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Running heading: Species dynamics in grassland mixtures 

 

Summary 

1. Increased species diversity promotes ecosystem function; however, the dynamics of 

multi-species grassland systems over time and their role in sustaining higher yields 

generated by increased diversity are still poorly understood. We investigated the 
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development of species’ relative abundances in grassland mixtures over three years to 

identify drivers of diversity change and their links to yield diversity effects.  

2. A continental-scale field experiment was conducted at 31 sites using 11 different four-

species mixtures each sown at two seed abundances. The four species consisted of 

two grasses and two legumes, of which one was fast establishing and the other 

temporally persistent. We modelled the dynamics of the four species mixtures, and 

tested associations with diversity effects on yield.  

3. We found that species’ dynamics were primarily driven by differences in the relative 

growth rates of competing species, and secondarily by density dependence and 

climate. The temporally persistent grass species typically had the highest relative 

growth rates and hence became dominant over time. Density dependence sometimes 

induced stabilising processes on the dominant species and inhibited shifts to 

monoculture. Legumes persisted at most sites at low or medium abundances and 

persistence improved with higher site annual minimum temperature.  

4. Significant diversity effects were present at the majority of sites in all years and the 

strength of diversity effects was improved with higher legume abundance in the 

previous year. Observed diversity effects, when legumes had declined, may be due to 

(i) important effects of legumes even at low abundance, (ii) interaction between the 

two grass species or (iii) a store of N because of previous presence of legumes. 

5. Synthesis. Alongside major compositional changes driven by relative growth rate 

differences, diversity effects were observed at most sites, albeit at reduced strength as 

legumes declined. This evidence strongly supports the sowing of diverse mixture 

swards that include legumes over the long-standing practice of sowing grass 

monocultures. Careful and strategic selection of the identity of the species used in 

mixtures is suggested to facilitate the maintenance of species diversity and especially 
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persistence of legumes over time, and to preserve the strength of yield increases 

associated with diversity.  

 

Key-words: climate, determinants of plant community diversity and structure, diversity 

effects, grasses, legumes, multi-species communities, relative growth rate, species 

composition, stabilising processes, sward dynamics.    

 

Introduction 

The common practice of managing highly fertilised grassland monocultures has been 

often critiqued because of financial and environmental costs associated with high levels of 

fertiliser application, and the inability of a single species to fully utilise system resources. 

Thus, there is a need for productive systems that require less fertiliser and have positive 

environmental impacts (Tilman 1999; Lüscher et al. 2014; Suter et al. 2015). There is wide 

consensus that increasing species diversity often promotes ecosystem functions such as 

biomass yield, nitrogen yield, nutrient uptake and resistance to weed invasion (Sanderson et 

al. 2004; Hooper et al. 2005; Frankow-Lindberg 2012; Roscher et al. 2013; Suter et al. 

2015). Complementarity among species, for example between grasses and legumes, can 

induce such synergistic effects in ecosystem functions (Finn et al. 2013). Nevertheless, over 

time, some species in a mixture may become dominant at the expense of other species and 

sward diversity may be reduced. In particular, legumes may decline or disappear (Beuselinck 

et al. 1994; Guckert & Hay 2001), thus improvements in yield due to diversity may be 

reduced (Carroll, Cardinale & Nisbet 2011). The extent to which declining species diversity 

(not only species and functional richness but also species evenness) will diminish diversity 

linked yield increases remains uncertain. The use of species with different rates of 

establishment in grass-legume mixtures may help maintain species diversity and provide 
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additional opportunities for complementarity along a temporal axis (Sanderson, Stout & 

Brink 2016). Here, we examine the dynamics of relative abundances of multiple species in 

agronomic grassland mixtures across a wide pedo-climatic scale of 31 coordinated multi-year 

experimental sites. The experimental species comprised four mutually complementary 

functional groups: a fast-establishing and a temporally-persistent grass, and a fast-

establishing and a temporally-persistent legume. We test causes of changes in dynamics at the 

species level and also test the association between changing species relative abundances and 

diversity effects on yield. Identifying patterns in sward dynamics will contribute to our 

understanding of how to retain sward diversity and associated benefits over the lifetime of an 

agronomic system.  

