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Abstract 

The Anthropocene is proposed as a new interval of geological time in which human influence on 

Earth and its geological record dominates over natural processes.  A major challenge in demarcating 

the Anthropocene is that the balance between human-influenced and natural processes varies over 

spatial and temporal scales owing to the inherent variability of both human activities (as associated 

with culture and modes of development) and natural drivers (e.g. tectonic activity and sea level 

variation).  Against this backdrop, we consider how geomorphology might contribute towards the 

Anthropocene debate focussing on human impact on aeolian, fluvial, cryospheric and coastal 

process domains, and how evidence of this impact is preserved in landforms and sedimentary 

records.  We also consider the evidence for an explicitly anthropogenic geomorphology that includes 

artificial slopes and other human-created landforms.  This provides the basis for discussing the 

theoretical and practical contributions that geomorphology can make to defining an Anthropocene 

stratigraphy.  It is clear that the relevance of the Anthropocene concept varies considerably amongst 

different branches of geomorphology, depending on the history of human actions in different 

process domains.  For example, evidence of human dominance is more widespread in fluvial and 

coastal records than in aeolian and cryospheric records, so geomorphologically the Anthropocene 

would inevitably comprise a highly diachronous lower boundary.  Even to identify this lower 

boundary, research would need to focus on the disambiguation of human effects on 

geomorphological and sedimentological signatures.  This would require robust data, derived from a 

combination of modelling and new empirical work rather than an arbitrary ‘war of possible 

boundaries’ associated with convenient, but disputed, `golden spikes’.  Rather than being drawn into 

stratigraphical debates, the primary concern of geomorphology should be with the investigation of 
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processes and landform development, so providing the underpinning science for the study of this 

time of critical geological transition. 

 

Keywords: aeolian, anthropogenic, coastal, cryosphere, fluvial, stratigraphy 
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Introduction 

The Anthropocene has been proposed as a new interval of geological time to account for the 

‘dominant’ or ‘overwhelming’ influence of human activities on the Earth’s surface and its geological 

record (Crutzen, 2002; Waters et al., 2016).  As geomorphology is concerned with understanding 

Earth surface processes and landforms it cannot logically avoid engagement with the Anthropocene 

debate (Brown et al., 2013a).  Indeed, from the 19
th

 Century onwards, both physical geography and 

geology have addressed human impacts on the Earth’s surface (e.g. Marsh, 1874; Gilbert, 1877; 

Happ et al., 1940; Hooke, 1994; Church, 2010).  This position paper builds on initial considerations by 

the British Society for Geomorphology’s Anthropocene Fixed Term Working Group, which outlined 

the role of geomorphology in the Anthropocene debate (Brown et al., 2013a), whilst also drawing on 

similar discussions in allied fields such as Quaternary Science (Gale and Hoare, 2012) and in biology 

(Caro et al., 2011). 

Although it can be argued that “wilderness has effectively gone” (Wohl, 2013, p.4), human 

impact on the terrestrial environment has varied, and continues to vary, in nature (e.g. directly, 

indirectly), intensity and duration.  This variable impact is highly relevant for key elements of the 

Anthropocene debate such as the lower boundary problem (Brown et al., 2013a).  If we recognise 

that human activities now dominate over natural processes over the vast majority of the Earth’s 

surface, just when did this dominance start and so usher in a new geological interval (Lewis and 

Maslin, 2015; Waters et al., 2016)?  In answering this question, even a selective consideration of 

geomorphic environments would pose related theoretical and methodological challenges, namely 

defining what we mean by human dominance in geomorphology (sensu Crutzen, 2002) and then 

measuring the relative geomorphic role of humans in recent Earth history.  Addressing such 

challenges, however, is central to defining a role for geomorphology in debates over the credibility 

and practicality of recognising the Anthropocene as a new interval of geological time. 

The Anthropocene debate contains strong elements of a human-nature dichotomy.  The idea 

of demarcating an interval of geological time - of whatever rank (e.g. Era, Period, Epoch, Stage) - 

during which human actions have been dominant, implies that in earlier intervals Earth surface 

processes can be seen as ‘natural’ with little or no human impact.  This human-nature dichotomy has 

been questioned, both in the social and physical sciences (Rhoads and Thorn, 1996), but what is not 

disputed is that first-order processes that underlie geomorphology are external to human actions 

(Church, 2010).  In short, humans operate within the laws of physics, from which fundamental 

geological principles are derived (e.g. superposition, isostasy).  Nonetheless, human activities (e.g. 

mountain top removal, reservoir construction) can significantly affect the operation of some 

fundamental autogenic geological processes (e.g. neotectonic movements and seismic activity).  

More commonly, human activities alter the boundary conditions of second-order (or mixed) 

processes (e.g. sediment erosion, transport and deposition).  This impacts on the trajectories and 

rates of process-response systems through effects on connectivity, inequality and thresholds (tipping 

points, nonlinearity) of matter and energy fluxes (Haff, 2010; Wainwright et al., 2011; Wohl, 2013). 

Against this background, this paper has five main aims.  First, we describe approaches to 

defining ‘dominant’ or ‘overwhelming’ human impact.  Second, we sample geomorphological studies 

across four key second-order process domains (aeolian, fluvial, cryospheric, coastal) to address the 

nature, magnitude, diachrony, longevity and preservability of human impacts on landforms, 

sediments and stratigraphy.  Third, we consider a selection of anthropogenic landforms, namely 

those created as a direct and commonly deliberate result of human activities.  Fourth, we address 

the contribution of geomorphology to stratigraphic debates about an Anthropocene.  Finally, we 

draw attention to other geomorphologically-relevant topics that have emerged during the 

Anthropocene debate, including the reciprocal effect of anthropogenic landforms on second-order 

processes, and the implications for differentiating between human and natural forcing.  Many of 

these topics have not yet been regarded as high priority by the geomorphological or wider 

geoscience community but arguably are going to be of increasing importance in future. 
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Defining Dominant or Overwhelming Impact 

The formal recognition of the Anthropocene is contingent on being able to identify an undisputed 

dominant, or overwhelming, impact of human actions on second order processes.  This requires a 

workable distinction between human and non-human process or mass transport dominance.  For 

geomorphology, ‘dominant’ must imply humans are the most influential driving factors (over 50% 

outcome determination), whereas ‘overwhelming’ might be considered as higher (at least 95% 

outcome determination).  In practice, this distinction has always been difficult to establish, and in 

many instances may be impossible.  One approach is to concentrate on humans as stressors, which 

in essence is what the global atmospheric modification argument is predicated upon (Hulme, 2009).  

This is more difficult in geomorphology, although attempts have been made using global estimates 

of surface mass action (Haff, 2010).  Although this approach has limitations, such as having no 

boundaries with socio-economic systems (e.g. oil transportation) and not necessarily being related 

to geomorphological features, it can indicate process dominance in key sub-systems, the most 

obvious of which is soil (cf. the critical zone).  If we make the reasonable assumption that in all soils 

under cultivation, bioturbation is dominated by direct human actions (e.g. through tillage), and that 

in pasture lands bioturbation is indirectly influenced by human actions (e.g. through grazing 

practices, use of fertilizers, and associated changes in soil fauna), then we can estimate the 

minimum area of the Earth’s land surface where human activity dominates soil processes.  Using 

world agricultural land estimates, this would give human dominance over at least 38% of the Earth’s 

ice-free terrestrial surface.  In urban areas, bioturbation is suppressed by human activity, so the total 

figure rises to 45% of the ice-free terrestrial surface (Hooke, 2012).  Based on similar estimates, 

several geomorphologists have tried to compute anthropogenic soil transport rates by taking the 

difference between natural (i.e. geological) and agricultural estimates of soil erosion rates (Hooke, 

2000; B. Wilkinson, 2005; Montgomery, 2007).  Whilst this latter approach is the most obvious for 

quantitative partitioning of natural and human contributions to erosion and sediment transport, it 

requires comparative data and involves several assumptions.  Several methods have been used to 

estimate natural rates (Table 1) and all have their limitations, so that even for climatically-

comparable areas, calculated rates vary by at least one order of magnitude.  This variability is 

because the range of methods used to calculate rates typically do not measure the same ‘events’; 

for instance, denudation rate estimates from a long-lived cosmogenic isotope are significantly 

different in both temporal and spatial scale from erosion rate estimates made from naturally 

vegetated plots on a slope.  Furthermore, ‘within method’ estimates also vary considerably due to 

differences in soils and vegetation (Kosmas et al., 1996; Wainwright and Thornes, 2004).  For 

example, even the estimates derived just from cosmogenic isotopes used by Montgomery (2007) 

vary by over one order of magnitude (0.001-0.034 mm yr
-1

), and as more basin-outlet studies have 

been undertaken, this variance has increased (Brown, 2016). 

