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We develop a technique to prove simultaneous subspace controllability on multiple invariant subspaces, which
specifically enables us study the controllability properties of spin systems that are not amenable to standard
controllability arguments based on energy level connectivity graphs or simple induction arguments on the length
of the chain. The technique is applied to establish simultaneous subspace controllability for Heisenberg spin
chains subject to limited local controls. This model is theoretically important and the controllability result
shows that a single control can be sufficient for complete controllability of an exponentially large subspace and
universal quantum computation in the exponentially large subspace. The controllability results are extended to
prove subspace controllability in the presence of control field leakage and discuss minimal control resources
required to achieve controllability over the entire spin chain space.

DOI: 10.1103/PhysRevA.94.052319

I. INTRODUCTION

Quantum spin models, that is, quantum systems composed
of a collection of interacting spin- 1

2 particles, are of con-
siderable interest and importance in many areas of science
with applications ranging from the study the quantum phase
transitions [1] and the formation of quantum spin liquids
[2] and spin glasses [3] in condensed matter physics to the
huge and popular field of quantum information processing
(QIP) [4], where spin- 1

2 particles are proxies for qubits and
spin networks effective models for finite-dimensional QIP
devices. Considering the importance of quantum phenomena
in physics, finding ways to control them has naturally been a
long-standing dream of physicists and chemists. Progress was
made with radio-frequency control of large spin ensembles in
nuclear magnetic resonance decades ago, paving the way for
many applications from spectroscopy to magnetic resonance
imaging. Control of individual quantum systems such as single
spins, atoms, or ions, however, was practically impossible until
quite recently. While it still remains challenging, tremendous
experimental progress has been made, making it possible, for
instance, to simulate the spin-spin interaction using ions and
ultracold atoms with superior control and the ability to tune
parameters, as recently demonstrated in [5], for example.

Improving control of quantum systems in general, and spin
systems in particular, and understanding fundamental issues
that affect and limit control of these systems is of paramount
importance from a theoretical point of view, as well as for
the development of new applications such as QIP or quantum
metrology devices. Not every controlled spin system is fully
controllable. Controllability depends on the Hamiltonian of
the physical system and the available control resources. Phys-
ical and technological limitations impose constraints on the
system and control Hamiltonians that can be realized. k-body
interactions for k � 3, for example, are difficult to generate
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and much weaker than single and two-body interactions.
Therefore, the system Hamiltonians for spin systems are
usually restricted to two-body interactions, and as even those
are not easily controllable, control is often limited to local
control of individual spins. Furthermore, designs that require
many independent controls acting on individual spins are
generally far more difficult to realize than designs that require
fewer controls. For example, while controlling individual ions
in ion traps is possible today, it requires multiple lasers
or precise dynamic positioning of a single laser to enable
individual addressing of all the ions. For many other systems
such dynamic individual addressing remains impossible. If
we can control the system with a small number of simple
actuators acting on fixed spins, the complexity of the system
design can be considerably reduced. This prompts the question
of minimal resources for controllability of spin systems, such
as the minimum number of local controls required to control a
certain spin network or, alternatively, what is the most we can
achieve with fixed control resources for a given system.

The minimal requirements for different spin systems de-
pend on the type and configuration of the interactions between
spins, e.g., whether it is a one-dimensional (1D) spin chain, a
spin ring, or a 2D or 3D arrangement. The simplest case is 1D
spin chains, but even in this case the required control resources
depend on the type of interaction and type and position of
the actuator. As will be explained in detail in the following, a
(closed) quantum spin systemS with a system Hamiltonian H0

subject to a set of control Hamiltonians {Hk}, k = 1, . . . ,m,
is controllable if the controls can generate arbitrary unitary
evolutions. In the language of QIP, complete controllability is
equivalent to the concept of universal quantum computation
(UQC) [4]. An important necessary and sufficient condition
for complete controllability is that the dynamical Lie algebra
(DLA) generated by {−iHk} is u(N ) or su(N ), the Lie
algebra of Hermitian or trace-zero Hermitian matrices [6].
Using this condition, it has been shown that for chains with
Ising coupling, local controls on every spin are required for
controllability, while chains with Heisenberg coupling are
known to be controllable given at least two noncommuting
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controls acting on the first or last spin in the chain [7]. The
DLA has also been calculated for different couplings with two
and three local controls [8] and it is known that a Heisenberg
chain with a single local control is not controllable as the
Hilbert space can be decomposed into multiple subspaces that
are invariant under the dynamics and the DLA is thus reducible
[9]. However, the system is controllable on the smallest of
the invariant subspaces, the single excitation subspace [10],
and results based on numerical calculations in [11] further
suggest that the system is indeed controllable on all invariant
subspaces, including the largest one. Our first aim is to prove
this conjecture, showing that a Heisenberg chain of any length
is controllable on all invariant subspaces with a single local
control acting on the first (or last) spin. As the dimension of
the largest invariant subspace HL is exponentially large with
respect to the length of the chain, HL is potentially a useful
resource for UQC and it is the first example of a system where
a single local control results in controllability on a subspace
whose dimension is exponential in the number of qubits. It
also illustrates the importance of the interaction type: If the
Heisenberg (XXZ) coupling is replaced by XX coupling then
the only subspace that remains controllable with a single local
control is the single excitation subspace.

Subspace controllability problems of this kind have not
been discussed in the literature very much and proving sub-
space controllability beyond the single excitation subspace is
nontrivial and requires alternative computational approaches.
The decomposition method suggested in [12] can be applied to
discuss the reachable set [6], but further tools are required to
establish controllability. The regularity-connectivity condition
used by various authors [13–18] was applied to the problem
considered here in [11] to infer subspace controllability, but the
conditions, in particular strong regularity, could only be veri-
fied numerically for each subspace for short chains. Although
specific eigenvectors and the corresponding eigenvalues for
low excitation sectors can be found by a Bethe ansatz, the
exponential complexity of the diagonalization is well beyond
direct calculation when N is large. Another common approach
to show controllability of a chain is by induction on the
length of the chain, the method of choice to prove global
controllability in [7] and many other works. However, as there
is no simple relation between the subspace representations of
{Hk} for chains of lengths N and N + 1 beyond the single
excitation subspace, the induction step cannot be completed.
In general, the availability of a straightforward induction on
the length of the chain relies on the fact that the DLA for a
chain of length N + 1 can be expressed in terms of the DLA
for a chain of length N , so we can complete the induction
step by evaluating the DLA for the shorter chain and then use
the connection between N and N + 1 to derive the DLA for
the longer chain. Unfortunately, for our system there is no
simple way of deriving any useful connections between the
DLA generators for chains with size N and N + 1. Hence,
a different argument is needed to construct a proof. In fact,
when discussing the controllability for an N -spin system,
rather than an n-level system, it is not a good idea to write
the Hamiltonians in the energy eigenbasis of the system as
they have a much simpler representation in terms of products
of Pauli operators (as will become clear in the next section).
As a result, the common method in the literature based on

connectivity graphs of the energy eigenvectors does not really
help to assess controllability of an N -spin system. If we hope
to use a connectivity graph to simplify the calculation of the
DLA then it has to be a graph describing the connectivity of the
N spins, rather than the n = 2N energy levels. Unfortunately,
connectivity of the former graph is not sufficient to infer
controllability as a spin system may be uncontrollable even
if this graph is fully connected.

