynamic scene was computed based on a
coarsely rendered 2D projection, employing the 2D method
in [13] for adjustment. This saliency-based strategy led to
accelerated and improved illumination computation in pre-
rendered animations. Mantiuk et al [22] used a 2D saliency
algorithm to guide real-time MPEG compression of an ani-
mated 3D scene. In general, estimating saliency in 2D pro-
jections of meshes does not sufficiently take into account
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depth information within the original data, which, as men-
tioned in [12], is a key stimulus for human perception of a
static scene.

Extensive work has considered computing saliency di-
rectly from 3D structure, mainly driven by locally salient
geometric features. [25] proposed a multiscale method to
extract local line-like features using surface variation as a
saliency measure, based on eigenvalues of local covariance
matrix. [19] computed mesh saliency using a centre-surround
operator on Gaussian-weighted curvatures and provided meth-
ods to incorporate saliency into mesh simplification and view
selection. In [9], salient geometric features based on curva-
tures were introduced to improve part-in-whole matching.
[29] developed an approach to compute the distinctive re-
gions of a 3D surface, and applied it to shape matching, icon
generation and mesh simplification. [2] proposed a method
for detecting and matching salient points from multiview
meshes, where saliency is determined by generating a mul-
tiscale representation of the mesh. [7] focused on viewpoint
selection and developed a method to compute view-based
mesh saliency using mutual information between polygons.
[11] proposed the admissible diffusion wavelets on meshes
and calculated mesh saliency based on it.

In later work, global cues has been incorporated into var-
ious computational models of mesh saliency. [21] proposed
an algorithm for detecting surface regions which are distinct
both locally and globally where the global consideration is
whether the object is ‘limb-like’ or not. Then they explored
how to select viewpoints based on these regions of interest.
[3] proposed a regression model to predict mesh saliency
based on learning from data collected in a large-scale user
study. It also raised the issue that global properties such as
segment centeredness and proximity to a symmetry axis are
required to explain more subtle salient features. [35] pro-
posed an approach for detecting mesh saliency based on the
observation that salient features are both locally prominent
and globally rare. [30] analysed the log-Laplacian spectrum
of meshes and presented a method where both local geomet-
ric cues and global information corresponding to the low-
frequency end of the spectrum are considered. Saliency is
then determined by transferring information from the spec-
tral domain back to the spatial domain.

1.2 Our work

Although global considerations improve saliency detection,
significant differences between computational saliency and
human-provided ground truth still remain. As noted in [30],
this is because it is difficult to incorporate global percep-
tual cues into saliency detection. Most mesh saliency meth-
ods implicitly assume that human visual perception is driven
bottom-up by local, expectation-free reactions to salient stim-
uli. However, research [5] in neuroscience has demonstrated

that vision can also be guided by top-down, expectation-
dependent, anticipatory mechanisms. These mechanisms are
mostly associated with global cues.

In this work, we move from local geometric features to
global cues. One important motivation of our work is the ob-
servation that locally salient features may be of low global
saliency when analogous features appear many times around
the meshed surface, which means that globally they are less
distinct. Such observation has been studied in neuroscience
and psychophysics, and arguably regarded as the most im-
portant global cue influencing human visual attention [34,
16]. For example, [34] concluded that human visual sys-
tem is sensitive to less frequent features and suppresses fre-
quently occurring features. We accordingly propose a novel
framework which detects both local and global saliency and
also integrates them. We first compute local mesh saliency
based on the newly proposed stochastic Laplacian. Then we
create a set of feature points by pooling the local saliency
map. Next, we develop a method to compute the global dis-
tinctness of the feature points as their global saliency and
finally incorporate it into a saliency adjustment scheme to
output a per-point saliency map.

Our approach is presented in detail in Sections 2, 3, 4
and then evaluated in 5. We finally conclude in Section 6.

The main contributions of this paper are threefold:

1. We present a novel algorithm for computing local mesh
saliency. It captures salient features at multiple scales
very efficiently since compared to previous methods, it
does not require a spectral eigendecomposition of the
Laplacian [30], or a spatial nearest neighbour search [19]
to analyse multiscale neighbourhoods.

2. Based on the local saliency, we propose a novel method
to efficiently compute a set of feature points specifically
designed for performing a global saliency adjustment.

3. We develop a novel scheme for global saliency adjust-
ment where the global saliency representing the global
distinctness of features is integrated with the local mesh
saliency to output the final saliency map.