 

Potential drivers of changes in the relative abundances of species over time in mixture 

communities include 1) the species selected for the mixture which will differ in functional 

traits that underpin variation in intrinsic relative growth rates and competitive hierarchies 

(Aarssen 1983), 2) their initial biomasses through density dependence (Suter et al. 2010), 3) 

attributes of the environment such as climatic conditions (Van der Putten, Macel & Visser 

2010), 4) management (Hebeisen et al. 1997; Nyfeler et al. 2009), and 5) biotic factors. In a 

hypothetical two-species system where both have the same average relative growth rate when 

in competition with each other, relative abundances will remain unchanged over time 

(assuming no competitive asymmetry due to differences in foliage architecture) (Fig.1e), but 

if one species has a higher relative growth rate, it will become dominant over time (Fig. 1b). 

The effects of differences in relative growth rates may be reduced or reinforced by 

interspecific and intraspecific density dependence, defined here as when the initial biomass of 

a species is positively or negatively correlated to its own relative growth rate (intraspecific) 

or to those of other species (interspecific). For example, if species 1 has a greater relative 
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growth rate than species 2 but species 1 also has a negative intraspecific density dependence, 

the combination of these two effects may act as a stabilising process on the system (defined 

as "any mechanism that causes species to limit themselves more than they limit others" by 

Adler et al. (2007)). Such an intraspecific density dependence may help to maintain 

equilibrium of the relative abundances of the two species by reducing the relative growth rate 

competitive advantage species 1 has over species 2 (compare a and b in Fig. 1). In multi-

species mixtures, understanding sward dynamics is a more complex task due to the large 

number of competitive forces potentially acting within the system; in a system with s species 

there are s intraspecific and s(s-1) interspecific effects, all of which may affect dynamics and 

stability (May 2001; Ramseier, Connolly & Bazzaz 2005). Disentangling relative growth rate 

differences and density dependence assists in determining the stabilising or destabilising 

processes within the system. 

 

Strategically selecting the species in a mixture to span a wide niche space increases 

the propensity of mechanisms such as complementarity and facilitation to occur, which 

maximises resource use and promotes ecosystem function (Hooper et al. 2005; Wood et al. 

2015). For example, combining grasses and legumes in a grassland system produces 

synergistic effects caused by the additional N input to the system by the N2-fixing legumes 

(Boller & Nösberger 1987; Carlsson & Huss-Danell 2003; Nyfeler et al. 2011). While 

diversity can positively impact on ecosystem functions in the absence of legumes (van 

Ruijven & Berendse 2003), legume*non-legume interaction effects may be stronger than 

interactions between legumes or between non-legumes (Nyfeler et al. 2009). However, 

difficulties have been identified in maintaining legume proportions in swards over 

agronomically relevant time periods because of vulnerability to abiotic and biotic stress 

(Beuselinck et al. 1994; Guckert & Hay 2001). The use of multiple legume species that 
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specifically vary in their rates of establishment and in their persistence may facilitate resource 

use and help maintain the contribution of legumes over the lifetime of the system (Sanderson, 

Stout & Brink 2016).  

 

Grassland production is expected to be higher in mild to warm climates compared to 

more extreme hot or cold climates, and short-term extreme climatic events might cause 

deviations from the expected productivity (Isbell et al. 2015; Hofer et al. 2016). However, 

less is known about how climate, or short-term weather events, affect the relative growth 

rates and persistence of individual species within multi-species mixtures. Wachendorf et al. 

(2001) and Lüscher et al. (2005) found that higher air temperature increased the relative 

abundance of white clover in parts of the growing season. The growth and relative abundance 

of legumes in two-species mixtures with grasses are generally favoured in milder 

environments (Newton et al. 1994; Nolan, Connolly & Wachendorf 2001) but uncertainty 

remains as to how this result extrapolates to more diverse mixtures.  