To prove subspace controllability we develop an approach
based on decomposition of the Lie algebra into subspaces
generated by n-body interaction terms. We then use induction
arguments to derive general formulas for the dimension of
these subspaces and sum over all subspaces to obtain the
dimensionality of the Lie algebra of the entire system. We
show that the resulting dimension can only be obtained if
all subspaces are controllable. Using decomposition in terms
of n-body interactions does not allow us to separately check
controllability of a particular subspace, but there is no need
to do so. Instead, we can prove the controllability for all
subspaces at the same time, by finding the largest number
of independent operators in the DLA generated by the system
and control Hamiltonians. One difficulty in the proof is that
the n-body operators generated by calculating the commutators
are not all linearly independent, which makes it nontrivial to
determine the rank of the operators generated, but fortunately,
this problem can be overcome using a common trick in
complex analysis.

This paper is organized as follows. In Sec. II we introduce
different types of spin chains and define relevant symmetries
for the system. In Sec. III we give a complete proof of
subspace controllability for an arbitrary XXZ chain subject
to a single end control and apply the technique to generalize
the results to chains with anisotropic XYZ interactions. We
further prove that the subspace controllability result is robust
with regard to leakage of the single control field onto the
neighboring spins. This result is interesting as it provides
arguably the simplest model of a UQC one could imagine:
a physical Hamiltonian with a single control switch to do the
computation. For comparison, we show that the same result
does not hold for XX chains, where a single end control
can only give controllability on a subspace whose dimension
does not scale exponentially with system size. In Sec. IV we
investigate the XXZ or XYZ chains for various types of two
controls and the according results present a complete picture
of the minimal control resources for full controllability on the
entire Hilbert space.

II. MODEL AND BASICS

The state of a quantum system is generally described in
terms of a trace-one positive operator ρ, usually referred to
as the density operator, acting on a Hilbert space H. Any
Hermitian operator on a spin- 1

2 particle or qubit is a linear
combination of the Pauli operators

X =
[

0 1
1 0

]
, Y =

[
0 −i

i 0

]
, Z =

[
1 0
0 −1

]
, (1)

and the identity I = diag(1,1). If a quantum system is
composed of N spins then a local operator acting on the kth
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spin is represented by Rk = I ⊗ · · · ⊗ I ⊗ R ⊗ I ⊗ · · · ⊗ I ,
where R is the 2 × 2 operator on the kth factor.

System Hamiltonian. We consider spin chains composed
of N spins with spin-spin interactions characterized by the
Hamiltonian

H0 =
N−1∑

n

anXmXn+1 + bnYnYn+1 + cnZnZn+1, (2)

which covers a large variety of systems: an �= bn �= cn �= 0
corresponds to Heisenberg XYZ coupling, an,bn,cn �= 0 with
an = bn �= cn to Heisenberg XXZ coupling, an = bn = cn �=
0 to isotropic Heisenberg coupling, an = bn �= 0 and cn = 0 to
XX coupling, and an = bn = 0 and cn �= 0 to Ising coupling.

Controllability. The dynamics of the spin chain is charac-
terized by the quantum Liouville equation

ρ̇ = − i

�

⎡
⎣H0 +

m∑
j=1

fj (t)Hj,ρ

⎤
⎦, (3)

where H0 is the system Hamiltonian in (2) and Hj , j =
1,2, . . . ,m, is a series of control Hamiltonians with time-
varying amplitudes fj (t). We say the system is density-
operator controllable or simply controllable if the dynamical
Lie algebra L generated by iHj , j = 0,1, . . . ,m, is equal to
the largest Lie algebra that can be generated by anti-Hermitian
operators iHj acting on the 2N -dimensional Hilbert space H:
either u(2N ) or su(2N ). This definition of controllability is very
intuitive: It can be shown that if the system is controllable
then any unitary process U ∈ SU(2N ) can be generated up to
a phase factor eiφ by the dynamics (3) in finite time, for a
suitable choice of the control fields fj (t). If L � su(2N ) then
there exists some unitary gate U ∈ SU(2N ) that can never be
generated under (3) [6]. The dynamical Lie algebra and the
concept of controllability are very important for both theory
and control applications as they characterize the reachable set
of the control dynamics and allow us to decide whether a given
control task can be achieved or not.

Symmetries. Symmetries of the Hamiltonian limit the type
of processes a system is capable of generating and therefore
controllability.

Definition 1. Let Hj , j = 0,1, . . . ,m, be a set of Hamilto-
nians for a given quantum system. If there exists a Hermitian
operator S that is not a multiple of the identity such that
[Hj,S] = 0 for all j then S is called symmetry for the
Hamiltonians.

The definition implies that for a symmetry S, Hj and S can
be simultaneously diagonalized for all j .

Example 1. A simple class of symmetry operators for the
system Hamiltonian (2) is of the form S = A1A2 · · ·AN ,
where Ak = α1X + α2Y + α3Z is a local operator on the
kth spin. For symmetry operators of this form [H0,S] = 0
requires [amnXmXn + bmnYmYn + cmnZmZn,AmAn] = 0 for
any connected link (m,n) in (2). Observing the Pauli product
relations XX = YY = ZZ = I , XY = iZ, YZ = iX, and
ZX = iY gives [XmXn,S] = [YmYn,S] = [ZmZn,S] = 0 and
thus [H0,S] = 0 when A is one of the Pauli operators {X,Y,Z}.
The operators X1X2 · · · XN , Y1Y2 · · · YN , and Z1Z2 · · · ZN

are often known as parity symmetries; H0 commutes with
all of them. Whether the controlled system has parity

d = 0

d = 1

d = 2

d = 3

d = 4

FIG. 1. For N = 4, the XXZ network Hamiltonian H0 and
local control H1 = Zk are simultaneously block diagonalized in five
excitation subspaces Hd , d = 0, . . . ,4.

symmetries depends on the control Hamiltonians. Only the
Z-parity operator Sp = Z1Z2 · · · ZN commutes with con-
trols of the form Hj = Zj , for example. Here Sp has two
eigenspaces of dimension 2N−1 with eigenvalues (parity)
+1 and −1, which are invariant under the dynamics if
[H0,Sp] = [Hj,Sp] = 0.