2 Local mesh saliency via stochastic Laplacian

As a local-to-global scheme for mesh saliency, we start from
the local cues. In this section, we first describe our algorithm
and then analyse it and explain how it works. To compute
local saliency, we first calculate the Laplacian of mesh and
convert it to the newly proposed stochastic Laplacian. Then
in each iteration, the stochastic Laplacian which encodes
multiscale information is updated by matrix multiplication
and numerical operations. Once the termination condition
is satisfied, the local saliency map is produced through the
aggregation of the difference maps of stochastic Laplacians
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which essentially integrates the information about saliency
computed at multiple local scales.

The Laplacian is the most widely used local operator
for mesh processing. The Laplacian matrix of a mesh is
based on the discretisation of a continuous Laplacian (e.g.
the Laplace-Beltrami operator) defined for a smooth mani-
fold, using some weighted sum of adjacent vertices [6]. If
a mesh M contains m vertices p1, . . . , pm, in its simplest
form, the Laplacian matrix is:

L = D −A (1)

where A is the adjacency matrix, given by

A(i, j) =

{
1 if pi and pj are neighbours
0 otherwise

, (2)

and D is a diagonal matrix in which Dii is the degree of pi.
We use two further steps after computing the Laplacian.

Firsly, we compute L̂ composed of the absolute values of
the elements of the Laplacian: L̂ij = |Lij |. Secondly, we

normalise L̂ so that the sum of each row is 1: L =
[
L̂
]
r

where [·]r denotes row-based normalisation. These two sim-
ple steps are very important since they turn the Laplacian
into the stochastic Laplacian. Although the Laplacian has a
precise definition, we arguably use the term stochastic Lapla-
cian to denote a matrix (e.g.,L) which is factually a stochas-
tic matrix and inspired by the original Laplacian. The stochas-
tic Laplacian provides an effective way to encode multiscale
surface geometry.

Our algorithm is given in Algorithm 1. It is based on it-
erative updates of the stochastic Laplacian so that a series
of stochastic Laplacians are generated to encode multiscale
features. It can be implemented more easily and efficiently
than previous methods requiring distance-based neighbour-
hood identification [19], eigendecomposition of the Lapla-
cian [30] or the design and dilation of wavelets [11]. In Al-
gorithm 1, each iteration generates a new stochastic Lapla-
cian F (h) and the corresponding difference map D(h−1) of
two stochastic Laplacians at adjacent scales.

Stochastic Laplacian. We wish to determine a multi-
scale neighbourhood of each vertex. The row based normal-
isation in each iteration guarantees that F (h) is always a
stochastic matrix, so describes the transitions of a Markov
chain. Given a stochastic matrix L, Lij denotes the proba-
bility of a one-step transition. Therefore, the h-th stochastic
Laplacian produced via a series of h − 1 updates gives the
h-step transition probability between different vertices.

Since the stochastic Laplacian matrix is sparse, most tran-
sitions are prohibited (have transition probability zero); only
transitions within a neighbourhood are permitted as the Lapla-
cian depends on the adjacency matrix. Hence, the h-step
transition actually defines a connectedH-ring (H =

∑h−1
k=1(h−

k)) neighbourhood while all other connectivities and paths

Algorithm 1: Local mesh saliency
Data: A mesh M containing m vertices
Result: A local saliency map I
begin

Compute L̂ and then the stochastic Laplacian L;
Initialise F (1) = L and H = 2 ; // Superscripts
with and without parentheses denote
sequential numbers and exponents
respectively.
for h← 2 to MaxIter do

F (h) = arctan(h1.5F (h−1)L̂h−1);
D(h−1) =

∣∣F (h) − F (h−1)
∣∣;

F =
[
F (h)

]
r

;
F (h) = F ;
Calculate the difference map as
D(h−1) =

∑
r D(h−1) where

∑
r denotes

row-based summation;
if NZ/m > 0.1m where NZ is the number of
nonzero elements in F (h) then

H = h; break;

I =
[∑H

h=2 D
(h−1)

]
where [·] denotes normalisation;

I = arccot(I)

are prohibited. The Markov chain property allows us to de-
termine vertex neighbourhoods just from the probabilities,
so the complexity of neighbourhood identification is linear.