 

Here, we report on a continental-scale multi-site experiment ("The Agrodiversity 

Experiment", Kirwan et al. 2014), where we tracked the plot-level annual yields of each of 

four sown species over three years. The species used included two grasses and two legumes, 

and within each, one species was fast establishing and the other was temporally persistent; it 

was anticipated that the fast establishing species would have higher RGRs initially with the 

temporally persistent species subsequently overtaking. At each site, four species with these 

traits that were high performing agricultural species for forage production (yield and forage 

quality), given the site conditions, were selected. We evaluated the dynamics of the four-

species mixtures to highlight the drivers of changes in species proportions, including 

differences in the relative growth rates of competing species, initial biomasses (i.e. density 
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dependence), and climate, and we examined stabilising and destabilising patterns in the 

coexistence of the four species. Besides a decline of species richness, a decline in the 

evenness of the system might also occur, which can considerably influence ecosystem 

function (Kirwan et al. 2007). The experiment was designed with the intention to maintain 

the coexistence of both grasses and legumes in mixtures by selecting species with different 

temporal development traits, i.e. we expected a shift in species abundance across the fast 

establishing and temporally persistent species but hoped for good equilibrium across the grass 

and legume species. We address the following questions:  

 

(1) Do the relative abundances of the four species in mixtures change over time and to 

what extent do differences in the relative growth rates of competing species drive the 

changes?  

(2) Are the effects of differences in relative growth rates altered by density dependence? 

Do the combination of species’ relative growth rates and density dependence induce 

stabilising processes? 

(3) Is the persistence of legumes over the experimental period related to the rapidity of 

establishment and persistence traits of the selected legume species and/or the grass 

partner(s)? 

(4) Are species dynamics related to site-specific climatic variables? 

(5) Is there a relationship between species’ dynamics in mixture and diversity effects on 

yield? 
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Materials and methods 

EXPERIMENT 

Experimental mixtures of grassland species from four functional types were 

established over a wide geographic and climatic gradient at 30 European sites and one 

Canadian site (Kirwan et al. 2007; Kirwan et al. 2014). The four functional types were 

chosen to span gradients in N acquisition and temporal establishment. At each site, we chose 

a fast establishing (denoted GF) and a temporally persistent (GP) grass species, and a fast 

establishing (LF) and a temporally persistent (LP) N2-fixing legume species. The identity of 

the four species sown varied according to species group across the 31 sites (Table 1, Table S1 

in Supporting Information), where species group was decided broadly according to the 

climatic conditions at the site. The species groups are called Mid-European (ME, 18 sites), 

North European (NE, 6 sites), Moist Mediterranean (MM, 1 site), Dry Mediterranean (DM, 2 

sites), West European (WE, 2 sites), Other 1 (O1, 1 site) and Other 2 (O2, 1 site). There was 

considerable overlap in species across the species groups, resulting in a total of eleven unique 

species across all experimental sites (Table 1). Categorisation of species according to their 

rate of establishment is a relative measure that can be informed by evidence, i.e. while 

Phleum pratense is faster establishing and less persistent than Poa pratensis, it is slower and 

more persistent than Lolium perenne (Klapp 1971). At each site, eleven four-species mixture 

stands were established in experimental plots with the initial proportion of each species 

varying according to a simplex design (Cornell 2002); there were four stands with one of the 

four species dominant (70% of one species, 10% of each of the other three), six stands with a 

pair of species dominant (40% of each of two species, 10% of each of the two others), and a 

stand with each species equally present (25% of each species). The eleven stands were 

replicated at low and high seed abundance (high being the monoculture seeding rate 

recommended by local practice and low being 60% of the high seeding rate) giving 22 plots 
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at each site and a total of 682 plots across the 31 sites. Monocultures of each species were 

also sown at each seed abundance giving a further eight plots at each site. The experiment 

duration (number of post-seeding years) was three years for 24 sites, two years for six sites 

and one year for one site (Table S1) and plots were established between 2002 and 2005. 

Table S1 provides the following site-specific management information: the number of 

harvests (2 to 7 year
-1

), size of experimental plots and of the sub-plots harvested for biomass, 

and N fertiliser applied to all plots at the site (0 to 150 kg N ha
-1

 year
-1

). While N fertiliser 

was applied to all plots at many sites, even the highest level of application (150 kg N ha
-1

 

year
-1

 at five sites) is considerably below levels that are typically applied to intensively 

managed grassland monocultures. Plots were not weeded during the experimental years. Full 

experimental details are available in the Kirwan et al. (2014) data paper and the site 

numbering convention in Table S1 is according to this database.  