Example 2. If the system Hamiltonian (2) is of XXZ

type then [H0,Se] = 0 for Se = ∑N
j (Zj + I )/2. Here Se has

N + 1 distinct eigenvalues ranging from n = 0 to n = N .
Hence, the Hilbert space decomposes H = ⊕N

k=0 Hk . If we
denote the single-spin basis vectors by |0〉 (spin up) and
|1〉 (spin down) and take the basis states of the N -spin
systems to be the product states |0 · · · 0〉 to |1 · · · 1〉, then
Hk is generated by the computational basis vectors with
the number k of 1’s, k being referred to as the number
of excitations in the chain. For example, for N = 4, H2

is spanned by |0011〉, |0101〉, |0110〉, |1001〉, |1010〉, and
|1100〉 and has dimension dim(H2) = d4,2 = 6. If the control
Hamiltonians only contain Z operators then Se defines a sym-
metry, called excitation symmetry, and the system and control
Hamiltonians are block diagonalized on the N + 1 invariant
subspaces.

Having found all symmetries of the system, the entire
Hilbert space can be written as a tensor product of minimal
invariant subspaces H = ⊕D

d=1Hd . The quantum dynamics
is invariant on each Hd and the Hd cannot be further
decomposed. The block-diagonal structure of the system
Hamiltonian and control Hamiltonian illustrated in Fig. 1
implies that the associated dynamical Lie algebra L must be a
subalgebra of

⊕D
d=1 u(dimHd ).

Although the system is not controllable on the entire Hilbert
space H = C2N

it may still be controllable on some or all of
the subspaces Hd . In the following we show that this subspace
controllability holds for all subspaces even if the control is
restricted to a single control acting locally on a single spin for
most XYZ and XXZ chains.
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III. SPIN CHAINS WITH SINGLE LOCAL END CONTROL

Many quantum systems, such as ultracold atoms, can be
modeled as spin chains with Heisenberg interactions. Due
to the symmetric roles played by the three Pauli operators,
without loss of generality, we can assume that the local control
is along the z direction, which physically corresponds to
control fields being generated by an external magnetic field
along the z direction. We find that subspace controllability
depends on whether the spin-spin interactions in the two
directions orthogonal to the control direction are equal or not,
i.e., whether the spin chain is of (1) XXZ type (including
XXX type) or (2) anisotropic XYZ type.

A. The X X Z chain

The system and control Hamiltonians for an XXZ chain of
length N with a control in the z direction acting on spin 1 are

H0 =
N∑
j

aj (XjXj+1 + YjYj+1 + cjZjZj+1), (4a)

H1 = Z1. (4b)

As discussed above, the total excitation operator Se =∑N
j (Zj + I )/2 is a symmetry and due to this symmetry

the Hilbert space of the N -spin system decomposes: H =⊕N
k=0 Hk , where Hk is the invariant subspace with k exci-

tations and dim(Hk) = (
N

k

) ≡ dN,k , and the dynamical Lie
algebra L of the controlled system (4) must be a subalgebra of
LT = ⊕N

k=0 u(dN,k). Notice that the structure of Se ensures
that traces of the Lie algebra generators on the kth and
(N − k)th excitation subspace always add to 0 and thus L
is also a subalgebra of su(2N ).

To prove that the system is controllable on each Hk ,
in particular H�N/2	, we would like to show that L = LT .
However, we will see that this equality does not hold as
there is a set of N − 1 elements in the Cartan subalgebra of
LT that cannot be generated by our Hamiltonians. However,
these missing generators are not required for individual
subspace controllability. The only effect they have is to impose
nontrivial phase correlations between different subspaces, i.e.,
they impose some restrictions on the simultaneous control of
different subspaces.

Since a Lie algebra is also a real vector space, we can drop
some factors in the calculation and use linear combinations. We
denote such (trivial) steps in the derivation by →, which should
be read as “generates” in the following. First, we observe that

[Z1,H0] → X1Y2 − Y1X2,

[Z1,X1Y2 − Y1X2] → X1X2 + Y1Y2,

[X1X2 + Y1Y2,X1Y2 − Y1X2] → Z2 − Z1 → Z2,

...

Continuing this process, we can generate Zj , Ajk = XjYk −
YjXk , and Bjk = XjXk + YjYk for all k,j as detailed in
Appendix A. An operator is called an n-body operator if it
contains n nontrivial factors, i.e., those comprised of X, Y , or
Z Pauli operators. For example, Z1Z3 is a two-body operator,
while (Z1 − Z2)Z3Z4 is a three-body operator. Denoting the

set of n-body operators in L by Mn, we list its elements and
evaluate the rank:

M1 = {Zk},
M2 = {Ajk,Bjk,ZjZk},
M3 = {AjkZm,BjkZm,(Zj − Zk)ZmZn},
M4 = {AjkZmZn,BjkZmZn,AjkAmn,BjkBmnAjkBmn,

× (Zj − Zk)ZlZmZn},
...

When � is even, we can generate

Cm1,m2Zm3 · · ·Zm�
,

Cm1,m2Cm3,m4Zm5 · · ·Zm�
,

...

Cm1,m2 · · · Cm�−1,m�
,

(Zm1 − Zm2 )Zm3 · · ·Zm�
.

When � is odd, we can generate

Cm1,m2Zm3 · · ·Zm�
,

Cm1,m2Cm3,m4Zm5 · · ·Zm�
,

...

Cm1,m2 · · · Cm�−2,m�−1Zm�
,

(Zm1 − Zm2 )Zm3 · · ·Zm�
,

where Ck� is either Ak� or Bk�.
To compute rank(M�) we first evaluate the number of

operators in the form Cm1,m2 · · ·Cm2p−1,m2p
, which contains p

pairs of operators of type A = XY − YX or B = XX + YY .
For a given N and p with N � 2p > 0, we denote the set of
p-pair operators by EN,p, e.g., for N = 2p = 6, B12B34B56 is
a 3-pair operator in E6,3. The size of the set EN,p is obtained
by simple combinatorics as

2p

p!

(
N

2

)(
N − 2

2

)
· · ·

(
N − 2(p − 1)

2

)
= p!

(
N

p

)(
N − p

p

)
.

However, not all of the elements in EN,p are linearly
independent. For example, for N = 4 and p = 2, we
find

B12B34 − B13B24 = A14A23,

A12A34 − A13A24 = A14A23,

B12A34 − B13A24 = B14A23.

Similarly, we can write down other dependence relations.
Altogether only 1/2! of all 2-pair operators are linearly
independent. In general, only 1/p! of all p-pair operators are
linearly independent (Theorem 8, Appendix B):

rank(EN,p) =
(

N

p

)(
N − p

p

)
. (5)

Directly proving (5) is difficult as the linear dependence
relations can become very complicated for large N and p.
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For � > 2,

rank(M�) =
��/2	∑
p=1

rank(EN,p)

(
N − 2p

� − 2p

)
+

(
N

�

)
− 1.