Multiscale property. Although the saliency computed
based on stochastic Laplacian is local, it is of multiple lo-
cal scales. The local saliency of a vertex is not only de-
cided by its curvature which represents the local geometry
at the smallest scale but also the local geometry at larger
scales, which depends on larger neighbourhoods of differ-
ent sizes. To effectively capture salient features at different
local scales, the sizes of these neighbourhoods should sig-
nificantly differ. In Algorithm 1, the core process for mul-
tiscale neighbourhood identification is the matrix multipli-
cation F (h−1)L̂h−1, which provides neighbourhood expan-
sion. As h increases, the stochastic matrix F (h) becomes
less and less sparse. Apart from the maximum number of it-
erations MaxIter, the termination condition is that the av-
erage neighbourhood contains more than 10% of the mesh
vertices since we reasonably assume that the maximum size
of a salient feature is no larger. For example, for the girl
mesh shown in Fig. 1, Algorithm 1 terminates at the 7th
scale and thus H = 7. From scales h = 2 to 7, it detects
potential features within neighbourhoods containing various
numbers of vertices: 20, 70, 212, 551, 1235, 2443 on aver-
age. Fig. 1 illustrates the multiscale representation of the girl
mesh using the proposed method. It can be seen that when
h = 2, small-scale local features such as the tip of nose can
be detected. When h = 4, medium-scale features such as the
entire nose can be detected. When h = 7, the algorithm cap-
tures some large-scale features such as the entire face and
the ribbon which is now, as a whole, a protrusion of the en-
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Fig. 1: Multiscale representation of a girl mesh via the stochastic Laplacian. Yellow denotes the neighbourhood of the centred
red point at each scale. Note that the feature neighbourhood of the red point defined at the 4th scale captures the entire nose
as a salient feature. It can be seen that when the stochastic Laplacian is repeatedly applied over the mesh, it produces a
‘shrinkage’ effect similar to repeated Laplacian smoothing on the mseh.

tire mesh. Empirically, we select the neighbourhood defined
by the median scale as the most useful neighbourhood of a
vertex and call it the feature neighbourhood of that vertex.
This concept is used later for local-to-global pooling and
global saliency adjustment.

Saliency map. The penultimate line of Algorithm 1 em-
ploys the popular idea of aggregating the difference maps
D(h−1) at multiple scales [13,19,11,30]. Note that D(h−1)

will also be used as a multiscale feature descriptor for com-
puting global distinctness in Section 4. Due to the row-based
normalisation in each iteration, as h increases, the entries
of the stochastic Laplacian F (h) become smaller, as it be-
comes less sparse. When h is very large, the entries of the
corresponding difference map will be very small, so during
aggregation, the difference maps encoding large-scale fea-
tures will make disproportionately small contributions. Thus
in the algorithm, when we update the stochastic Laplacian
F (h), based on empirical findings, we use a factor h1.5 to
enhance the weights of the large scale maps. To enhance
salient regions and suppress non-salient regions, Itti et al.
[13] proposed a non-maximum suppression approach while
Song et al. [30] simply employed a logarithm operation. Af-
ter testing these approaches, based on our empirical find-
ings, we eventually use an arctan operation to enhance the
differences between salient and non-salient regions in the
saliency map, and the final step I = arccot(I) also further
enhances the salient regions.

Relation to heat diffusion. Local features on a mesh
are usually interpreted as local extrema of a scalar field of
local mesh saliency, with the help of multiscale representa-
tion. The generating equation of a multiscale representation
is the linear heat diffusion equation [17]. So the multiscale
representation of a manifold can be obtained as the solution
to a heat diffusion process [4]. The fundamental solution of
the heat diffusion equation is known as heat kernel and it
has quite a few nice properties [31]. In our work, the multi-
scale representation as shown in Fig. 1 is generated through

iteratively applying the stochastic Laplacian. Given the set
of mesh vextices P , the multiscale representation in Fig. 1
can be expressed as F (h)P . Heat diffusion and stochastic
Laplacian are both effective ways to generate a multiscale
representation for computing local mesh saliency. However,
our method performs better than heat diffusion in the per-
spective of saliency computation according to the results of
quantitative comparisons shown in Figs. 9 and 10.

Relation to wavelets. One important step in Algorithm 1
is the computation of the difference of two stochastic Lapla-
cians D(h−1) =

∣∣F (h) − F (h−1)
∣∣. A graph Laplacian ap-

plied on a 3D meshed surface can be viewed as a low-pass
filter [33] which removes the high-frequency details of the
mesh. In our work, the step of calculating the absolute value
of such a discrete Laplacian makes it more Gaussian-like (as
negative entries no longer exist). Note that the multidimen-
sional generalisation of a Mexican hat wavelet is the Lapla-
cian of Gaussian function which is usually approximated by
the difference of Gaussians function. Therefore, the differ-
ences of stochastic Laplacians at adjacent scales behave like
wavelets which have powerful localisation property in both
frequency and space. In many graphics applications such as
saliency detection, mesh segmentation and interest point de-
tection, a nice localisation property of the operator is often
attractive due to the need of seeking local features and/or fil-
tering local geometry, while retaining gross shape/structure
globally. From this point of view, Algorithm 1 essentially
creates a band-pass filter with desired localisation property
for highlighting locally salient features. Although our method
for computing local saliency can be understood from the
perspective of wavelets, as we shall show in Section 5.2,
when combining local and global saliency, our method out-
performs a recent method [11] based only on wavelets.