 

MEASUREMENTS AND DATA 

The herbage dry matter yield (t ha
-1

) of the four sown species and pooled weed 

species was recorded at each harvest over a period of up to three years at each site where year 

1 was the first full year after establishment, i.e. the first year post-seeding. Sub-samples of the 

yield were separated and used to estimate the yield of each species type (GF, GP, LF, LP) and 

pooled weed species. Values at each harvest within each year were then summed to give the 

annual yields for each species. Some sites did not separate at each harvest but did measure 

total yield; in these cases, the harvests that were separated were used to estimate the 

components of each species in the accumulated annual yield. At each site, daily precipitation 

(mm) and daily minimum, mean and maximum (air) temperature (
o
C) were recorded. Daily 

precipitation values were summed and daily mean temperature values were averaged within 

each year for each site. The average of the lowest ten daily minimum temperature values and 
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average of the highest ten daily maximum temperature values within each year was also 

computed for each site. Daily mean temperature was not recorded for sites 35 and 43 and the 

averages of daily minimum and maximum temperature values were used instead. There was a 

small number of other missing daily values which were omitted from calculations.  

 

STATISTICAL ANALYSIS 

We computed relative growth rates (RGRs) for each species (GF, GP, LF, LP) in each 

mixture plot from sowing to year 1, year 1 to year 2 and year 2 to year 3. In the period from 

sowing to year 1, the RGR was calculated as the natural log of the ratio of the annual yield 

proportion of the species in year 1 to the sowing proportion of the species. For the second two 

comparison periods, the RGR was calculated as the natural log of the ratio of the annual yield 

of a species in the latter year to the former (following Connolly & Wayne 2005; Ramseier, 

Connolly & Bazzaz 2005; Suter et al. 2007). To avoid treating zero yield values as missing, 

they were replaced by the minimum observed non-zero value for each species prior to RGR 

calculations; of 1870 measurements for each species on mixture plots across the 31 sites and 

three years, this occurred in 3% of cases for G1, 1% for G2, 16% for L1, and 13% for L2. 

Such percentages are not expected to distort the outcome of the analyses (it is not “zero-

inflated” data), but rather by assigning a small non-zero value our method respects the 

quantitative value that the zeros should represent. 

Initially, we estimated the average RGR for each species across all 31 sites from 

sowing to year 1 for mixture communities, using a separate linear mixed model for each 

species, and where the average was assumed random from site to site. Then, for each species 

and period of comparison year 1 to 2 and year 2 to 3, we modelled the RGRs across the 

mixture communities as related to the biomass of each species in the community in the 

previous year, (using RGRGF12 to represent the RGR of GF in year 1 to 2 as an example),   
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RGRGF12 = log(y2GF / y1GF) = j + M + 1 y
c
1GF + 2 y

c
1GP + 3 y

c
1LF + 4 y

c
1LP +   (1) 

where y2GF and y1GF are the plot yields of species GF in years 2 and 1, and, for example, y
c
1GP 

is the plot yield of GP in the first year, centred to its average value. M is the overall sown seed 

abundance for the plot, coded -1 for low and +1 for high. The term j is the average relative 

growth rate for species GF in the jth species group (Table 1) at average seed abundance and 

average initial biomass of all species,  is the effect of sown seed abundance, and the s are 

coefficients of the initial biomasses (density dependence). So 2 represents the effect on the 

relative growth rate of GF of a unit increase in GP in the first year. There are eight such 

equations, one for each species in each period of comparison and the models were fitted as 

random coefficient models to respect the multi-site structure of the data (Appendix S1, note 

1). A positive intercept (j) indicates that, at average sown seed abundance and average initial 

biomass of each species, the average yield of the species increased over the time period, but 

for a given community this increase can be magnified or dampened by the combination of all 

other (positive or negative  and ) coefficients. Allowing the j coefficients to vary 

according to species group (as opposed to having a constant ) assumes that a species’ 

average relative growth rate is unique to its competitive setting. For example, Trifolium 

pratense is the LF species in both the ME and NE species groups but its average relative 

growth rate was allowed to differ in the contrasting competitive settings. Climatic variables 

(annual rainfall, and minimum, mean and maximum temperature; centred) were tested by 

adding them to equation 1 one at a time. We tested for pairwise species differences among 

the coefficients in each RGR model using a relative growth rate difference (RGRD) approach 

(Connolly & Wayne 2005). RGR and RGRD models were fitted using either maximum 

likelihood (ML, when testing fixed effects) or restricted maximum likelihood (REML, for 

standard error estimation). Model comparisons were made using likelihood ratio tests. 