There is also an embedded assumption of equilibrium with climate, an assumption that is 

increasingly being questioned and that in many ways is at odds with the nature of geomorphology in 

the putative Anthropocene (Bracken and Wainwright, 2006; Hoffmann et al., 2010).  Below, we 

consider the case for an Anthropocene in more detail for various process domains. 

 

Second-Order Process Domains 

We have divided the terrestrial Earth system into aeolian, fluvial, cryospheric and coastal domains in 

order to examine human impacts at the second-order level.  This division does not imply that these 

are the only, or even the most, anthropogenically-sensitive process domains (others might include 

weathering, hillslope or karstic systems), only that they are major subdisciplines of 

geomorphological research. 
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Aeolian process domain 

Human activity primarily affects aeolian processes by directly or indirectly changing the erodibility of 

sediments that are suitable for wind transport or by altering aeolian sediment budgets.  One of the 

most commonly cited causes of increased aeolian surface erodibility is vegetation cover reduction 

resulting from agricultural or pastoral activities.  In China, these activities are widely cited as 

increasing dust flux (Li et al., 2009; Wang et al., 2013), with agricultural practices estimated to have 

increased wind erosion rates by two to five times background levels (Shia et al., 2004).  

Nevertheless, the drylands that are most prone to anthropogenically-enhanced aeolian activity are 

also prone to marked climatic variability, which itself contributes to natural vegetation cover 

changes and to consequent temporal and spatial variations in aeolian activity.  Remote sensing has 

been employed, however, to distinguish natural (climatically-induced) variability in bare surfaces in 

aeolian landscapes from those enhanced by agriculture, as the latter tend to persist through wetter 

years (Thomas and Leason, 2005).  Remote sensing techniques can also be used to distinguish 

anthropogenic sources of dust (Hahnenberger and Nicoll, 2014). 

It is also possible to monitor the impact of human activities on the morphology and 

dynamics of continental dune systems that are a legacy of periods of drier and windier conditions 

earlier in the Quaternary.  Today, these dunes tend to be stabilised by vegetation cover but remain 

vulnerable to anthropogenic disturbances (Barchyn and Hugenholtz, 2013).  Intermittent late 

Holocene dune mobilisation in the northwestern Negev Desert has been linked to various human 

activities that have reduced vegetation cover and disturbed biogenic soil crusts.  The resulting 

increases in surface erodibility have triggered changes to dune morphology, including planform 

realignment and increased height (Tsoar and Møller, 1986).  These changes have in turn facilitated 

short-term increases in wind power to trigger major dune mobilisation events (Roskin et al., 2013).  

There are also model-based analyses that hypothesise reactivation of presently stable dunefields 

under anthropogenically-influenced warmer future climates (Thomas et al., 2005; Ashkenazy et al., 

2012).  Even away from desert and semi-desert regions, there is evidence of past human activity 

affecting stabilised dunefields by changing vegetation cover; for example, Mauz et al. (2005) 

ascribed multiple late Holocene reactivations of dunefields in Schleswig-Holstein, Germany, to 

anthropogenic activity. 

There are instances where aeolian activity can decrease when human activity reduces 

sediment supply.  For instance, the connectivity between fluvial (supply) and aeolian (accumulation) 

sedimentary systems may be disrupted, as demonstrated by Draut (2012) in dunefields adjacent to 

the Colorado River, southwest USA.  Here, dam construction has decoupled dunes from fluvial sand 

supply, resulting in dune surfaces developing biogenic soil crusts and greater biomass, and leading to 

less aeolian sand transport.  The proportion of active aeolian sands is substantially lower in heavily 

regulated river reaches than in less regulated reaches with otherwise similar environmental 

conditions (Draut, 2012). 

Widespread human modification of the aeolian process domain does not necessarily mean 

that anthropogenic signatures can be identifed in aeolian landforms and sedimentary records, as 

resultant sedimentary units are rarely distinguishable from their natural counterparts, and may be 

very dispersed in the landscape.  Nevertheless, anthropogenically-enhanced aeolian activity has 

been proposed as an explanation for step-changes in dust deposition rates recorded in marine, ice, 

lake and peat cores, including in Greenland (Sandgren and Fredskild, 1991), USA (Neff et al., 2008), 

off the coast of north Africa (Mulitza et al., 2010), Australia (Marx et al., 2014) and Antarctica 

(McConnell et al., 2007).  The timing of increased deposition rates varies in association with the 

spatially-specific human causation.  For example, Atlantic marine core records suggest wind erosion 

in the Sahel increased fivefold since the onset of agricultural irrigation in the 1700s (Mulitza et al., 

2010) but in southwestern Colorado, USA, lacustrine dust deposition increases from <150 g m
-2

 yr
-1

 

to >400 g m
-2

 yr
-1

 are attributed as a response to the expansion of livestock grazing in the mid 1800s 

(Neff et al., 2008).  In some instances, local, ‘on site’ aeolian deposition is attributed to human 

disturbance.  In the Free State, South Africa, unconformable sand cappings on stable dunes, field-
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boundary dunes and buried boundary fences have been associated with the establishment of 

permanent farm units by European farmers in the 1880s (Holmes et al., 2012). 

In some regions, anthropogenic impacts on aeolian processes are now being reduced.  In 

Australia, soil conservation measures have reduced dust deposition rates to pre-anthropogenic 

levels (Marx et al., 2014; Figure 1).  However, the failure of the (probably over-) ambitious Green 

Dam project in Algeria (Ballais, 1994), which involved large scale afforestation of landscapes 

vulnerable to aeolian erosion, highlights our lack of skill in attempting to control aeolian processes 

(Benazzouz and Boureboune, 2009).  More promisingly, systematic monitoring of aeolian dynamics 

in agricultural fields in South Africa has led to simple changes in agricultural practices being 

proposed that could significantly reduce wind erosion (Wiggs and Holmes, 2011) although modelled 

predictions of future changes in wind power and moisture availability may more than negate the 

benefits of such action.  Given the unconstrained nature of aeolian sediment movement when 

compared to fluvial systems, and the complex, sometimes nonlinear, interactions between 

atmospheric and surface parameters that generate or limit aeolian processes, identifying 

anthropogenic impacts on aeolian landforms and sediments remains challenging. 

 

Fluvial process domain 

Human activity can influence fluvial processes indirectly through land-use changes that modify flow 

discharge, sediment loads and river system connectivity (Notebaert et al., 2011; Fryirs, 2013) or 

directly through mining activities and various forms of river management (Hudson et al., 2008).  The 

latter include within-channel constructions (e.g. dams, weirs) that modify river long profiles and 

create anthropogenic sediment sinks (Syvitski et al., 2005; Walter and Merritts, 2008) as well as 

floodplain structures (e.g. levées) that impede channel-floodplain connectivity (Hudson et al., 2008).  

Since Leopold and Miller (1954) outlined palaeohydrological research as a means of elucidating 

human agency in soil erosion problems, various approaches have been employed to quantify the 

magnitude, patterns, rates and timing of anthropogenic changes to the fluvial process domain 

(Thorndycraft, 2013).  Approaches include: i) documenting changes to spatial patterns and rates of 

key fluvial processes such as avulsion (Tooth et al., 2009); ii) identifying and dating stratigraphic 

markers of human impact, such as sedimentological changes in floodplains (Walter and Merritts, 

2008) or lakes (Dearing and Jones, 2003), the presence of inter-stratified cultural material (Brown, 

1997), mineral or element changes (Hudson-Edwards et al., 1999), and palaeoecological 

biostratigraphic markers (e.g. Brown, 1988); iii) quantifying long-term sediment fluxes through 

sediment budget approaches (Brown et al., 2009), cosmogenic nuclide studies (Wittmann et al., 

2011), or global scale models (Syvitski et al., 2005); and iv) modelling catchment scale river response 

using landscape evolution (e.g. Coulthard and Van De Wiel, 2012) or hydrological models (e.g. 

Notebaert et al., 2011). 

These approaches show that human impacts may either increase or decrease fluvial activity.  