3 Local-to-global saliency pooling

As defined in [19], saliency is a measure of regional impor-
tance of a mesh. Such a definition suggests that an efficient
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computation can be achieved by only considering a small
set of feature points which represent local regions. More im-
portantly, performing a saliency adjustment which relies on
sparse feature points can effectively guarantee regional con-
sistency of saliency (see Fig. 8 for the experimental valida-
tion of this claim). Hence, it is desired to create a sparse set
of feature points for performing saliency adjustment. How-
ever, due to the following reasons, we tested uniform sam-
pling, thresholding and local maxima extraction based on
local saliency or other feature descriptors such as HKS [31]
and found none of them generated desired results.

First, the main motivation of applying a global saliency
adjustment is that globally salient features may be of low lo-
cal saliency and vice versa. Thus the set should include some
feature points with low local saliency. Second, saliency or
other feature descriptors such as HKS are often not so dis-
criminative for points very close to each other. Since global
distinctness is associated with the similarity of points de-
fined by their descriptors (see Section 4), a globally salient
feature point could be incorrectly regarded as not globally
salient as some of its neighbouring points with similar de-
scriptors are also included in the set. Therefore, the set should
be composed of sparse feature points spatially far away from
each other. Third, the feature points are spatially sparse and
each of them is essentially a representative of a large local
region. It is thus desired that each point is locally the best
representative (e.g., the centre) of the corresponding region.
Fourth, since saliency is regional rather than point-wise, it
is desired to adjust the saliency of vertices within the neigh-
bourhood of a feature as a whole. However, the sizes of fea-
tures are highly various. It is not wise to find the local max-
ima of neighbourhoods of features in some descriptor space
since finding the optimal neighbourhood defining every fea-
ture is very challenging. State-of-the-art mesh segmentation
methods might work, but they are not desired here consider-
ing efficiency and complexity.

Based on the above considerations, we propose a local-
to-global pooling scheme to solve this problem. Pooling is
used in some biologically inspired neural network, such as
Convolutional Neural Network (CNN), as an efficient and
effective way to extract global or higher-level information
from local features. To move from local salient features to
global saliency, we use two types of pooling, max-pooling
and average-pooling where the former formulates a nonlin-
ear move and the latter corresponds to a linear extraction.

Max-pooling. In CNN, one important pooling operation
is max-pooling. It acts as a form of nonlinear downsampling
to reduce the amount of computation needed by upper lay-
ers. As illustrated in Fig. 2, we employ max-pooling to ex-
tract local saliency maxima in this work. In image process-
ing, max-pooling is typically done using a square 2 × 2 or
3 × 3 window. As a 3D surface mesh lacks a regular lat-
tice structure, it is necessary to define a valid neighbour-

Fig. 2: Local-to-global pooling: circles denote local saliency
and squares denote global maxima; the lines in various di-
rections inside them stand for the variety among them.

hood for the max-pooling operation. Note that the stochastic
Laplacian already provides neighbourhood identification at
different scales. The neighbourhood of a vertex i at the hth
scale can be found by extracting the indices of the nonzero
elements in the ith row of F (h). We use the feature neigh-
bourhood defined above for each vertex for max-pooling.
Then max-pooling finds the maximum in a feature neigh-
bourhood.

Average-pooling. Another widely-used pooling opera-
tion in CNN is average-pooling which computes the average
value of a particular feature over a region of a layer. In com-
puter vision, it is an effective way to encode a large number
of image features into a compact image representation. In
our model, the average-pooling is a kind of low frequency
filtering and thus has the capability of representing the main
saliency in the lower layer. We simply employ k-means clus-
tering to perform average-pooling. The details including the
input and output to each pooling operation, and the setting
of the number of clusters k, is explained shortly.

In total, we do 3 rounds of pooling as shown in Fig. 2.
Max-pooling based on the local saliency map is done first,
which extracts a set of locally salient vertices as the second
layer. Then using these locally salient vertices as the input,
the average-pooling further reduces the number of points ex-
tracted through max-pooling by 90% (k for k-means cluster-
ing is set to 10% of the number of locally salient vertices).
We replace each cluster centroid produced by k-means clus-
tering by the closest vertex from the set of locally salient ver-
tices. These closest vertices are added to the third layer, and
give a sparse representation of local mesh features. In the
third layer, we incorporate the global maxima which are the
top 50% vertices in terms of local saliency. The third round
of pooling used to give the fourth layer is again an average-
pooling using the vertices in the third layer as input. Since
humans have difficulty paying attention to too many events
simultaneously [15,23], we set the number of clusters in the
k-means algorithm this time to nf (set to 100 in our exper-
iments), no matter how large the input mesh is. Again we
find the closest vertices to the cluster centroids from the in-
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corporated set to form the fourth layer. These nf vertices are
considered to be the feature points of the mesh. The follow-
ing global saliency adjustment is mainly based upon them.