To estimate diversity effects we fitted a Diversity-Interactions model (Kirwan et al. 
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2007; Kirwan et al. 2009; Connolly et al. 2013) separately to each site and year. The model is 

  E M 
i

ii Py          (2) 

where y is the total yield (including weed biomass), Pi denotes the sown proportion of species 

i, for i = GF, GP, LF, LP; M is coded -1 for low and +1 for high sown seed abundance, E = 





s

ji
ji

ji PP
s

s

1,1

2
and δ is the diversity effect coefficient. Each species was sown in monoculture 

at high and low seed abundance at each site and these plots were included in this analysis of 

yield, in addition to all mixture plots. To determine whether the strength of estimated 

diversity effects was related to legume abundance in the previous year, we scaled the 

estimated diversity effect coefficients by the estimated average monoculture performance at 

the site (because of the wide range in yields across sites) and fitted a repeated measures 

regression model to the scaled diversity effect coefficients in years 2 and 3, with the average 

legume percentage in the preceding year as the predictor. See Appendix S1 notes 2 and 3 for 

further details of these models. SAS software version 9.3 (SAS Institute Inc) was used to fit 

all models. 

 

Results 

THE FAST ESTABLISHING GRASS DOMINATED THE INITIAL DEVELOPMENT 

PHASE  

The fast establishing grass (GF) had the best average relative growth rate (RGR) of the 

four species from sowing to year 1. Across all sites, the estimated average RGRs from 

sowing to year 1 were: GF: 0.57 (P < 0.001), GP: -0.49 (P = 0.015), LF: -0.51 (P = 0.161), and 

LP: -1.63 (P < 0.001), where P-values test against zero. The average RGR of GF was higher 

than each of the other species (GF vs. GP: P < 0.001, GF vs. LF: P = 0.01, GF vs. LP: P < 
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0.001), and the average RGRs of both GP and LF were higher than LP (GP vs. LP: P = 0.005, 

LF vs. LP: P = 0.03). On average across all plots and all 31 sites, proportions of the four 

species GF, GP, LF, LP in year 1 were 0.42, 0.22, 0.27, 0.10 (Fig. S1a), respectively, while 

average sowing proportions were 0.25 for each species. Note that relative abundances are 

computed relative to sown species (i.e. weeds excluded) here and for the remainder of the 

paper. Thus, GF clearly showed the best, and LP the worst, relative performance during this 

initial phase.  

 

DIFFERENCES IN SPECIES’ RELATIVE GROWTH RATES DOMINATED DYNAMICS  

The relative abundances of the four species sown in mixtures changed substantially 

over the three-year period (Figs. 2 and S1). On average across all 31 sites, the temporally 

persistent grass (GP) became increasingly dominant over time and in year 3 its mean relative 

abundance was 67% (Fig. S1a). There was considerable variation from site to site in mean 

relative abundances of species (Figs. 2 and S1b,c, Table S2). For example, in year 3, site-

level mean GP relative abundance ranged from 5% at the French site (site 9) to 100% at one 

of the Lithuanian sites (site 20). The dominance of GP was more extreme at ME sites, where 

GP was Dactylis glomerata, than at North European (NE) sites, where GP was Poa pratensis, 

(Fig. S1b,c). At individual sites, GP had the highest relative abundance at 5 of the 31 sites in 

year 1, at 19 of 30 sites in year 2 and at 23 of 24 sites in year 3 (Table S2).  

For both the ME and NE species groups at average seed abundance and average initial 

biomass of each species, the average yield of GP increased and all other species decreased in 

both the year 1 to 2 and year 2 to 3 time periods (Table 2, intercepts shown in the first two 

rows, all 8 coefficients were significant for ME but many were not for NE). All the other 

species groups (MM, DM, WE, O1 and O2) only included 1 or 2 sites each; thus, these 

intercepts are based on fewer data and are shown in Table S3. Sown seed abundance affected 
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only the RGR for LF in the comparison period year 1 to 2 (Table 2). Six of the eight 

intraspecific density dependence coefficients were significant and had negative estimates 

(Table 2, highlighted in grey). For example, high year 1 biomass of GF negatively affected its 

own RGR from year 1 to year 2, indicated by the negative coefficient estimate (-0.16) of 

y
c
1GF for the RGR of GF (Table 2, first column). There were also a number of significant 

interspecific density dependence coefficients, indicated by bold font in the off-diagonal initial 

biomass coefficients (Table 2). For example, high year 1 biomass of GP negatively affected 

the year 1 to year 2 RGR of GF, indicated by the negative coefficient estimate (-0.30) of y
c
1GP 

for the RGR of GF (Table 2, first column). For most models, the inclusion of the four density 

dependence coefficients was highly significant (Table 2, likelihood ratio tests). 