Globally, however, some floodplains possess stratigraphic units attributable to anthropogenically-

enhanced soil erosion, principally overbank loams that host archaeological remains (Brown, 1997) 

(Figure 2).  A similar anthropogenic stratigraphy may also be recorded in lake sediment archives 

(Dearing and Jones, 2003), possibly in association with anthropogenic geochemical (Boyle et al., 

2015a) or even DNA signatures (Taberlet et al., 2007).  In extensively studied regions such as 

northwest Europe, the Mediterranean and North America, such floodplain and lake stratigraphic 

markers are diachronous, the timing of anthropogenic increases in soil erosion being dependent on 

the regional history of deforestation and agriculture.  In addition, human impact on floodplain 

ecosystems can be reconstructed using palaeoecological evidence from alluvial peats (Brayshay and 

Dinnin, 1999).  For example, many pollen stratigraphies reveal anthropogenic deforestation signals, 

again showing diachronous timing of human impact, even within the same river catchment (Brown, 

1988). 

Considering human impact on fluvial activity at the global scale, Syvitski et al. (2003) 

outlined a relief-area-temperature model to predict sediment flux to oceans.  For 75% of 320 river 
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catchments, modelled fluxes were within a factor of two of the observed data.  Modelled fluxes, 

however, were overestimated where major reservoir storage reduced sediment loads (e.g. Tagus 

River, Portugal) and underestimated in some areas of anthropogenic soil erosion (e.g. Huang River, 

China), most commonly in smaller catchments where the anthropogenic impact was magnified.  

Applying the model to 4464 river catchments across the globe with drainage areas >100 km
2
, it was 

found that the net balance was a 1.4 Bt yr
-1

 reduction in sediment flux to the oceans due to reservoir 

sediment retention, despite increased anthropogenic soil erosion (Syvitski et al., 2005).  By 

simplifying processes to enable global scale modelling, however, such approaches may not 

accurately represent the role of sediment storage.  Using digital topographic data and an empirical 

volume-area scaling of valley fills, Blöthe and Korup (2013) quantified the sediment stored in over 38 

000 Himalayan valley fills, and found millennial-scale time lags in the sediment routing systems of 

the Brahmaputra and Ganges, rivers that deliver ~10
3
 Mt yr

-1
 to the ocean.  Such storage can 

complicate the attribution of climate or seismic controls to sedimentary records (Blöthe and Korup, 

2013) and, by extension, the attribution of human activity.  Based on cosmogenic nuclide-derived 

sediment fluxes, a sediment storage buffering capacity has also been noted in the Amazon basin 

(Wittmann et al., 2011).  Sediment production in the Andes was the same as the sediment delivery 

to the ocean, suggesting little change in sediment flux over recent millennia and implying that 

potential human impact on this flux was limited due to the large scale of the Amazon system 

(Wittmann et al., 2011). 

Some studies have focused more explicitly on the profound, often highly visible, changes to 

fluvial process and form resulting from mining.  Mining may involve many catchment hydrological 

and sediment supply changes as a consequence of deforestation, road construction, and river 

diversion (Mossa and James, 2013).  Ever since Gilbert’s (1917) pioneering studies, geomorphologists 

have used mining-impacted rivers as an outdoor laboratory for studying the major, commonly 

abrupt, changes to channel form resulting from sediment supply increases, including in California 

(James, 2004, 2005, 2013; Singer et al., 2013) and Australia (Knighton, 1989, Pickup et al., 1987; 

Erskine and Saynor, 2000).  Lakes within fluvial catchments affected by mining also may preserve 

evidence of increases in sediment flux and contaminant delivery (Boyle et al., 2015b).  A range of 

other human activities such as irrigation and navigation also can result in profound changes to fluvial 

processes and forms, particularly through radically altering channel-floodplain connectivity.  For 

example, in a multi-faceted review, Lewin (2013) showed how many British floodplains have been 

genetically transformed through four phases of human activity over the last 400 years. 

From these case studies, it is clear that, with the exception of heavily-modified catchments, 

the relative magnitude of human impact on the fluvial process domain is dependent on catchment 

scale, tectonic activity and relief, and susceptibility to erosion.  The anthropogenic signal may be 

more clearly defined in small- to medium-sized catchments draining, for example, highly erodible 

loessic landscapes (e.g. Notebaert et al., 2011).  The signal may be less clear in large catchments 

such as the Ganges and Brahmaputra that are subject to active tectonic activity and high sediment 

supply, and characterised by accommodation space for medium term sediment storage, subsequent 

erosion of which can nourish sediment flux for millennia (Blöthe and Korup, 2013).  The complexities 

of the processing of human impacts through the fluvial system to alluvial sedimentary records are 

illustrated in Figure 3 and it is this complexity that renders simplistic approaches to human 

attribution (e.g. sediment delivery ratio) as unreliable (Parsons et al., 2006a).  While human activity 

can be seen to influence all four areas of the fluvial system (Figure 3), the magnitude, patterns, 

timing and rates of these impacts and the recognition of anthropogenic markers in landforms and 

sediments are dependent on catchment characteristics and exhibit large spatial and temporal 

variability. 
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Cryospheric process domain 

At a global scale, net loss of ice is already happening (Vaughan et al., 2013) and is highly likely to 

continue in a warming world (Kirtman et al., 2013).  Ice sheets, glaciers and permafrost respond 

principally to climate, but given the now well-established anthropogenic influence on global 

warming, this cryospheric response potentially might be regarded as a global-scale manifestation of 

an Anthropocene. 

The majority of the world’s monitored glaciers have retreated and lost mass during the 20th 

Century, with deglaciation increasing since the 1960s (WGMS, 2008; Vaughan et al., 2013).  The 

geomorphological imprint of such rapid deglaciation includes both near-field and far-field effects.  In 

ice-proximal settings, ice-marginal retreat and declining ice volume lead to exposure of new terrain 

and extension of proglacial systems (Evans, 2003), thereby encompassing a variety of landforms and 

sediments.  There are also associated changes in paraglacial processes (Ballantyne, 2002).  Farther 

afield, there are changes to river hydrology, and implications for the coastal zone in terms of 

changing sediment supply and sea level rise (WGMS, 2008). 

Deperiglaciation is also significantly affecting many areas rich in ground ice (permafrost).  In 

high latitudes, thawing of permafrost (thermokarst) can be initiated, retarded or counteracted by 

numerous factors operating on local to regional scales: from local damage to the vegetation or 

organic layer, to regional increases in snow cover or mean annual temperature (Table 2).  Human 

activities can affect these factors, both directly and indirectly, but can be hard to separate from 

natural drivers.  For instance, disturbances that initiate thermokarst activity are often compound and 

interactive, such as where a boreal forest fire – either natural wildfire or anthropogenic fire – 

initiates active layer deepening and thermokarst subsidence by destroying the shading effect of the 

vegetation canopy, reducing heat loss from evapotranspiration, and lowering surface albedo (Kokelj 

and Jorgensen, 2013).  There is clear evidence that thermokarst activity during the last 100-150 

years has spread and intensified as result of multiple causes (Murton, 2009) but if global warming 

continues, thermokarst activity is likely to intensify and spread farther during this century (e.g. see 

projections of future permafrost extent in Vaughan et al., 2011; Lawrence et al., 2012; Koven et al., 

2013).  In lower latitude but mountainous regions, there is also evidence of recent increased 

periglacial activity.  As ground ice warms, it softens, accelerating creep in rock glaciers and talus, and 

weakening ice-filled joints in rockwalls (Davies et al., 2001; Haeberli et al., 2010).  Potentially, this 

can destabilise rock slopes and enhance mass movement (Krautblatter et al., 2013). 

Viewed in the context of Quaternary ice extent, however, recent rapid deglaciation and 

deperiglaciation are not unprecedented.  For instance, rapid and widespread deglaciation occurred 

at the end of every previous glacial, and although ice extents are difficult to gauge during previous 

warm intervals in the Holocene, in parts of the world (e.g. Alps, Scandinavia, Altai) there is evidence 

for more restricted ice extent than at present (Masson-Delmotte et al., 2013).  Similarly, while the 

strongest manifestation of thermokarst activity in the geological record is from the last glacial-

interglacial transition and from the penultimate interglacial (Murton, 2009; Reyes et al., 2012), 

comparison of natural activity rates with recent anthropogenically-influenced rates is extremely 

difficult.  Furthermore, it remains difficult to discern a landform or sediment signature uniquely 

attributable to anthropogenically-influenced cryospheric change.  Hence, despite the clear evidence 

for the contribution of human activities to recent deglaciation and deperiglaciation, it seems 

premature to identify an Anthropocene from landforms or sediments in the cryospheric process 

domain. 