After some simplification we obtain

dimL =
m∑

�=1

rank(M�)

=
�N/2	∑
p=0

N !2N−2p

p!2(N − 2p)!
− N + 1 =

(
2N

N

)
− N + 1

for both N = 2m and N = 2m + 1, where the preceding
equation follows from the following.

Lemma 1.
(

2N

N

)
=

�N/2	∑
p=0

N !

p!2(N − 2p)!
2N−2p.

Proof. Let f (x) = (x + 1)2N . The term xN has the coeffi-

cient (2N
N

) and

f (x) = (x2 + 2x + 1)N

=
∑

p+q+r=N

N !

p!q!r!
(x2)p(2x)q

=
∑

0�p+q�N

N !

p!q!(N − p − q)!
x2p+q2q .

Hence,(
2N

N

)
=

∑
0�p+q�N,2p+q=N

N !

p!q!(N − p − q)!
2q

=
∑

0�p+q�N,2p+q=N

N !

p!(N − 2p)!p!
2N−2p

=
�N/2	∑
p=0

N !

p!2(N − 2p)!
2N−2p.

As discussed earlier, L ⊂ LT ≡ ⊕N
k=0u(dN,k), with

dim(LT ) =
N∑

i=0

dim[u(dN,k)] =
N∑

i=0

(
N

k

)2

=
(

2N

N

)
.

All k-body Z-type operators, k = 1, . . . ,N , generate a Cartan
subalgebra C in LT , with dim(C) = 2N . Since we can only
generate coupled k-body Z-type operators such as (Zm1 −
Zm2 )Zm3 · · · Zmk

for k > 2, the rank of all Z-type operators
in L is 2N − N + 1, i.e., there are N − 1 independent Z-type
operators that are in LT but not in L. Hence,

dim(L) � dim(LT ) − N + 1 =
(

2N

N

)
− N + 1 = dim(L)

and dim(L) achieves the maximal allowed value. This is only
possible if L is isomorphic to u(dN,k) on each Hk . The Lie
algebra is indeed of type u not su on each subspace because
the trace of the Hamiltonian H0 restricted to any subspace is

not zero, although the sum of the traces over all subspaces is
zero. Hence, we have proved the following.

Theorem 1. For an XXZ chain of length N with a single
local control on the end spin in the Z direction, the system
is controllable on each of the N + 1 invariant excitation
subspaces.

We note here that the result also applies to the special case
of a fully isotropic Heisenberg XXX chain, in which case
there is no preferred direction and the result applies for any
local control applied in the x, y, or z direction. In particular,
this theorem applies to antiferromagnetic Heisenberg chains
(aj < 0) and therefore justifies the observations in [11].
The latter paper also gives a nice motivation for this work.
By cooling we can prepare the system in the ground state
ψ0, which is in the highest-dimensional excitation subspace
H�N/2	 at t = t0. Then, by applying a single control Z1

with amplitude f (t) derived from optimization, we can
generate the total Hamiltonian H = H0 + f (t)Z1 to drive
the system into an arbitrary target state in H�N/2	 at a later
time t = tF . In particular, we can generate perfect entangled
pairs between the two end spins of the chain, which is
an important quantum resource for many applications such
as quantum communication or measurement-based quantum
computing [11]. Moreover, as the dimension of H�N/2	
increases exponentially with the number of qubits N , it can be
used as a resource for universal quantum computation. For
instance, we can encode qubits as α|01〉 + β|10〉, thereby
performing universal quantum computation in H�N/2	. This
is a remarkable observation: We have found a system where
quantum computation can be achieved with a single switch and
where both the system and control Hamiltonian are physical,
e.g., consist of nearest-neighbor two-body interactions, which
are very common in physics. It provides possibly the simplest
and most elegant way of achieving quantum computation
so far (leaving efficiency issues beside [19]). Having only a
single switch, we avoid the experimental difficulty of quickly
changing field directions, which can be challenging due to
hysteresis.

B. The XY Z chain

The previous results beg the question of controllability of
inhomogeneous XYZ Heisenberg chains subject to local Z1

control. In this case we have

H0 =
N∑
j

ajXjXj+1 + bjYjYj+1 + cjZjZj+1, (6a)

H1 = Z1, (6b)

with aj �= bj . As discussed in Example 1, there exists a parity
symmetry Sp = Z1 · · · ZN satisfying [H0,Sp] = [H1,Sp] = 0,
with two invariant subspaces H1 and H−1, corresponding to
eigenvalues ±1 of Sp. Unlike in the homogeneous case the
Hamiltonians cannot be further block diagonalized on each
of the two subspaces. Thus, compared to the XXZ chain,
the number of invariant subspaces for XYZ chain is reduced
from N + 1 to 2 as a result of symmetry breaking between
the x and y directions. Using the same technique as in the
previous section, we compute all operators in the dynamical
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Lie algebra L generated by H0 and H1 and show that the
system is controllable on both subspaces:

[Z1,H0] →a1Y1X2 − b1X1Y2

→a1X1X2 + b1Y1Y2,

× [a1Y1X2 − b1X1Y2, a1X1X2 + b1Y1Y2]

→(
a2

1 + b2
1

)
Z1 − 2a1b1Z2 → Z2.

Continuing this process, we obtain all Zj , ajXjXj+1 +
bjYjYj+1, ajYjXj+1 − bjXjYj+1, and H2 = ∑

j cjZjZj+1.
Next we have

[ajYjXj+1 − bjXjYj+1,Zj+1] → ajYjYj+1 − bjXjXj+1

and together with ajXjXj+1 + bjYjYj+1 we can decouple
and get XjXj+1 and YjYj+1. Similarly, we can decouple
and independently generate XjYj+1 and YjXj+1. This is a
major difference from the XXZ case, where the XX and YY

operators at neighboring locations cannot be decoupled. Due
to such decoupling, we expect that the dynamical Lie algebra
L generated by H0 and H1 will be larger than the XXZ

case. Repeating the same generation process by calculating
the commutators and letting P denote either the Pauli operator
X or Y here, we obtain the k-body operators

M1 = {Zk},
M2 = {PjPk,ZjZk},
M3 = {PjPkZm} ∪ {ZkZmZn},

...

For M�, when � is even, we can generate

Pm1Pm2Zm3 · · ·Zm�
,

Pm1Pm2Pm3Pm4Zm5 · · · Zm�
,

...

Pm1Pm2 · · · Pm�−1Pm�
,

Zm1Zm2 · · · Zm�
.

When � is odd, we can generate

Pm1Pm2Zm3 · · · Zm�
,

Pm1Pm2Pm3Pm4Zm5 · · · Zm�
,

...

Pm1Pm2 · · · Pm�−2Pm�−1Zm�
,

Zm1Zm2 · · ·Zm�
.