4 Global saliency adjustment

We propose the concept of global distinctness to adjust (sup-
press or enhance) the local saliency map in a global manner.
To avoid ambiguity, it is worth noting that our concept of
global distinctness is completely different from the distinc-
tive features proposed by Shilane and Funkhouser [29]. The
global distinctness of a feature point reflects how distinctive
it is compared to other feature points while the distinctive
features in [29] are the features which can potentially dis-
tinguish a shape from objects in a different class. Certainly,
there are other global cues which potentially play important
roles for mesh saliency. Although some research [34,16] in
neuroscience shows that the global distinctness could be the
most dominant cue for attracting human visual attention, we
still provide a discussion in the final section of the paper and
also show some failed cases of our method caused by only
considering the global distinctness.

Global distinctness for mesh saliency is inspired by the
observation that humans are usually not interested in re-
peated features no matter whether they are locally prominent
but tend to pay attention to globally distinctive and unique
features [34,16]. For example, if there is only one red pepper
in a stack of green peppers, it will catch all of our attention.
But if there are several red peppers in a stack of green pep-
pers, our visual attention will be dispersed although these
red peppers are still locally salient. In the two cases, the
distinctness can be computed in the color space. For 3D
meshes, geometry is the only cue to compute saliency. For
instance, Fig. 3 shows the result of our saliency detection
on a bumpy sphere. It can be seen that the bumps are usu-
ally detected as salient features. In our work, we propose
the global distinctness computed in a space formed by the
multiscale feature descriptor DH where each of its columns
is a normalised difference map D(h−1), h = 2, 3, ...H (see
Section 2 and Algorithm 1).

4.1 Global distinctness computation

Given a feature point i represented by DH
i in an RH−1 fea-

ture space (i.e., DH
i is the row corresponding to the ith fea-

ture point in DH ), we measure its pairwise distinctness to
another feature point j represented by DH

j as the H − 1

dimensional Euclidean distance between them

dij =
∥∥DH

i −DH
j

∥∥ , i and j = 1, 2, · · · , nf . (3)

To measure the global distinctness of a particular feature
point, we construct a matrix X where each entry Xij is

Fig. 3: Our result of saliency detection on a bumpy sphere.
The mesh of bumpy sphere is courtesy of the AIM@SHAPE
repository.

the pairwise distinctness dij . Note that X can be regarded
as the weighted adjacency matrix of a graph where every
pair of feature points is connected and the length of the edge
connecting i and j is determined by the pairwise distinct-
ness dij . So X encodes the information about how feature
points are distinct from each other. We then define the global
distinctness as the centrality, a measure of the global influ-
ence of a node in a graph. By the Perron-Frobenius theorem
[27], X has a unique largest eigenvalue and its correspond-
ing eigenvector V has strictly positive components. Accod-
ing to [24], the ith component of V gives the centrality score
of the point i in the graph.

The above method can also be understood from a per-
spective of global distinctness maximization. It is a popular
idea in mesh or image saliency to perform a global saliency
adjustment (enhancement and/or suppression) to make mesh
or image regions visually distinct ([13,19]). This can be for-
mulated as a distinctness maximization problem as below

argmaxG(S) =
∑
i

Si

∑
j

SjXij ,

s.t. S ∈ R+ and ‖S‖ = 1

(4)

where the global distinctness S can be understood as weights
assigned to local regions. A large Si means that the point i
is globally distinct and thus its pairwise distinctnessXij has
a large weighted impact in the overall distinctness G(S).
Since human cannot pay attention to too many events simul-
taneously [15,23], S is subject to ‖S‖ = 1. Eq. (4) can be
written as

argmaxG(S) = STXS, s.t. S ∈ R+ and ‖S‖ = 1. (5)

Since X is a symmetric real matrix, it is Hermitian. Thus
Eq. (5) suggests that G(S) is its Rayleigh quotient. The up-
per bound of the Rayleigh quotient is the largest eigenvalue
of X and can be reached when S is equal to its correspond-
ing eigenvector V . Therefore, as the solution to Eq. (4), the
global distinctness S = V maximises the overall distinct-
ness G(S) and essentially suggests whether a local distinc-
tion is globally important or not. We then shift V to have a
zero mean so that a positive value means enhancement and
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Fig. 4: Global saliency ajustment where warm colours denote high saliency. (a) The local saliency map I; (b) The output
saliency map with the popular nonlinear suppression method [13,19] applied; (c) The final saliency map S with the global
saliency adjustment applied where α = 0.005; (d) The difference map (Diff = (S−I)/I) between the saliency map shown
in (c) and the local saliency map; (e) The final saliency map with the global saliency adjustment applied where α = 0.03; (f)
The difference map between the saliency map shown in (e) and the local saliency map.

a negative one means suppression. This gives a clue to per-
form a global saliency adjustment for all mesh vertices.