 

Coastal process domain 

Human impact on the coast is arguably more pronounced than for any other part of the Earth 

system.  A significant proportion of the world’s population lives in coastal lowlands (e.g. Small and 

Nicholls, 2003) and this population is growing, especially in the world’s megacities (Sekovski et al., 

2012).  Consequently, the coastal process domain is increasingly impacted, both directly and 

indirectly.  River catchment developments (e.g. reservoir construction) may reduce coastal sediment 
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supply (Syvitski et al., 2005), and coastal engineering and management interventions (e.g. groynes, 

harbour walls, navigation structures, storm surge barriers, dredging, recharge and reclamation) exert 

considerable control over coastal hydrodynamics and, hence, sediment transport.  For instance, 

maintenance dredging for safe navigation is often required to remove sediment from channels that 

would not otherwise be flushed naturally, and locally increases the net sediment budget and 

accretion rates (e.g. Blott et al., 2006).  Indeed, manipulation of hydrodynamics and sediment flux is 

an underpinning principle of both ‘hard’ and ‘soft’ engineering approaches but commonly has led to 

‘down coast’ or ‘downdrift’ problems as humans have been, in essence, interfering with the natural 

redistribution of a limited sediment budget (Bruun, 1995).  This human influence has controlled the 

existence of thresholds, creating geomorphic coastal regime shifts since the mid to late Holocene 

(e.g. Beets and van der Spek, 2000; Cooper et al., 2007; Blum and Roberts, 2009) such as where 

sediment starvation has led to reduced progradation and coastal erosion (e.g. Nile delta: Fornos, 

1995).  Recently, human intervention has tended to move from hard to soft engineering, which may 

involve augmenting and maintaining coastal sediment supply (dredging and beach recharge).  In 

recent years, monitoring of coastal erosion has undergone a revolution owing to the availability of 

high speed high-resolution terrestrial laser scanning (TLS) that is capable of recording cliff faces at 

mm spacing at over 1 million points per second.  TLS has recently been used in a study of cliff erosion 

rates in Druridge Bay, northeast England (Figure 4), where archaeological heritage is being lost due 

to a combination of natural change and sediment starvation caused by erosion protection elsewhere 

along this coast (Lobb and Brown in press). 

Anthropogenic modification of shorelines, either deliberate or otherwise, has a long history.  

Some large delta systems have been able to keep pace (or even exceed) regional sea-level rise and 

coastal subsidence through changes to fluvial sediment supply (Syvitski et al., 1988; Saito et al., 

2001).  Probably the best example is the Ebro delta, Spain, which did not exist prior to the Roman 

period, and so is the creation of a late Holocene, anthropogenically accelerated sediment supply 

(Xing et al., 2014).  Past manipulation of tidal inundation and sedimentation has included intertidal 

wetland ‘reclamation’ and ‘warping’ as well as the Terpen mounds in Zeeland and Friesland, where 

mounds were artificially created to provide flood protection in inhabited coastal lowlands (Charlier 

et al., 2005).  These human interventions differ from the more widespread activity of reclamation 

(land claim cf. Allen, 1987), which involves preventing marine inundation of tidal wetlands by 

construction of embankments, then enabling dewatering and desalinisation of the soil for the 

creation of highly productive lowland agriculture (e.g. the English Fenland or Dutch Zuiderzee).  In 

recent decades, large scale shoreline modifications have led to the emergence of entirely new 

anthropogenic coastal landforms (e.g. Palm Islands, Dubai; Kansai Airport, Japan). 

The sedimentary consequences of these anthropogenic modifications are manifold.  Coastal 

reclamation includes artificial fill of low-lying land, leading to anthropogenic deposits (‘made 

ground’) that overlie natural Holocene sediments (Jordan et al., 2016).  In the Dee estuary, UK, 

navigation works at the head of the estuary caused rapid salt-marsh accretion along the English 

shore, replacing the low-water tidal channel and beach (Marker, 1967).  Also, there is the ‘unseen’ 

legacy of human activities in the form of pre-historical and historical pollution, which can be used to 

reconstruct the diachronous impact of human activities on the world’s coastlines.  Much pollution is 

linked to ore mining and metal production in river catchments (e.g. Allen and Rae, 1986), but coasts 

also have been the main locations for metal and chemical industries (e.g. Plater and Appleby, 2004).  

In Europe, many salt-marsh sediments preserve a record of pollution from the Bronze Age, through 

the Roman and Medieval periods, to the more recent industrial era (e.g. Haslett et al., 1998; Plater 

et al., 1998; Davis et al., 2000; Alfonso et al., 2001; Carretero et al., 2011).  Heavy metals, for 

instance, have been used to define a late Holocene stratigraphy in estuaries such as the River 

Severn, UK (Allen, 1987; Allen and Haslett, 2014).  In other locations, pollen can record catchment 

land-use changes.  In the US, for example, ‘exotic’ taxa in estuarine and lagoonal sediments can be 

linked to ranching, agriculture and logging arising from Mexican and European immigration (Mudie 

and Byrne, 1980; Brush, 1989). 
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Against the backdrop of dramatic eustatic sea level variations during the Quaternary but 

relative stability over the last 8 ka, human activity in the coastal process domain can be 

characterised as changing from process manipulation and consequential (often unintended) changes 

in coastal geomorphology to more direct shaping of coastal sediments and landforms.  Many human 

activities have had a detrimental impact on coastal geomorphology, in some cases leading to 

significant shoreline degradation.  This has worked against actions to artificially supplement coastal 

sediment supply through dredging and beach recharge, without which coastlines would experience 

wider sediment starvation.  This does not bode well for future coastal developments, unless there is 

a managed transition to coastal ecosystems that are better suited to low sediment input and high 

rates of relative sea-level rise (e.g. perimarine wetlands; Plater and Kirby, 2006).  For example, in the 

UK, there are currently several major managed re-alignment schemes that involve the deliberate 

breaching of sea defences to flood areas of coastal lowlands (e.g. Steart Peninsula, southwest 

England, and Medmery, southern England).  In other cases, if present barriers were to be breached, 

they would probably not be re-built, such as was the case at Porlock, southwest England, in 1996 

(Jennings et al., 1998). 

In the coastal process domain, the interactions between natural controls, as exemplified by 

El Niño/La Niño dynamics, and human influences remain poorly understood but are critical to the 

understanding and management of landform dynamics.  Nonetheless, the foregoing case studies 

demonstrate that an anthropogenic signature can be found in landforms and sediments along many 

coastlines worldwide. 

 

Anthropogenic Landforms 

Geomorphologists have long recognised the profound human influences on Earth surface processes 

and landforms caused by activities such as mining (e.g. Gilbert, 1917) and urbanisation (e.g. 

Wolman, 1967).  Until relatively recently, however, the quantification and characterisation of human 

agency in geomorphology tended to focus on the identification of impacts of land use change, the 

global differentiation of sediment transfer masses and rates, and engineered environments.  

Following the `Great Acceleration´ (post-World War II), the rapid spread of mechanised agriculture, 

extractive industries and urbanisation has resulted in an increase in the abundance and prominence 

of anthropogenic landforms, namely those created as a direct and commonly deliberate result of 

human activities (e.g. Szabó et al., 2010).  In some extensively farmed, mined or urbanised areas, the 

scale of human modification is now so great that anthropogenic landforms provide the main Earth 

surface boundary conditions for geomorphic processes (Foley et al., 2005; Ellis, 2011; Tarolli et al., 

2014, 2015; Tarolli and Sofia, 2016).  To illustrate our case, below we provide selective coverage of a 

range of anthropogenic landforms, including slopes, road networks, heavily modified drainage 

networks and mining-related features. 

 

Artificial slopes and other landforms 

Some of the most prominent anthropogenic landforms are agricultural terraces (Tarolli et al., 2014).  

Modification of slopes to form terraces had its origins in early agriculture in southwest Asia, 

northern China and Korea, and the practice later spread farther afield.  In parts of southwest Asia, 

such as the Yemen, agricultural terracing is thought to date to the Neolithic (c. 3500 BC) while in 

much of the Mediterranean and northwest Europe, terraces date to the Bronze and Iron Ages (c. 

3000-0 BC) (T. Wilkinson, 2005; Walsh, 2014).  By reducing slope gradient, terraces facilitate 

cultivation on steep slopes, increase infiltration, and control overland flow volumes and velocity.  