Compared with the XXZ chain, where we can only generate
coupled Z-type operators such as (Z1 − Z2)Z3Z4, for the
XYZ chain, we can separately generate Z1Z3Z4 and Z2Z3Z4.
Here M� can be divided into two subsets: the set of (P − Z)-
type operators and the set of Z-type operators, where each
P − Z operator can contain 2p operators of type P and
N − 2p operators of type Z, p = 1, . . . ,��/2	. Hence, a basic

combinatorics argument gives

rank(M�) =
k∑

p=1

22p

(
N

2p

)
��/2	rp

(
N − 2p

� − 2p

)
+

(
N

�

)

and the dimension of L (N > 2),

dim(L) =
∑

N� = 2N

�N/2	∑
k=0

(
N

2k

)
− 2 = 22N−1 − 2,

where we have used the identity

�N/2	∑
k=0

(
N

2k

)
=

�N/2	∑
k=0

(
N

2k + 1

)
= 2N−1.

Since H0 and H1 are simultaneously block diagonalized
on H1 ⊕ H−1, L must be a subalgebra of LT = u(2N−1) ⊕
u(2N−1). Moreover, since the k-body Z operators in L are
generated from the (k + 1)-body P − Z operators, L does not
include two Z-type operators, the identity I and Sp, which are
contained in LT . Hence, we have

dim(L) � dim(LT ) − 2 = 22N−1 − 2 = dim(L)

and dim(L) achieves the allowed maximal value, which is only
possible whenL = u(2N−1) or su(2N−1) on both subspacesH1

and H−1. Noticing that H0 and H1 are trace zero on H1 and
H−1 for N > 2, we must have L = su(2N−1) on both H1 and
H−1 for N > 2. For N = 2 it is easy to check that L = u(2)
on H1 and H−1. Thus, we have proved the following.

Theorem 2. For an XYZ chain of length N with a single
local control on the end spin in the Z direction, the system
is controllable on each of the two invariant subspaces H1 and
H−1.

As there is nothing special about the z direction here, this
result applies for a local control in the x, y, or z direction.

C. Control leakage on neighboring spins

The previous assumption of the control affecting only a
single spin is an idealization. In practice, it is difficult to
apply a control field that only acts on a single spin without
affecting its neighbors to some extent. Hence, a more realistic
assumption is that a control applied to one spin will also
perturb neighboring spins due to field leakage. This leads to
a modification of the control Hamiltonian from H1 = Z1 in
the ideal case to H1 = ∑k

j=1 γjZj , where γj characterizes the
effect of the field leakage. We consider two typical cases: linear
γj = −αj + β and exponential γj = e−μ(j−1)2

decay. In the
following, we show that the subspace controllability results
discussed in the previous sections are robust with regard to
such control leakage, in that the invariant subspace structure
and controllability of the system remain unchanged.

Starting with our system and control Hamiltonians

H0 =
N∑

j=1

ajXjXj+1 + bjYjYj+1 + cjZjZj+1, (7a)

H1 =
k∑

j=1

γjZj (7b)
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and defining the adjoint action of H1 on H1 as AdH1 (H0) =
[H1,H0] and Aj = ajXjXj+1 + bjYjYj+1, we have

Ad(2)
H1

(H0) = γ 2
12A1 + · · · + γ 2

k−1,kAk−1 + γ 2
k Ak,

Ad(4)
H1

(H0) = γ 4
12A1 + · · · + γ 4

k−1,kAk−1 + γ 4
k Ak,

...

Ad(2k)
H1

(H0) = γ 2k
12 A1 + · · · + γ 2k

k−1,kAk−1 + γ 2k
k Ak,

where we used the shorthand notation γk� = γk − γ�. The
coefficients in this expression can be gathered in a matrix

V =

⎛
⎜⎜⎜⎝

(γ1 − γ2)2 · · · (γk−1 − γk)2 γ 2
k

(γ1 − γ2)4 · · · (γk−1 − γk)4 γ 4
k

... · · · ...
...

(γ1 − γ2)2k · · · (γk−1 − γk)2k γ 2k
k

⎞
⎟⎟⎟⎠.

Case (1) When the leakage of the local control is linear, i.e.,
γj − γj+1 = γ� − γ�+1 for different j and �, we can generate
the operator Ak = akXkXk+1 + bkYkYk+1 from any two rows
of V . Analogously, we can generate akXkYk+1 − bkYkXk+1

and hence generate Zk − Zk+1. From Ak , we can also generate
B0 = Ad(2)

H1
(H0) − γ 2

k Ak . From Zk − Zk+1 and B0, we can
sequentially generate Aj and Zj , j = k − 1,k − 2, . . . ,1.

Case (2) When the leakage of the local control decays
nonlinearly, e.g., γj = e−μ(j−1)2

, we have γj − γj+1 �= γ� −
γ�+1 �= γk , and from the property of Vandermonde matrix,
det(V ) �= 0. Hence we can generate each Aj , j = 1, . . . ,k.
Together with H1, we can decouple and generate Zj , j =
1, . . . ,k.

Hence, in both cases, L generated by H0 and H1 in (7) is
the same as that generated by H0 and H1 = Z1. In general, for
other types of nonlinear leakage, the above reasoning is valid
for almost all choices of γj . Thus we have the following.

Theorem 3. For an XXZ or XYZ chain of length N , under
a single local control on the end spin in the Z direction with
leakage to the neighboring spins, the system is controllable on
each of the invariant subspaces.

D. The X X chain under a single end control

Based on the previous results, one might be tempted to
conclude that the controllability results in spin chains with
other types of couplings as well. We will now show that this
is not the case and the presence of spin-spin interactions
in all three directions is essential to guarantee subspace
controllability. When the Heisenberg coupling is replaced by
XX coupling, subspace controllability no longer holds, except
on the first excitation subspace. Specifically, the Hamiltonian
describing an XX chain and a single end control in the Z

direction are written as

H0 =
N∑
n

γn(XnXn+1 + YnYn+1), H1 = Z1. (8)

Theorem 4. For an XX chain of length N with a single
local control on the end spin in the Z direction, the associated
dynamical Lie algebra L is a faithful representation of u(N ) in
each excitation subspace Hk , k = 1, . . . ,N − 1.

Proof. To prove that L is indeed isomorphic to u(N ),
we determine all independent operators generated from the
Hamiltonians, as we did in previous sections, and show that
these operators satisfy the same commutation relations as the
standard basis of u(N ) [10]. However, to make the analysis
of faithful representations simpler and more convenient, we
transform the original representation using the Jordan-Wigner
transformation, a powerful tool initially developed in theoret-
ical physics: Defining

am :=
∏
n<m

Zn(X − iY )m,

where am are fermionic annihilation operators, with the
canonical anticommutation relations

{am,an} = {a†
m,a†

n} = 0, {am,a†
n} = δmn,

the Hamiltonians are transformed into

H0 =
N∑

n=1

γn(a†
nan+1 + a

†
n+1an),

H1 = a
†
1a1.