Using model estimates (Table 2), we predicted relative abundances for the ME and 

NE species groups for years 2 and 3 across a range of relative abundance combinations in 

years 1 and 2, respectively. Predictions were first made on the biomass scale, holding total 

biomass of all species in the initial year constant while manipulating the individual species’ 

components, and then converted to relative abundances for ease of interpretation (Figs. 3 and 

S2). GP (D. glomerata) was almost always dominant for the ME group for both periods of 

comparison (Fig. 3). In addition, as the initial relative abundance of each species was 

increased, the predicted relative abundance of D. glomerata remained somewhat constant 

(Fig. 3). GP (P. pratensis) was also frequently dominant across the scenarios in the NE 

species group (Fig. S2), although increasing the initial relative abundance of GF (Phleum 

pratense) improved its own performance considerably in both years, reducing or reversing 

the dominance of P. pratensis (Fig. S2a,b).  
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BY YEAR 3, GRASSES DOMINATED OVER LEGUMES AND TEMPORALLY 

PERSISTENT DOMINATED OVER FAST ESTABLISHING SPECIES 

On average across all sites, grasses (GF + GP) were dominant over legumes (LF + LP) 

from year 1 and increased their dominance to 83% in year 3; legumes declined from 36% to 

25% to 17% in years 1 to 2 to 3 (Fig. S1a). At individual sites, grasses were dominant over 

legumes at 24 of 31 sites in year 1, at 27 of 30 in year 2 and at 23 of 24 in year 3 (Table S2). 

Seven of 24 sites in year 3 had almost no legumes left (<2%) (Fig. 4, Table S4). Despite the 

average decline in legume abundances over the three years, there was medium to high legume 

persistence at many sites; in year 3, four sites of 24 had above 30% legume relative 

abundance and a further eight had between 15 and 30% (Fig. 4).  

On average across sites, fast establishing species (GF + LF) were dominant over 

temporally persistent species (GP + LP) in year 1 with 69% of harvested yield. By year 2, 

however, the persistent species had a higher relative abundance and by year 3 were dominant 

with 78% of harvested yield (Fig. S1a). At individual sites, there was a clear trend of 

dominance by fast establishing species in year 1, mixed dominance in year 2, and temporally 

persistent species dominance in year 3 (Fig. 4). Specifically, temporally persistent species 

were dominant over fast establishing species at 5 of 31 sites in year 1, at 15 of 30 sites in year 

2 and at 23 of 24 sites in year 3 (Table S2).  

 

LEGUME ABUNDANCE WAS POSITIVELY CORRELATED WITH MINIMUM 

TEMPERATURE 

Of the four climatic variables tested, minimum temperature had the strongest effects 

on RGRs, with higher minimum temperature increasing the RGRs of GP and LF from year 2 

to 3 and of LP in both comparison periods (P < 0.05 in all tests, Table S5). The net effect of a 

higher minimum temperature was an increase in the relative abundance of legumes, which 
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was most evident for the NE species group (Fig. 5). In year 2, the predicted legume 

abundance (LF + LP) for NE sites was 20% with minimum temperature of -22
o
C, which 

shifted to 25% with an 8 degree increase in minimum temperature to -14
 o

C; in year 3, the 

two minimum temperatures -22 and -14°C resulted in 8% and 18% legume abundance, 

respectively. In addition, mean site-level legume percentage (LF + LP) was positively 

correlated with minimum temperature in years 2 and 3 (Fig. S3, without outliers), further 

supporting that the persistence of legumes was generally favoured by higher minimum 

temperature and hampered by extremely cold temperatures. 