Archaeological or historical terraces are generally of the bench (or fast) type with stone walls that 

require maintenance, so poorly designed or maintained terraces can enhance soil erosion rates, 

while well designed and maintained systems can reduce erosion rates (Tarolli et al., 2015).  

Consequently, once constructed, terraces document social history, in particular rural population 

densities, and influence soil erosion and land degradation.  Geomorphologists are now making 

considerable advances in the automated detection of agricultural terraces from LiDAR and other 
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forms of remote sensing (Sofia et al., 2014a; Tarolli et al., 2014) and this will feed into distributed 

basin models for water, sediment and pollutants.  Sofia et al. (2014b) showed that natural slopes are 

more variable and less correlated, while artificially modified slopes with terraces have a high level of 

self-similarity.  These differences can be statistically and automatically distinguished using a new 

topographic indicator termed Slope Local Length of Auto-Correlation (SLLAC) (Figure 5). 

Other major anthropogenic slope forms include cuttings and embankments for railways, 

roads, canals and irrigation networks (Tarolli et al., 2013; Sofia et al., 2014a, 2014c).  Since these 

forms are almost universally rectilinear and fall within a narrow range of gradients, particularly for 

embankments (26-32
o
), this introduces a systematic element into regional slope-area relationships.  

Although fundamentally engineering structures, studies of their stability and sustainability have 

owed much to geomorphologists (Fookes et al., 2009).  Geomorphological processes on engineered 

slopes will continue to be important in future, as unpaved roads (‘dirt tracks’) in the developing 

world are upgraded and metalled, invariably being associated with large areas of artificial slope that 

need to remain stable under changing climatic conditions.  These new and expanded road networks, 

artificial slopes, and their related drainage systems will affect surface morphology, change local flow 

directions, and possibly increase soil erosion or landslide risk. 

Urban development is also commonly associated with significant anthropogenic landforms 

(Thornbush, 2015).  At least 741 630 km
2
 (0.5%) of the Earth’s terrestrial area is now urbanised 

(Schneider et al., 2009), in most cases leading to widespread removal of natural vegetation, creation 

of entirely artificial surfaces, and heavily modified drainage systems, as epitomised by Manhattan 

Island, USA (Figure 6).  Urban drainage systems in particular exemplify many anthropogenic 

landforms (e.g. heavily channelised rivers, artificial flood basins, and sewerage systems) and have 

been the focus of much research (e.g. Chin, 2006; Chin et al., 2013; Gurnell et al., 2007). 

Many other large-scale examples of anthropogenic landforms can be found, especially in 

China.  The largest ever human refashioning of the landscape is currently taking place in central 

China (Lanzhou) where 700 mountains are being levelled to create more than 250 km
2
 of flatter 

land.  This is causing a host of geomorphic problems including subsidence, landslides, flooding and 

air pollution (Li et al., 2014).  China is also undertaking large-scale land reclamation (island building) 

around atolls, reefs and sand bars in the South China Sea, with unknown implications for sediment 

dynamics and island stability. 

There are also many medium- to small-scale landforms that appear to be entirely the result 

of human activity.  Examples include ‘roddons’ - low raised palaeochannel infills that cross 

temperate wetlands - that are the result of artificial drainage and shrinkage of these lowlands 

(Brown, 1997).  More diminutive human-influenced landforms include grazing steps, vehicle ruts and 

footpaths (Garland, 1990) but in most cases, these landforms do not have uniquely anthropogenic 

morphometric signatures and commonly are identified indirectly by vegetation change.  Even human 

conflict has left a significant geomorphological signature through the construction of trenches and 

earthen banks, and the formation of bomb craters and vehicle tracks (Hupy and Koehler, 2012). 

 

Holes in and under the ground 

Holes in the ground (e.g. from quarrying and opencast mining activities) are morphologically 

different from natural landforms (Figure 7A) and will have longevity into the future, either in surface 

expression and/or stratigraphy (Zalasiewicz et al., 2011).  In some cases, the spoil from these 

activities can also lead to the creation of distinctive landforms, such as the conical piles of china clay 

mining waste that have given rise to the ‘Cornish Alps’ near St Austell, southwest England, or the 

flat-topped and terraced gold mining dumps around Johannesburg, South Africa (Figure 7B).  In 

developed economies, especially densely populated countries, the extent of anthropogenic landform 

creation through quarrying and mining is substantial, although as yet not fully quantified.  

Nonetheless, besides the impact on fluvial and coastal processes (see above), mining has become a 

focus of research because of its implications for geomorphic hazards (Mossa and James, 2013; Tarolli 

and Sofia, 2016).  Open-cast mining, for instance, causes severe land disturbance that affects 
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vegetation, soil, bedrock and landforms (Martín-Duque et al., 2010) as well as surface hydrology, 

groundwater levels and flow paths (Osterkamp and Joseph, 2000; Nicolau and Asensio, 2000).  

Together with climate (Erginal et al., 2008) and geology (Laimer and Mulleger, 2012), mining 

morphology can contribute significantly to landsliding susceptibility. 

These and other examples of mining-related activities demonstrate that along with the 

creation of agricultural terraces, embankments and cuttings (see above), the volumes of rock/earth 

moving by human action can be considerable.  For instance, in the UK, Price et al. (2011) have 

estimated that over the last 200 years people have excavated, moved and constructed a volume of 

soil and rock at least six times the volume of Ben Nevis, Scotland’s tallest mountain.  Artificial or 

‘worked’ ground has long been a category on geological maps but it is now categorised into a series 

of ‘domains’ at 1:50 000 by the British Geological Survey (Figure 8).  The practical reason for 

undertaking this exercise is to allow estimation of potential threats of instability or pollution under 

changing climatic conditions. 

 

Geomorphology and Stratigraphy 

Stratigraphic status, whether formal or informal, garners much attention in geological science.  As 

pointed out by Gibbard and Walker (2014, p.30), stratigraphy “is the foundation upon which the 

discipline of historical geology, and therefore the accurate reconstruction of Earth history, depends.”  

Stratigraphic status gives a level of authority to an assemblage of rocks, landforms, biota or 

chemistry and to the period of time involved, yet tends to provoke emotional judgements and 

generate contentious debate, as seen with the recent re-definition of the base of the Quaternary 

and Pleistocene (Gibbard et al., 2009 and references therein).  A number of recent papers and 

volumes have been concerned specifically with the stratigraphic basis of an Anthropocene (e.g. 

Finney, 2014; Gibbard and Walker, 2014; Waters et al., 2014a, b; Zalasiewicz et al., 2011, 2014).  

Here, we seek to identify the geomorphological contribution to the debate.  Four issues are 

considered: i) geomorphological evidence as a stratigraphic method and the source of stratigraphic 

units (morphostratigraphy) in a putative Anthropocene; ii) geomorphological processes as key 

drivers for the formation of sediments, biota and chemical compounds that constitute the materials 

of an Anthropocene chronostratigraphy; iii) a geomorphological perspective on the timing of the 

onset of an Anthropocene; and iv) alternative stratigraphic schemes. 

 

Geomorphology, morphostratigraphy and an Anthropocene 

By definition, stratigraphical criteria based on geomorphological features are morphostratigraphical, 

which means that landform shape provides the critical evidence.  This is the case, for instance, with 

features such as displaced shorelines, moraine ridges, or river terraces that represent land-forming 

events over a given time interval (Frye and Willman, 1962; Allen, 2003; Lukas, 2006).  With respect 

to an Anthropocene morphostratigraphy, this should mean that human processes are involved in the 

formation of a given landform, and that the human influence should be recognisable from the shape 

of that landform.  Again, by definition, this should mean that landforms composed of made-ground 

or spoil, or that are specifically created (e.g. embankments, artificial levées, agricultural terraces and 

even ski-slopes) are anthropogenic morphostratigraphic units (Price et al., 2011; Ford et al., 2014).  

Likewise, depositional landforms built to imitate natural features for restoration, aesthetic planning 

or recreation purposes (e.g. hills, man-made pleasure beaches) are anthropogenic 

morphostratigraphic units, although they may be more difficult to differentiate from natural 

features (see below).  Nonetheless, it may be possible to use anthropogenic morphostratigraphy to 

determine particular periods of time.  For instance, English ridge and furrow are typically medieval 

(5th to 17th Century), although some were formed during 20th Century wars (Mead, 1954).  In other 

parts of the world, as noted above, agricultural terraces define particular periods of landscape 

change (Hooke, 2006; Chepstow-Lusty et al., 2009).  Documentation associated with industrial spoil 

heaps, quarries, open cast mines and strip mining also can provide an age for the 

morphostratigraphical features (Ford et al., 2014).  The application of this principle is almost infinite, 
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with a temporal resolution determined by the quality of the historical, archaeological or 

geochronometric dating. 