By calculating the commutation relations between the Hamil-
tonians, we can verify the following identities:

[iH1,iH0] → y12 := a
†
1a2 − a

†
2a1,

[iH1,y12] → x12 := i(a†
1a2 + a

†
2a1),

[x12,y12] → z2 := ia
†
2a2.

Then we can generate H̄0 = H0 − γ1x12, which represents
the system Hamiltonian for a chain of length N − 1, and z2

amounts to the end control on H̄0. Thus, by induction we can
sequentially generate

yn,n+1 := a†
nan+1 − a

†
n+1an, n = 1, . . . ,N − 1

xn,n+1 := i(a†
nan+1 + a

†
n+1an), n = 1, . . . ,N − 1

zn := i(a†
nan), n = 1, . . . N.

Hence, we have generated three kinds of anti-Hermitian
operators xn,n+1, yn,n+1, and zn, satisfying

[xmn,zn] = ymn, (9a)

[ymn,zn] = −xmn, (9b)

[xmk,xkn] = ymn, (9c)

[xmk,ykn] = −xmn, (9d)

[xmn,ymn] = 2(zm − zn), (9e)

which are the same as the commutation relations satisfied by
the standard basis of u(N ) [10]. Hence, we have L = u(N ).

Finally, to show that L is a faithful representation in each
excitation subspace Hk , k = 1, . . . ,N − 1, it is sufficient to
show that the images of the generators xn,n+1, yn,n+1, and zn in
Hk are nonzero. Choose a vector |α〉 ∈ Hk in the computational
basis with n and n + 1 positions as |0〉 and |1〉 and define
another basis vector |β〉 ∈ Hk such that β only differs from α
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at n and n + 1 positions, with values |1〉 and |0〉. Restricted on
Hk , we have

〈β|yn,n+1|α〉 = 〈β|a†
nan+1|α〉 = 1,

〈β|xn,n+1|α〉 = 〈β|a†
nan+1|α〉 = i,

〈β|zn|β〉 = 〈β|a†
nan|β〉 = 1.

Hence, on each Hk , k = 1, . . . ,N − 1, L is a faithful repre-
sentation of u(N ).

IV. MINIMAL CONTROLS FOR FULL
CONTROLLABILITY

In the previous section we discussed the control problem
of spin chains with a single local control acting at the end of
the spin chain. In general, as the number of controls increases,
symmetries will disappear and the system will become fully
controllable on the entire Hilbert space under a sufficient
number of independent controls. An interesting question in
this context is what minimal control resources are required to
make our chain fully controllable and whether the type and
location of the control actuator matter. For example, does it
matter if we control the end spin or will any spin in the chain
do, or are controls acting in different directions preferable to
controls acting in the same direction on different spins?

A. Controlling Z1 and X1

In [7] it was proved by the propagation property that an
XXZ chain with two independent local controls such as
H1 = Z1 and H2 = X1 is fully controllable on the entire space.
We can rederive this result from our analysis in the previous
section: Observing the operators generated by H0 and H1 and
writing down the operators generated by H0 and H2, it is
easy to see that we can generate all k-body Pauli operators
k = 1, . . . ,N in u(2N ). Hence the system is fully controllable.

Theorem 5. For an XXZ or XYZ chain of length N , with
two local controls on the end spin, H1 = Z1 and H2 = X1, the
system is controllable on the whole space.

B. Controlling Zk and Xk

Theorem 5 shows that two controls acting in orthogonal
directions on the end spin suffice to make the system
controllable on the entire Hilbert space. What if we can fully
control one spin at other locations? It is not easy to prove
controllability in this case using the propagation property, but
it is easy to prove using our computational technique that
two independent controls acting in orthogonal directions such
as Z and X on the kth spin in the chain, giving rise to the
Hamiltonians

H0 =
N∑
j

ajXjXj+1 + bjYjYj+1 + cjZjZj+1,

H1 = Zk, H2 = Xk,

are sufficient for controllability on the entire Hilbert space,
except when N = 2k + 1, in which case the Hamiltonians
exhibit mirror permutation symmetry with respect to the center
spin.

To extend our controllability results to controls acting on
the kth spin, we show that given H0, Zk , and Xk we can
generate Z1 and X1 and apply the previous theorem. Without
loss of generality assume k � �N/2	. For simplicity let Bk =
akXkXk+1 + bkYkYk+1 and note [Zk,[Zk,H0]] = Bk−1 + Bk ,

P := 1
4 [Bk−1 + Bk,[Bk−1 + Bk,Zk]]

= (
a2

k−1 + b2
k−1 + a2

k + b2
k

)
Zk + W − Q1,

W := 2(ak−1ak Xk−1Xk+1 + bk−1bk Yk−1Yk+1)Zk,

Q1 := 2ak−1bk−1 Zk−1 + 2akbk Zk+1.

The term proportional to Zk can be subtracted from P and
further subtracting 1

4 [Xk,[Xk,Q1 + W ]] = W , we generate
Q1. Next setting ck = 2akbk and dk = ckc

5
k+1 we obtain

1
4 [Q1,[Q1,H0]] → c2

k−1Bk−2 + c2
kBk+1 = D1,

1
4 [D1,[D1,Q1]] → ck−2c

5
k−1Zk−2 + ck+1c

5
kZk+2 = Q2.

Iterating the procedure, replacing Q1 above by Q2, etc., we
can sequentially generate coupled B and Z terms of the form

Bk−1 + Bk, dk−1Zk−1 + dk+1Zk+1,

d ′
k−2Bk−2 + d ′

k+1Bk+1, dk−2Zk−2 + dk+2Zk+2,

d ′
k−3Bk−3 + d ′

k+2Bk+2, dk−3Zk−3 + dk+3Zk+3,

...

d ′
1B1 + d ′

2k−1B2k−1, d1Z1 + d2k−1Z2k−1.

When we hit the end of the chain we continue generating

B2k−1Z2k − Z2k−1,

B2kZ2k+1 − Z2k,

...

BN−1ZN−1 − ZN.

Finally, starting from [ZN−1 − ZN,H0], we can sequen-
tially generate ZN−1 − ZN,ZN−2 − ZN−1, . . . ,Zk − Zk+1.
Together with Zk , we can therefore generate Zk+1 and hence
Zk+1, . . . ,Z2k−1, . . . ,ZN . Together with d1Z1 + d2k−1Z2k−1,
we can decouple and generate Z1. Similarly, starting with
[Xk,[Xk,H0]] instead of [Zk,[Zk,H0]], we can generate X1.

Theorem 6. For an XXZ or XYZ chain of length N , with
two local controls on the kth spin, H1 = Zk and H2 = Xk , and
N �= 2k + 1 the system is controllable on the whole space.