4.2 Global saliency adjustment based on global distinctness

S only assigns the global distinctness scores to the nf fea-
ture points. To propagate it to each mesh vertex, an interpo-
lation scheme is needed. Although some other interpolation
schemes might also work, considering that we have already
computed the feature neighbourhood of each feature point,
we simply calculate the global distinctness of any point pi
as a Gaussian of that of the feature point it associates with.

S(pi) =
S(pk) exp(−‖pi − pk‖2 /(c ·B))

(
∑

pi∈N ‖pi − pk‖ / |N |)
2

(6)

where pi is a mesh vertex within the feature neighbourhood
N of a feature point pk and |N | denotes the number of ver-
tices in N . S(pk) is the global distinctness of pk computed
using the method described above. c · B is a normalisa-
tion constant where B is the length of the diagonal of the
bounding box of the mesh and we set c = 0.01 in our ex-
periments. To fuse different saliency cues, linear summation
[13] and point-wise multiplication (also known as the ma-
trix Hadamard product) [18] are two popular approaches.
We perform the global saliency adjustment for each mesh
vertex p as a linear sum

S(p) = I(p) + αS(p) (7)

where I(p) is the local salieny map and α is a weighting
parameter which balances S(p) and I(p) numerically. It is
possible that a vertex does not belong to the neighbourhood
of any feature point. In this case its global distinctness S(p)
is 0, which means no global adjustment is applied on it. For

a vertex within the neighbourhoods of several feature points,
its global distinctness is the distance weighted average of the
Gaussians computed by Eq. (6).

Figure 4 shows the effect of our global saliency adjust-
ment. In the local saliency map shown in (a), the head of
the human model is not that salient compared with the feet
and hands. This is a common problem for many other mesh
saliency methods [19,30,32] where the tip of a long and thin
protrusion has disproportionally high saliency. However, the
research in [3] shows that the head or facial region of human
should also be salient. Compared to the popular nonlinear
suppression [13,19] which visually does not make a signifi-
cant change as shown in (b), our global saliency adjustment
significantly enhances the head and suppresses the feet and
hands as shown in (c)–(f).

5 Experimental results

In this section, we show experimental results produced by
our method and perform both qualitative and quantitative
evaluations.

Fig. 4 shows the impact of the local-to-global weighting
parameter α. It can be seen that in (e) and (f), a large α
can overturn local saliency such as the hands and feet of the
human model while a small α will make the global saliency
adjustment pointless. Usually, the larger the sheer size of the
mesh (thus the smaller the global distinctness according to
Eq. (6)), the larger the α. In our experiments, we set α =

0.005 for the 400 SHREC 2007 watertight meshes as their
sizes do not vary too much. We do not remove α from our
algorithm by first normalising input meshes to have a unit
size since in some cases it has an advantage of flexibility.
It can be set with the prior knowledge and produce various
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Fig. 5: Our method is insensitive to mesh simplification. Left: the saliency of the Lucy model with 60K triangles; Right: the
saliency of the Lucy model with 30K triangles. The model is courtesy of the Stanford 3D Scanning Repository.

saliency as required by applications. For instance, in mesh
simplification a smaller α might be desired for preserving
local details while in the application of selecting best views,
a larger α is typically suitable since the view should show
globally distinct features.

Fig. 5 demonstrates that our method is not sensitive to
mesh simplification, which is consistent with the definition
of mesh saliency (i.e., saliency is regional rather than point-
wise as proposed in [19]). This also suggests that our method
is insensitive to small local noise, varying sampling and tri-
angulation changes although our local saliency detection is
based on Laplacian.

We employ the graph Laplacian other than the widely
used cotangent for computing the stocastic Laplacian be-
cause we find that it benefits the detection of salient features.
Fig. 6 shows the saliency maps produced by using cotangent
Laplacian. The largest angle in an ill-shaped triangle has a
negative cotangent but with a large absolute value. Since we
need to compute the absolute values of the elements of the
Laplacian to transfer it to a stochastic matrix, it can be ob-
served that the cotangent Laplacian leads to high saliency
values on ill-shaped triangles in Fig. 6. Our method is more
meaningful in terms of according with salient features since
usually most meshes retain more vertices around features
(e.g., shape extremities). We also observed that the cotan-
gent Laplacian is not so efficient as the graph Laplacian.

5.1 Qualitative evaluation

We tested our method on the watertight models of SHREC
2007 containing the same 400 meshes as used in [3]. Fig. 7
shows a gallery of our saliency detection results produced by
using the same parameter setting together with correspond-
ing pseudo ground truths provided by [3]. As can be seen,
our results are largely consistent with the ground truths.