Morphostratigraphy is clearly critical in making the case for an Anthropocene, as these 

landforms are unique to a human-influenced geological time interval.  However, evidence of human 

activity is not restricted to landforms but also affects the constituents of sediments and rock that 

make up landforms, as these also may contain traces of anthropogenic input (e.g. ‘plastiglomerate’ 

now forming on certain Hawaiian beaches: Corcoran et al., 2014).  In these cases, which are perhaps 

best approached through the perspectives of sedimentology, biology, meteorology or chemistry, the 

geomorphological contribution will be to clarify how geomorphic processes help to determine the 

end product: the polluted sediments, exotic plant or animal characteristics, and the anomalous 

atmospheric chemical compounds.  An array of these highly diachronic anthropogenic signatures 

from megafaunal extinctions to radionuclides is listed in Waters et al. (2014b). 

Geomorphological processes, chronostratigraphic evidence and an Anthropocene 

From the foregoing, it is evident that understanding of an Anthropocene relies on the processes that 

act at the Earth’s surface.  Geomorphological processes are critical because they are responsible for 

landscape erosion and material transport to sediment sinks.  Whereas the link between 

morphostratigraphy and an Anthropocene through identification of diagnostic landforms is 

straightforward, at least in principle, the proposition that geomorphology is key for investigating 

human-induced Earth surface changes may not be so clear, as many landforms are not diagnostic of 

human activity, and other evidence is needed to recognise the human impact.  For instance, a river 

floodplain or delta, formed in response to human activity, may be morphologically similar to a 

floodplain formed without human influences, but may be clearly differentiated by sedimentology, or 

by lithological and biological evidence contained within the sediments comprising the landform 

(Evans, 2012; Brown et al., 2013b).  Similarly, aeolian dunes, formed in response to vegetation 

clearance for agriculture may be morphologically indistinguishable from dunes formed without 

human influence, so differentiation requires evidence from geochronology and/or historical records 

(Bateman and Godby, 2004).  To identify human impact in these cases, a multi-proxy approach to 

stratigraphy is necessary, for where a number of proxies coincide, the more credible is the 

stratigraphic outcome. 

Human-driven or human-influenced geomorphological processes bring about the series that 

constitute the chronostratigraphy (Salvador, 1994; Zalasiewicz et al., 2014).  Along with the 

morphostratigraphic units, they would make the Anthropogenic Series of an Anthropogenic Epoch.  

As such, they are similar to stratigraphic units from other parts of the geological column, and are 

very similar to the stratigraphic elements that underpin Quaternary stratigraphy.  Attention has 

been given, however, to their limited potential for survival and thus for becoming a significant part 

of a long-term geological record (see Waters et al., 2014b).  This concern can be addressed by noting 

that similar evidence, formed by geomorphological processes at the Earth’s surface, has survived 

throughout the geological column, albeit less frequently than ocean or basin sediments.  Attention is 

also drawn to the fact that these series are the basis for the classification of the Holocene as a 

separate epoch, despite that fact that this time interval is simply the last of many interglacials in the 

Quaternary Period (Gibbard and Walker, 2014).  This is a semantic issue and not the concern of 

geomorphology; the critical fact is that human-driven or human-influenced geomorphological 

processes determine an Anthropocene.  These processes form a definitive part of the Holocene, 

although they are independent of the currently proposed subdivisions thereof (Walker et al., 2012).  

Geomorphology therefore plays a major role in establishing the stratigraphic elements upon which 

an Anthropocene could be defined, both now and in a long-term stratigraphic record. 
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Anthropogenic geomorphological processes and the lower boundary of an Anthropocene 

The location of a lower boundary for an Anthropocene has concerned many (e.g. Zalasiewicz et al., 

2011, 2014; Gibbard and Walker, 2014, and references therein).  Lewis and Maslin (2015) discuss 

two possibilities in defining the lower stratigraphic boundary of the Anthropocene: i) earliest 

evidence for human-induced stratigraphy which would be of local or regional significance only; or ii) 

a more distinctive event that can be recognised globally.  The magnitude of this problem can be seen 

by the fact that the time span over which humans began to influence the Earth’s surface may be 

greater than the span of an Anthropocene interval, depending upon which definition of an 

Anthropocene is adopted.  In a consideration of possible alternative boundaries, Lewis and Maslin 

(2015) have proposed AD 1610 based on the Orbis spike dip in CO2 observed in two core records 

from the Antarctic Ice Sheet, or AD 1964 based upon the bomb peak in 
14

C.  However, as they admit, 

these are only two possible candidates out of a large number of possible dates varying from early in 

the Holocene to the radionuclide events in the 1960s.  Some have argued we have yet to reach the 

boundary (Monastersky, 2015). 

An attempt to resolve this issue has been proposed by Foley et al. (2013), with the 

proposition that the time identified by the presence of hominins and by local and regional evidence 

should be known as the Palaeoanthropocene, and the interval after the Industrial Revolution (c. 

post-AD 1780), when human-induced changes started to significantly influence global climate, 

should be the Anthropocene proper.  Alternative views can also be found (e.g. Ruddiman, 2003).  In 

some ways the proposition for a Palaeoanthropocene recognises the importance of human activities 

in forcing geomorphological processes (e.g. Neolithic farming) but it does not solve the problem of 

the diachroneity of the lower boundary and it subsumes archaeological chronology.  All stratigraphic 

boundaries are arbitrary, and arrived at by consensus through an ‘accepted’ procedure (Finney, 

2014; Gibbard et al., 2009) but as far as geomorphology is concerned this issue should not be 

important.  The geomorphological concern should be with process per se, rather than the 

formalisation of stratigraphy.  It should provide the science behind the stratigraphic decisions, which 

even with the clarity or lack of resolution associated with geological time are often highly contested 

and generally represent compromises between universality, visibility and signal clarity. 

Geomorphology and alternative stratigraphic schemes 

The formal division of geological time is the responsibility of the International Commission on 

Stratigraphy, which is a constituent group of the International Union of Geological Sciences 

(Salvador, 1994).  Any stratigraphic considerations should refer to the procedures of this 

organisation, especially with reference to the delimitation of timescales, and it is through these 

procedures that stratigraphic schemes are given authority.  However, time is not the only 

information provided by stratigraphy, and for many professions, such as engineering, utility 

operations, the aggregate industry or the planning, finance and legal sectors, other geological 

properties are more important, such as lithology and texture, shrinkage potential (Harrison et al., 

2012), flood potential, groundwater recharge potential, and erodibility.  In these cases, the 

stratigraphic scheme approved by the International Commission on Stratigraphy may not be the 

most appropriate.  Consequently, other schemes have been proposed, concentrating on surface 

materials where the industrial and commercial interest is focused (Walton and Lee, 2001).  Rose 

(2010) has proposed a scheme for temperate latitude regions, exemplified by the British Isles, in 

which the stratigraphy is determined by processes operating on the landscape, and has identified 

four major systems, of which one is Holocene and Human Activity (HHA).  By definition, HHA 

incorporates anthropogenic processes and identifies their importance within the areas concerned.  

McMillan and Merritt (2012) provided a scheme, again appropriate for the Quaternary (and hence 

an Anthropocene), in which the lithological properties of surface rocks are given priority, with time 

taking a secondary role.  As geomorphology determines the distribution of different lithologies, say 

through ice-flow direction or sediment transport in drainage networks, it is a prime factor in the 

differentiation of the various stratigraphic units, but human impact is not traditionally considered.  

Thus, when geological materials are defined in terms of functionality rather than age, 
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geomorphology can be a prime factor in deriving a stratigraphic scheme and the consideration of 

anthropogenic processes may be obligatory. 

 

The Reciprocal Impact of Anthropogenic Landforms on Second-Order Geomorphic Processes 

As outlined in the foregoing sections, mass fluxes associated with anthropogenic landforms such as 

agricultural terraces and engineered slopes are a prime feature of the putative Anthropocene.  

Geomorphology and civil engineering have a long history of studying such landforms and fluxes, 

partly because they can be viewed as open-air laboratories where boundary conditions are more 

easily controlled or measured.  Classic examples include studies of rill and gully erosion on mining 

spoil heaps (e.g. Nyssen and Vermeersch, 2010), water chemistry changes resulting from acid mine 

drainage (Pirrie et al., 1999) and the failure of engineered slopes (Hutchinson, 2001; Fookes et al., 

2009). 