C. Controlling Z1 and Xk

Finally, it is interesting to consider whether two indepen-
dent controls acting on different spins such as Z1 and Xk on the
first and the kth spins are still sufficient for full controllability
for an XYZ or XXZ chain. In this case the Hamiltonians are

H0 =
N∑
j

ajXjXj+1 + bjYjYj+1 + cjZjZj+1,

H1 = Z1, H2 = Xk.

We show in Appendix A that H0 and H1 can generate the Ising
coupling term HZZ = ∑N−1

j cjZjZj+1. Taking commutators
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with the second control Xk further gives

[Xk,HZZ] → ck−1Zk−1Yk + ckYkZk+1,

[Xk,ak−1Xk−1Xk + bk−1Yk−1Yk] → Yk−1Zk,

[Xk,Yk−1Zk] → Yk−1Yk,

[Yk−1Yk,ck−1Zk−1Yk + ckYkZk+1] → Xk−1.

Continuing this process, we can sequentially generate
Xk−2,Xk−3, . . . ,X2 and finally X1 and by Theorem 5 we have
the following.

Theorem 7. For an XXZ or XYZ chain of length N , with
two local controls Z1 and Xk , 1 � k � N , on the first and the
kth spins, the system is controllable on the whole space.

V. CONCLUSION

We have proved that spin chains with Heisenberg coupling,
although not fully controllable with a single control field acting
locally due to symmetries, are fully controllable on all invariant
subspaces of the symmetry operator. The symmetries differ
depending on whether the coupling is isotropic or anisotropic.
If the coupling is isotropic in the directions perpendicular to
the control field then there are N + 1 invariant subspaces of
dimensions dk = (N

k
) ranging from 1 for k = 0,N to ( N

N/2)
for the largest subspace with k = N/2; otherwise there are
only two subspaces of dimension 2N−1 corresponding to
parity symmetry with regard to the control direction. In
both cases the dimension of the largest invariant subspace
increases exponentially with the number of spins, showing
that a Heisenberg spin chain with a single local control
is theoretically sufficient for scalable quantum computation.
Notably, the controllability result is robust with regard to
system inhomogeneity (nonuniform interaction strengths) and
control leakage, i.e., unwanted effects of the control field on
nearby spins.

To prove these results we developed a technique to
systematically evaluate the dynamical Lie algebra of the
system based on the decomposition of the operators into
subspaces spanned by n-body interaction terms, which can be
iteratively constructed starting from the given local control and
the two-body interactions present in the system Hamiltonian.
This approach enables us to construct the DLA and evaluate
its dimension for chains of any length, different symmetries,
and different types of controls. It is also applicable when the
propagation property is not fulfilled and thus simple induction
on the length of the chain is not possible, for example, when
we have only a single local control (as opposed to two linearly
independent controls) acting on one end of the chain, local
controls in orthogonal directions acting on an interior spin, or
local controls acting on different spins. The techniques used
to iteratively construct the n-body interaction subspaces and
evaluate their dimension can also be applied to construct the
DLA for spin networks with different topologies and different
types of interactions.

A comparison of chains with different types of iterations
such as XXZ, XYZ, and XX shows that the interaction type is
important. If there is no spin-spin coupling in the direction of
the applied control field, as in the XX case with local controls
in the Z direction, then the DLA on all excitation subspaces is
simply a high-dimensional representation of the dynamical Lie

algebra on the single excitation subspace. Such a spin system
may be of interest for information transfer applications (e.g.,
quantum wires) but not applications such as scalable quantum
computing, which require a DLA that grows exponentially in
the number of qubits (or spins). If there is spin-spin coupling
in the direction of the control field then our results show that
a single local control is sufficient for controllability of an
exponentially large subspace, and in general the addition of
a second local control acting in a different direction, either
on the same spin or a different spin, is sufficient to achieve
controllability on the entire space. This does increase the
overall Hilbert space dimension but does not change the scaling
of the Hilbert space dimension with the number of qubits,
showing that the benefit of the addition of a second local
control in a direction orthogonal to the first is not significant
for large N and the costs of including physical effects such as
hysteresis may well outweigh any gains.

APPENDIX A: THE X X Z AND XY Z CHAINS
WITH Z1 CONTROL

We calculate the Lie algebra L generated by H0 and H1 in
(4).

Step 1. Show that we can implement the local operators
Zk for k = 1, . . . ,N and the nearest-neighbor two-body in-
teraction terms Ak = XkYk+1 − YkXk+1 and Bk = XkXk+1 +
YkYk+1 for k = 1, . . . ,N − 1 and reduce the Heisenberg
Hamiltonian H0 to an Ising chain Hamiltonian Hzz =∑N−1

j=1 aj cjZjZj+1. The proof is straightforward. The elemen-
tary product rules for Pauli matrices give

[Z1,H0] → A1, [Z1,A1] → B1,

[A1,B1] → Z2 − Z1 → Z2.

Subtracting a1B1 from H0 and repeating the above steps with
H0 replaced by H ′

0 = H0 − a1B1 and Z1 replaced by Z2, we
generate A2, B2, and Z3, and iterating the process, we generate
all Zk , Ak , and Bk and reduce H0 to the Ising chain coupling
term HZZ = H0 − ∑

j ajBj .1

Step 2. Show that we can generate the nearest-neighbor
three-body terms ZkBk+1, BkZk+2, ZkAk+1, and AkZk+2 and
the individual nearest-neighbor Z-coupling terms ZkZk+1 for
1 � k < N :

[A1,HZZ] → B1Z3,

[A1,B1Z3] → (Z1 − Z2)Z3,

[A2,(Z1 − Z2)Z3] → Z1B2,

[A2,HZZ] → Z1B2 + B2Z4,

[A2,B2Z4] → (Z2 − Z3)Z4,

[A3,(Z2 − Z3)Z4] → Z2B3,

1Notice the difference here from the case where there are two
independent local controls such as X1 and Y1. In this case we can
immediately generate Z1 = [X1,Y2] and taking commutators of these
local operators with H0, we immediately generate su(2) and we can
then proceed to show controllability by induction on the length of the
chain.
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[A3,HZZ] → Z2B3 + B3Z5,

[A3,B3Z5] → (Z3 − Z4)Z5,

...

which shows that we can generate the three-body terms
ZkBk+1 and BkZk+2, from which we obtain [Zk+1,ZkBk+1] →
ZkAk+1 and [Zk,BkZk+2] → AkZk+2. Finally, let Aj,k =
XjYk − YjYk and Bj,k = XjXk + YjYk and observe

[Ak,Bk−1] → Bk−1,k+1Zk,

[Ak−1,Zk−1Bk] → Bk−1,k+1,

[Zk−1,Bk−1,k+1] → Ak−1,k+1,

[Bk−1,k+1Zk,Ak−1,k+1] → Zk−1Zk − ZkZk+1.