We next compare our method with the state of the arts.
Fig. 8 compares our results with those from [3,32,19,21,
30]. The OutClass regression approach [3] fails to mark cer-
tain important features such as the eyes of the girl mesh. It
also undesirably highlights the bottom edges of the girl bust

Fig. 6: The cotangent Laplacian is sensitive to ill-shaped tri-
angles when computing mesh saliency where warm colour
denotes high saliency.

and the neck of the Igea model. Similar appearance can be
observed on the saliency maps produced by [32]. In general,
it seems that their method prefers some local sharp edges
such as the bottom edges of the girl bust and the neck of
the Igea, the wings of the bird, the belly of the dolphin and
the contour of the teddy. In comparison, our method makes
a better balance between local sharp features and globally
salient features. For example, the head of the human model
is not locally sharp and thus is not captured by [32]. But it
is highlighted by our method since it is globally important.
Since our results are less influenced by local changes in cur-
vature when they happen frequently, our method achieves
a better regional consistency and detects large and continu-
ous salient and non-salient regions. For instance, the facial
regions of the girl bust and the Igea are considered salient
by our algorithm, whereas saliency is indicated in a rather
disjointed manner by [19]. Our method detects saliency in
a more coherent manner. Compared with the method pro-
posed in [21], our method better localise the eyes of the girl
and the Igea. Note that when looking at scenes that include
faces, humans have a fundamental bias to consider eyes [14,
26]. We also compares our results with those of [30]. For
the chair model, the competing method detects asymmet-
ric saliency for the front and back legs while such asymme-
tries do not exist in the ground truth data (a similar chair
can be found in Fig. 7). The teddy bear shows more inter-



Local-to-Global Mesh Saliency 9

Fig. 7: A gallery of mesh saliency where warm color denotes high saliency. Above: results computed by our method. Below:
corresponding pseudo ground truths provided in [3]. These models are courtesy of the Watertight Models of SHREC 2007.

esting results. Our method detects the central regions of the
face and the body which are consistent with the ground truth
(a similar teddy bear can be found in the middle of Fig. 7)
while the competing method completely misses them. And
the HKS-based method [31] only captures shape local fea-
tures or some long protrusions while missing some globally
important regions such as the facial regions of the girl and
the heads of the horse and the human.

5.2 Quantitative evaluation

We perform quantitative evaluation on the 400 SHREC 2007
watertight models where the ground truths are the Schelling
distributions provided by [3].

Based on the results of our work and previous meth-
ods, we observed that saliency detection methods seemingly
favour some particular classes of objects. Also, due to the
varying number of vertices that each mesh contains, a per-
mesh error metric could be biased. Thus instead of a per-
mesh saliency error which is less reliable and could be highly
inconsistent, our evaluation is performed by calculating the
per-class Saliency Error defined as below:

SEC =
1

NC

NC∑
n=1

|S(n)− Sgt(n)|, C = 1, 2, ..., 20 (8)

where C represents one of the 20 object classes and NC

denotes total number of vertices of all 20 meshes in the
class C. S(n) denotes the normalised saliency value of ver-
tex n computed by a competing method and Sgt is the nor-
malised Schelling distribution value of vertex n regarded as
its ground truth saliency.

Although Saliency Error is quite intuitive, to make our
evaluation less biased, we employ another popular measure
which is statistically independent of Saliency Error. We com-
pare the competing methods via Similarity, a popular metric
for evaluating 2D-image saliency detectors [1]. This mea-
sure is also called Histogram Intersection [20]. Given two
normalised saliency maps S1(n) and S2(n) containing the
same number of vertices (or pixels for 2D-images) N , their
Similarity, or Histogram Intersection is computed as

SL(S1(n),S2(n)) =
N∑

n=1

min(S1(n),S2(n)). (9)

The larger the value of the Similarity, the more similar the
two maps are deemed to be. So we compute the Similarity
between the saliency map of a mesh computed by a compet-
ing method and the ground truth saliency map of that mesh.
Then to deliver the per-class Similarity (with regard to the
ground truth), we calculate the mean Similarity for the 20
meshes within the same class.

Ablation study. In order to examine the importance of
the global saliency adjustment and demonstrate that it is the
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Fig. 8: Saliency detected by our method (first row) and the competing methods including (from the second row to the seventh
row) [3], [32], [19], [21], [30] and [31]. Warm colors denote high saliency. These models are courtesy of the Watertight
Models of SHREC 2007.

vital factor causing significant improvement, we conduct an
ablation study where we ablate the global saliency term in
Eq. (7) and only retain the local mesh saliency I(p). We then
regard the local mesh saliency as an independent method
and evaluate it against other competing methods as well in
Figs. 9 and 10.