As areal coverage of anthropogenic landforms increases (cf. ‘made ground’ – Figure 8), then 

these fluxes will become proportionately or even disproportionately important.  A related, more 

geological, argument is one of persistence, namely that these landforms, mass fluxes and 

sedimentary products are not transient but will persist into the future, with potential to enter the 

geological record.  This potential depends upon the tectonic and physiographic content and the 

nature of the associated processes.  For example, in fluvial systems, preservation is determined by 

tectonic setting (uplift, subsidence) and the relative importance of aggradation, incision, lateral 

migration and avulsion (e.g. Lewin and Macklin, 2003) so preservation patterns vary geographically 

in response to local and regional factors.  For the Frome catchment, southwest England, it has been 

estimated that anthropogenically-accelerated floodplain alluviation has been so great over the last 4 

ka that it would take in the order of 20-30 ka to remove the alluvium at the current rate of fluvial 

erosion (Brown et al., 2013b), which might render it geologically persistent.  A complication here is 

the length of the current interglacial: if Berger and Loutre (2002) are correct, the ultimate geological 

signature of the Anthropocene will be a delay in the timing (or even suppression) of the next glacial.  

This scenario would facilitate the preservation of most lowland anthropogenic fluvial sediments and 

would be by far the largest geomorphological and stratigraphic impact of humans.  Such fluvial mass 

balance changes can also impact on other geomorphological process domains, especially at the coast 

(see above).  A subtle and yet to be fully elaborated effect is that of changing the tidal reach of rivers 

through increasing channel confinement and reclaiming marginal saltmarshes; in effect, creating a 

pseudo-regressive boundary that is not related to relative sea level fall (Havelock, 2009) and that is 

the opposite of the sediment starvation effects mentioned above. 

Globally and on a geological timescale, this question of reciprocity may have profound 

dimensions.  The view that humans are now the dominant force in global environmental change has 

led some to argue that we are outside the geological timescale and that maybe the geological scale 

stops now (Finney, 2014).  However, it is hard to reconcile this viewpoint with the continuation of 

fundamental geomorphic processes and landform development.  Humans can drive geomorphic 

systems, the products of which will persist and affect the future.  Geological processes driven by the 

Earth’s internal dynamics will also continue (e.g. global tectonics), although even they may be 

sensitive to feedback processes of vegetation and soil that may be influenced by human activity 

(Herman et al., 2013).  Nevertheless, although we will remain within the geological timescale, how 

we segment and classify that timescale may have to change, since we may now lie outside the past 

geological norms that formed the basis of international stratigraphic procedures as formalised by 

Hedberg (1976). 

 

Human Versus Nature in the Anthropocene 

Both the underlying rationale for the Anthropocene and its manifestation through Earth surface 

processes may have profound conceptual implications for geomorphology and the wider 

geosciences.  For such disciplines, the climate system has tended to be viewed as driven naturally by 

energy from the sun and distributed naturally by the global atmospheric and oceanic systems, and 
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for many researchers this is still the case.  This assumption fed into the difficult, but possible, 

differentiation of human versus natural forcing factors on Earth surface systems.  However, if the 

climate system is significantly influenced by human activities, even if this is to an unquantifiable 

extent, then it cannot be equated with natural forcing in geomorphology.  Therefore, it follows that 

attempts to differentiate between human and natural forcing become intractable, so representing a 

spurious or a meaningless vestige of Cartesian dualism (Rhoads and Thorn, 1996).  The most 

pertinent aspect of this discussion is what effect the formalisation of the Anthropocene could have 

on geomorphology as a discipline, as there is the distinct risk that it could require reconsideration of 

its uniformitarian underpinnings (cf. Knight and Harrison, 2014; Paul, 2014).  It follows that 

geomorphology, by definition, should provide the authority and substance for morphostratigraphy, 

even if this is not divisible into human versus natural forcing. 

This pragmatic approach is also required because the changes to aeolian, fluvial, cryospheric 

and coastal process domains resulting from human-modified sediment fluxes and energy 

distributions have also altered ecosystems and critical zone processes responsible for ecological 

integrity (sensu Graf, 2001), ecosystem service provision (Millennium Ecosystem Assessment, 2005) 

and sustainability (sensu Parrish et al., 2003).  Perhaps the most obvious example is the vast 

literature on the effects of soil erosion on the spawning of salmonid fish (e.g. Lisle, 1989; Sear, 1993; 

Jensen et al., 2006).  Less obvious examples are the effects of exotic riparian plants on bank stability 

(e.g. McCarthy et al., 2010), or the little-researched effect of solar panel arrays on soil erosion due to 

runoff redistribution. 

 

Conclusions 

From our review of four key process domains, it is clear that the relevance of the Anthropocene 

concept varies substantially between different branches of geomorphology.  Fluvial and coastal 

geomorphologists, especially those working in densely populated regions, tend to see human impact 

throughout the landscape (e.g. Wohl, 2013).  Periglacial and glacial geomorphologists, mostly 

working in sparsely populated regions, tend to see vast expanses of tundra, boreal forest or ice 

sheets as fundamentally natural with little direct human impact.  Aeolian geomorphologists, 

commonly working in drylands, recognise that aeolian landscapes increasingly are impinged upon by 

human activities, but any resultant landforms rarely, if ever, display features that allow their 

unequivocal distinction from the natural.  Increasingly, however, all these process domains are being 

impacted by anthropogenically-driven climate change, albeit as mediated by the respective 

geomorphological reaction times.  It is theoretically possible that even tectonic forces could be 

affected by human activities as there appears to be a correlation between zones of rapid uplift and 

intense precipitation, and this accords with model predictions where the trigger is a climate-driven 

increase in the erosion rate (Whipple, 2008).  So by altering synoptic weather patterns, humans 

could influence some components of tectonic evolution, although it is likely that such influences 

would be small relative to other geodynamic forces. 

The implication from the perspective provided by geomorphological considerations is that 

the putative Anthropocene should have an informal stratigraphic status accommodating a highly 

diachronous lower boundary.  Formal identification essentially would be arbitrary and impractical  

under existing stratigraphic procedures (Lewin and Macklin, 2013) and would also be very unlikely to 

garner universal or even majority support amongst geomorphologists or the wider geoscience 

community.  Where different outcomes are required, such as utilitarian information for society, 

Earth history can be told using other stratigraphic schemes, in which geomorphology has a 

prominent role in providing explanations for the form, composition and distribution of surface 

materials.  Societal implications may include the maintenance of ecological functionality, ecosystem 

service provision and sustainability. 

Two practical implications follow.  First, the less obvious effects of humans on geomorphic 

systems warrant increased research.  This is the ‘knowledge for mitigation’ that needs to be in place 

to advise policy makers.  Second, we need to improve the criteria for diagnosing human impacts on 
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the connectivity, integrity and resilience of critical zone processes, and this can be seen as an 

opportunity (Wohl, 2013).  This recognition not only includes the development of existing 

techniques such as the remote sensing of land cover and landforms and the biogeochemical analysis 

of sediments, but also a new way of conceptualising the role of humans both through processes and 

materials within ecosystems as well as at the global scale.  The geomorphological impact of new 

materials from geotextiles to smart concrete is clearly a part of an Anthropocene that we can 

recognise at a variety of spatial and temporal scales.  While this scale dependency of the 

Anthropocene complicates its formal recognition in geological terms, it is a key element in the 

application of geomorphology for environmental management in a future world that may host nine 

billion people by mid-century. 
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Figure captions 

 

Figure 1. Dust deposition rates (AD 1700 to 2006) in the Snowy mire core (Marx et al., 2014).  The 

grey outline shows 2 sigma errors.  The letters on the plot refer to key events: A = dust pulses 

during the Little Ice Age; B = the onset of agriculturally-induced wind erosion; C = the Federation 

Drought; D = the 1914 drought; E = the Dust Bowl era; F = the early 1970s and G = 1980s 

droughts; and H = implementation of concerted soil conservation measures. 

 

Figure 2. Radiocarbon-constrained Holocene floodplain sedimentation rates for the UK, with 

summed probability distribution of cereal/crop dates (derived from Macklin et al., 2010 and 

Stevens and Fuller, 2012). 