Together with HZZ we can decouple and generate ZkZk+1 for
1 � k < N .

Step 3. We use the nearest-neighbor two-body and three-
body interaction terms Ak , Bk , ZkZk+1, and BkZk+2 to
show that we can generate the non-nearest-neighbor two-body
interactions Akj , Bkj , and ZkZj for any 1 � k < j � N and
the three-body terms AkjZm and BkjZm:

[Ak,Zk+1Zk+2] → BkZk+2,

[BkZk+2,Ak+1] → Bk,k+2,

[Zk,Bk,k+2] → Ak,k+2,

[Ak,k+2,Zk+2Zk+3] → Bk,k+2Zk+3,

[Bk,k+2Zk+3,Ak,k+2] → Bk,k+3,

...

Continuing this process, we generate all Akj and Bkj for 1 �
k < j � N . We also generate the three-body terms BkjZj+1,
from which we can generate (Zk − Zj )Zj+1 together with the
already generated ZjZj+1 and ZkZj for k < j , and finally the
three-body terms AkjZm and BkjZm.

Step 4. So far we have generated the local operators Zk ,
the two-body operators Ajk , Bjk , and ZjZk and the three-
body operators BjkZm and AjkZm. From these operators we
generate the four-body operators and three-body Z operators

[BjkZm,Amn] → BijBmn,

[BjkZm,ZkZn] → AjkZmZn,

[Bjk,AjkZmZn] → (Zj − Zk)ZmZn.

Continuing this process, we sequentially generate �-body
XYZ-mixed operators and (� − 1)-body Z operators. When
� is even, we can generate

Bm1,m2Zm3 · · ·Zm�
,

Bm1,m2Bm3,m4Zm5 · · · Zm�
,

...

Bm1,m2 · · · Bm�−1,m�
,

(Zm1 − Zm2 )Zm3 · · · Zm�
.

When � is odd, we can generate

Bm1,m2Zm3 · · · Zm�
,

Bm1,m2Bm3,m4Zm5 · · · Zm�
,

...

Bm1,m2 · · · Bm�−2,m�−1Zm�
,

(Zm1 − Zm2 )Zm3 · · · Zm�
.

APPENDIX B: RANK OF EN, p

Theorem 8. For given N and p with N � 2p, the rank of
the p-pair operator set EN,p is equal to (N

p
)(N−p

p
).

Since, when evaluating rank(EN,p), only linear relations
between the operators of EN,p are involved, we can consider
every element of EN,p as a polynomial in terms of 2N variables
and transform the original problem into evaluating the rank of
a set of polynomials. Specifically, for positive integers N and
p with N � 2p, let E be the set of any polynomials in terms of
2N variables x1,x2, . . . ,xN and y1,y2, . . . ,yN , satisfying the
following form:

P [x1,x2, . . . ,xN ; y1,y2, . . . ,yN ]

= q(m1,m2)q(m3,m4) · · · q(m2p−1,m2p)q(m2p−1,m2p),

where q(j,k) can take two forms, either q(j,k) = xjxk + yjyk

or q(j,k) = xjyk − yjyk , and the mk’s are distinct from each
other, with mk ∈ [1, . . . ,N], k = 1, . . . ,2p. In other words,
any element in E is a product of p terms, each taking the form
xx + yy or xy − yx. For example, the following polynomials
are in E:

(x1x2 + y1y2)(x3x4 + y3y4) · · · (x2p−1x2p + y2p−1y2p),

(x1y2 − y1x2)(x3y4 − y3x4) · · · (x2p−1y2p − y2p−1x2p).

As discussed earlier, the total number of polynomials in E is
p!(N

p
)(N−p

p
). However, not all of them are linearly independent

and we aim to evaluate rank(E) over R.
Since the numbers 2N of variables xj and yj are linearly

independent, the rank of E over R is the same as its rank
over C, i.e., rankR(E) = rankC(E). Next, over the field C, we
can apply the reversible transformations zj = xj + iyj and
z∗
j = xj − iyj and then all elements in E can be expressed as

polynomials over C in terms of zj and z∗
k . This is equivalent

to considering raising and lowering operators in the algebra.
Specifically,

xjxk + yjyk = Re(z∗
j zk),

xjyk − yjxk = Im(z∗
j zk).

Then any element q(m1,m2) · · · q(m2p−1,m2p) in E can be
rewritten as Q(z∗

m1
zm2 ) · · · Q(z∗

m2p−1
zm2p

), where Q(z) is an
operation that takes either the real or the imaginary part of
z. Hence, all elements in E can be rewritten in terms of the
number 2N of independent complex variables: z1, . . . ,zN and
z∗

1, . . . ,z
∗
N . Next we can show that the space generated by the

set E is the same as the one generated by the set F whose
elements are in the following form: z∗

m1
zm2 · · · z∗

m2p−1
zm2p

,
where mk ∈ [1, . . . ,N], k = 1, . . . ,2p. In order to see this,
we will show that Q(z∗

m1
zm2 ) · · · Q(z∗

m2p−1
zm2p

) in E can be
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generated by the elements in F : From the sum of or the differ-
ence between z∗

m1
zm2 · · · z∗

m2p−1
zm2p

and z∗
m2

zm1 · · · z∗
m2p−1

zm2p
,

we can generate Q(z∗
m1

zm2 )z∗
m3

zm4 · · · z∗
m2p−1

zm2p
. Continuing

such a process, we can use polynomials in the form of
Q(z∗

m1
zm2 )z∗

m3
zm4 · · · z∗

m2p−1
zm2p

to generate elements in the
form of Q(z∗

m1
zm2 )Q(z∗

m3
zm4 ) · · · z∗

m2p−1
zm2p

. Continuing such a
process, we can finally generate Q(z∗

m1
zm2 ) · · · Q(z∗

m2p−1
zm2p

).
On the other hand, reversing such a process, we can gen-
erate z∗

m1
zm2 · · · z∗

m2p−1
zm2p

from Q(z∗
m1

zm2 ) · · · Q(z∗
m2p−1

zm2p
).

Therefore, we have shown that span(E) = span(F ) over C,
inducing rankC(E) = rankC(F ).

Next we evaluate the rank of F over C. Since the 2N

variables zj and z∗
j are linearly independent, all elements

in F , as in the product form of z∗
m1

zm2 · · · z∗
m2p−1

zm2p
, are

hence independent as well. In order to obtain an element
in F , we choose number p of zj ’s from the indices j ∈
{1, . . . ,N} and choose a number p of z∗

j ’s from the remaining
N − p number of indices. Then the number of elements
in F is (N

p
)(N−p

p
), which equals rankC(F ) = rankC(E) =

rankR(E). Thus, we have proved rankR(E) = (N
p

)(N−p
p

).

Therefore, L is the Lie algebra described in the text before
Theorem 1.
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