Figs. 9 and 10 show the comparisons of several state-of-
the-art saliency detection methods based on Saliency Error
and Similarity with regard to the ground truth data. One in-
tuitive finding is that the two graphs roughly complement
one another: the peaks in Fig. 9 roughly correspond to the
troughs in Fig. 10 and vice versa. This means that the two
metrics generate consistent evaluations. Second, we can see
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Fig. 9: Evaluation of different methods via Saliency Error: Hou [11], Lee [19], Song [30], Lefiman [21], Tao [32], Sun [31],
our local mesh saliency (without global saliency adjustment) and our method (with global saliency adjustment).

Fig. 10: Evaluation of different methods via Similarity: Hou [11], Lee [19], Song [30], Lefiman [21], Tao [32], Sun [31], our
local mesh saliency (without global saliency adjustment) and our method (with global saliency adjustment).

that different methods perform consistently over the 20 classes
of meshes. For example, they all perform quite well on the
Armadillo and bust objects while glasses, plier and bearing
are the most challenging classes to all of them. It demon-
strates our observation that most saliency detection methods
favour some particular classes of objects and implies the
reason that Armadillo and bust objects are widely used in
the experiments of these methods. This is because both Ar-
madillo and bust objects have clear and well-defined salient
features such as feet, hands, eyes, nose, mouth and ears. But
in contrast, for the objects of glasses, plier and bearing, the
concept of saliency is ill-defined or even invalid since even
human subjects can hardly tell which parts are salient on

these objects. Third, we found that Lee’s method [19] and
our local mesh saliency without any global saliency adjust-
ment have the poorest performance. Different from other
methods where more or less global or high-level cues are
considered, Lee’s method relies only on local cues such as
curvature and local neighbourhood determined directly by
Euclidean distance. The ablation study shows that the global
saliency adjustment proposed in this paper really boosts the
performance of saliency detection. This suggests that for
mesh saliency detection, the consideration of some kind of
global information generally helps. Finally, it can be seen
that our method has the best performance in each evaluation
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in most classes with roughly 20% improvement to the state
of the arts.

All experiments were implemented on a computer with
a quad core 3.6GHz i7 CPU and 32GB RAM. The slowest
component of our method is the local saliency computation.
For instance, for the girl model in Fig. 1 containing 15.5K
vertices, computing the local saliency costs 14.5 seconds,
the local-to-global pooling costs 3.4s and the global saliency
adjustment costs only 0.5s. Since our method is insensitive
to simplification as demonstrated in Fig. 5, for meshes con-
taining millions of vertices, we can always compute saliency
using the simplified mesh and use the mapping scheme in
[30] to output a saliency map for the original input mesh.

6 Conclusions

We have presented a new method for detecting mesh saliency.
It is composed of three steps: local saliency computation,
local-to-global pooling and global saliency adjustment. When
we design the algorithm for computing local mesh saliency,
we also consider how it can facilitate the following compu-
tation based on global cues and how they can be integrated
effectively in a local-to-global scheme. It is worth noting
that besides global distinctness, there are also other compu-
tational global cues that could benefit saliency detection. For
instance, [21] investigated whether a mesh is ‘limb-like’ or
not; [8] concentrated on finding the base of an object. There
is also a large amount of work on symmetry within 3D ob-
jects which can provide cues for computing global saliency.
As a limitation of this work, we only formulate a single cue
although it is potentially the most dominant one [34,16].
As a result, for some classes of objects, our method fails
to generate appealing outcomes. For instance, according to
the quantitative evaluation, glasses and plier are the most
challenging classes for most mesh saliency methods includ-
ing ours. And Fig. 11 shows failed examples of our saliency
detection on the two classes of objects. In these cases, the
most important global cue is the ‘segment centeredness’ [3].
If the mesh saliency method does not include any scheme to
capture this particular cue, it is likely to fail on these objects.

However, a challenge for considering various global cues
is that most of these cues are computed through completely
different schemes. Therefore, it can be foreseen that an in-
teresting direction of future research is to devise a scheme
which can benefit the computation of several cues. It will
also cause another problem: how to balance and integrate
different local and global cues within the same scheme. In
this work, we empirically set the local-to-global weighting
parameter since the integration is just a simple summation.
It can be expected that when more cues are involved, the
integration model will be more complicated and cannot be
sorted empirically. [28] explored the impacts of different at-
tributes and the combination model for best view selection

Fig. 11: Failed cases of our mesh saliency detection. Left:
our results; Right: the ground truth

in a data-driven manner. We believe that similar research can
also be conducted for mesh saliency in the near future.
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