 

Figure 3. Summary of the fluvial system over 10-1000 year timescales.  The diagram is divided into 

four areas: i) allogenic drivers; ii) catchment characteristics; and iii) the fluvial process domain, 

which includes iv) the autogenic process domain (image produced by V. Thorndycraft).  The outer 

box includes the main allogenic drivers (at centennial-millennial timescales), including human 

impact.  The grey box includes some general catchment characteristics that could produce 

spatially variable fluvial responses; within this box is the fluvial processes domain, with an inner 

box (dashed outline) showing key parts of the system affected by autogenic processes.  Arrows 

show some key pathways operating within the fluvial system: black arrows show the natural 

allogenic drivers, grey arrows show the main processes, and dashed lines show the key human 

impacts.  In italics are the key human impacts: note how they can influence all four areas of the 

diagram.  The regional geography and geological setting of a particular river will influence the 

relative magnitude of the impacts of the natural and human drivers, and the signal of those 

drivers in alluvial sedimentary records will depend on catchment characteristics and autogenic 

processes that can influence geomorphic thresholds. 

 

Figure 4. Oblique model of the results of a Terrestrial Laser Scanning survey of rapidly eroding 

Quaternary cliffs at Low Hauxley, Druridge Bay, northeast England.  The image shows the 

difference (in metres) between scans in May 2013 and March 2014 and the cliff section is c. 100m 

long.  The image was produced by M. Lobb using a Leica C10 Scanstation with CloudCompare©. 

 

Figure 5. Images illustrating the detection of the anthropogenic topographic signature of terraced 

landforms in the Alpine context (Trento Province, central Italian Alps, Italy).  Images of natural (a-

d) and terraced landscapes (e-h) are derived from: aerial photographs (a and e); shaded relief 

maps derived by 2 m Lidar DTMs (b and f); slope maps (c and g); and maps of Slope Local Length 

of Auto-Correlation (SLLAC) (d and h).  The Lidar dataset is offered for free download by the 

Autonomous Province of Trento (Alps).  Natural landscapes show maps of SLLAC with randomly 

distributed elements and a highly noisy background, whereas the construction of terraces leaves 

a clear topographic signature that results in more regular SLLAC maps with ordered elongated 

elements that follow the terrace benches. 

 

Figure 6. Images illustrating land transformation on Manhattan Island, east coast, USA.  Top: artistic 

impression of the landscape before urban development (reproduced from National Geographic 

Magazine, September 2009, with permission of the National Geographic Society).  Bottom: the 

present-day city of New York City (© Robert Clark/INSTITUTE for Artist Management). 

 

Figure 7. Oblique aerial views of mining-related landforms: A) the Udachnaya pipe, an opencast 

diamond mine in the Daldyn-Alakit kimberlite field in Sakha Republic, Russia.  At more than 600 

m deep, it is the third deepest opencast mine in the world. For scale, note the large vehicles 

around the sides and at the bottom of the mine.  Photo licensed under the Creative Commons 
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Attribution-Share Alike 3.0 Unported license; B) gold mining dumps (pale, partially vegetated 

areas) south of Johannesburg, South Africa.  For scale, note the roads and the low rise dwellings 

adjacent to the dumps.  Many other hundreds of dumps up to ~50 m high dot the area around 

the central city (the skyline is just visible on the horizon), and stand testament to the major 

transformation of the landscape that has taken place since the late 19th Century. 

 

Figure 8. The mapped distribution of artificial ground in Great Britain (from Price et al., 2011 and OS 

Topography © Crown Copyright.  All rights reserved.  100017897/2010.  DiGMapGB BGS © 

NERC). 
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Table 1. Approaches to the measurement of natural erosion and denudation rates. 

 

Method Spatial Scale 

(m
2
) 

Temporal 

Scale 

(years) 

Limitations Example 

references 

Erosion plots 

under natural 

vegetation (incl. 

Cs method) 

10
2
-10

3
  10

1
-10

2
  a) Assumption of naturalness of 

vegetation including past soil history 

b) Limited sample size 

c) Restricted soil/bedrock types 

d) Lack of representation of conditions 

over multi-annual timescales because of 

closure of the upper boundary of the plot 

e) Poor recognition of controls on the 

scales of operation of different parts of 

the erosion process 

Ritchie and 

McHenry, 1990; 

Risse et al., 1993; 

Kinnell, 2005; 

Parsons et al., 2004, 

2006b 

Natural river 

basin sediment 

loads 

10
4
-10

10
 10

1
-10

2
 a) Assumption of naturalness of 

vegetation including past soil history 

c) Storage assumptions (steady state) 

Walling and Webb, 

1996; Syvitski et al., 

2005 

Cosmogenic 

isotope-based 

basin 

denudation 

studies 

10
4
-10

10
 10

3
-10

6
 a) Storage constancy – assumption of 

equilibrium 

b) Non-anthropogenic climate change 

c) Bias to hard lithologies (granites etc.) 

Small et al., 1999; 

Heimsath et al., 

1997, 2000; 

Wilkinson et al., 

2005 

Denudation 

rates from 

compositions of 

sedimentary 

rocks 

Continental/global >10
6
? a) Very approximate mass estimates 

b) Variable and unknown temporal scales 

 

Ronov, 1983: Pinet 

and Souriau, 1998 
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Table 2. Factors that initiate, retard or counteract thermokarst activity (Murton, 2009).  Human 

activities can affect many of these factors, either directly or indirectly. 

 

Scale Factors Initiating disturbances Retarding or counteracting factors 

Local Vegetation and 

surface organic mat 

Damage or removal 

Compaction of peat or organic soil 

Regrowth of vegetation 

Accumulation of peat or organic soil 

Water Ponding on ground surface or underground 

Flowing surface or groundwater 

 

Wetting of dry peat in summer 

Drainage of ponds, lakes or cavities 

Refreezing of underground pools 

Reduction or diversion of drainage 

Drying of peat in summer 

Snow cover Thicker snow cover 

Reduced snow density 

Early snowmelt in summer 

Thinner snow cover 

Increased snow density 

Late snowmelt in summer 

Overburden 

thickness 

Soil erosion exposes ice-rich ground 

Artificial removal of soil 

Deposition of sediment 

Burial of ice-rich ground by spoil 

Artificial substrate Laying of gravel pad too thin to contain seasonal 

freezing and thawing depth 

Thicker gravel pad 

Insulation placed beneath gravel 

Artificial heat source  e.g. Heated buildings, pipelines, utilidors Dissipate heat (e.g. allow cold air 

circulation or use thermosyphons) 

Regional Mean annual air 

temperature 

Climate warming Climate cooling 

Regional snowfall Thickening snow cover 

Early accumulation of snow in winter  

Thinning snow cover 

Later accumulation of snow in winter 

Summer weather Unusually warm weather Typical weather 

Continentality Increased continentality Decreased continentality 

Large forest fires Damage vegetation or surface organic mat Regrowth of forest 
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Figure 5. Images illustrating the detection of the anthropogenic topographic signature of terraced landforms 
in the Alpine context (Trento Province, central Italian Alps, Italy).  Images of natural (a-d) and terraced 

landscapes (e-h) are derived from: aerial photographs (a and e); shaded relief maps derived by 2 m Lidar 

DTMs (b and f); slope maps (c and g); and maps of Slope Local Length of Auto-Correlation (SLLAC) (d and 
h).  The Lidar dataset is offered for free download by the Autonomous Province of Trento (Alps).  Natural 

landscapes show maps of SLLAC with randomly distributed elements and a highly noisy background, 
whereas the construction of terraces leaves a clear topographic signature that results in more regular SLLAC 

maps with ordered elongated elements that follow the terrace benches.  
479x250mm (150 x 150 DPI)  
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Figure 7. Oblique aerial views of mining-related landforms: A) the Udachnaya pipe, an opencast diamond 
mine in the Daldyn-Alakit kimberlite field in Sakha Republic, Russia.  At more than 600 m deep, it is the 
third deepest opencast mine in the world. For scale, note the large vehicles around the sides and at the 

bottom of the mine.  Photo licensed under the Creative Commons Attribution-Share Alike 3.0 Unported 
license; B) gold mining dumps (pale, partially vegetated areas) south of Johannesburg, South Africa.  For 
scale, note the roads and the low rise dwellings adjacent to the dumps.  Many other hundreds of dumps up 
to ~50 m high dot the area around the central city (the skyline is just visible on the horizon), and stand 
testament to the major transformation of the landscape that has taken place since the late 19th Century.  

152x207mm (300 x 300 DPI)  
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Figure 8. The mapped distribution of artificial ground in Great Britain (from Price et al., 2011 and OS 
Topography © Crown Copyright.  All rights reserved.  100017897/2010.  DiGMapGB BGS © NERC).  
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