 

DESPITE DECLINED LEGUME PROPORTION, DIVERSITY EFFECTS STILL 

EXISTED, BUT WITH REDUCED STRENGTH  

Diversity effects were significant at 90% of 31, 83% of 30 and 75% of 24 sites in years 1, 2 

and 3 respectively (Table S4), where diversity effects were estimated in each year based on 

sown proportions (eqn 2). While the distribution of legume abundances across sites changed 

considerably over the three years (Fig. 4), there was no identifiable pattern between 

categories of legume abundance and presence of a significant diversity effect within each 

year (Fig. S4). However, the strength of the diversity effect was related to legume abundance 

in the preceding year; thus, the magnitude of the scaled diversity effect in years 2 and 3 was 

higher for those sites that had higher legume abundance in the preceding year (Fig. 6, P < 

0.001). There was no difference between the slopes in the two years (P = 0.06); however, 

both intercepts were significantly greater than zero (P < 0.001 in each case), i.e. estimated 

average diversity effects were positive even when legume abundance in the previous year 

was zero.  
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Discussion 

Substantial changes in the relative abundances of these agronomic grassland mixtures 

over time were primarily driven by differences in the average relative growth rates of the four 

species in their competitive environments and, secondarily, by climate and density 

dependence. On average across sites, the temporally persistent grass became dominant by 

year 3 and evenness among the four species was substantially reduced. Legume abundance in 

year 3 was low or medium at most sites but was generally greater under higher minimum 

temperatures. Despite considerable variation across sites and declines in overall species 

evenness and in legume proportions, significant diversity effects were still found at the 

majority of sites in all years, while the strength of observed diversity effects was higher at 

sites with higher proportions of legumes in the preceding year.  

 

DIFFERENCES IN RELATIVE GROWTH RATES DROVE COMPOSITIONAL SHIFTS, 

WHILE DENSITY DEPENDENCE PLAYED A STABILISING ROLE  

Differences in the relative growth rates of competing species was seemingly the 

strongest driver of species’ relative abundance over the three years. Selection effects 

(Weigelt, Steinlein & Beyschlag 2002; Mokany, Ash & Roxburgh 2008) contribute to this 

mechanism: a species with a higher relative growth rate than its competitors will dominate 

the other species over time, ignoring further potential influences or important differences in 

foliage architecture (e.g. leaf angle and relative placement along plant height). The 

experimental species were selected according to four functional groups that we intended to be 

mutually complementary: combining grasses and legumes is well known to produce 

synergistic effects (Boller & Nösberger 1987; Carlsson & Huss-Danell 2003; Nyfeler et al. 

2011) and using species with different rates of establishment within the grass and legume 

species may induce complementarity along a temporal axis (Sanderson, Stout & Brink 2016). 
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As anticipated, the average relative growth rates of the fast establishing grass and legume 

species were generally negative from years 1 to 2 and 2 to 3 and the rates of the temporally 

persistent grasses were positive (Tables 2 and S3, intercepts). Unexpectedly, the average 

relative growth rate performance of the temporally persistent legume species was generally 

low.  

In addition to differences in average relative growth rates, there were various intra- 

and inter-specific density-dependent patterns in the dynamics of our multi-species 

communities; their joint interpretation (as in Suter et al. 2010) showed evidence of stabilising 

processes acting on the system (Adler, HilleRisLambers & Levine 2007). To demonstrate 

this, we generated versions of Figs. 3 and S2 in which we omitted the density dependence; 

these predictions are shown for just the dominant GP species in grey in Figs. 3 and S2. The 

most notable result was that in year 2, the flat response of GP remaining at approximately 

70% when GP in year 1 was increased, was not repeated in the absence of density 

dependence; rather, GP continually increased in relative abundance towards monoculture 

(Fig. 3c, GP black line vs. grey line). Thus, for the Mid-European (ME) temporally persistent 

grass D. glomerata (GP) had a strong positive average relative growth rate in year 1 to 2, 

which would lead to a monoculture of D. glomerata if density dependence was absent. 

However, when its own initial biomass was larger, the species limited itself with a negative 

intraspecific density dependence (Table 2, GP from year 1 to year 2) and predicted GP relative 

abundance in year 2 stayed almost constant (at around 70%) as its relative abundance in year 

1 varied between 20% to 60% (Fig. 3c). In an experimental system of twelve wetland species, 

Suter et al. (2010) similarly found evidence of density dependence in mixtures, but effects of 

individual species dominated overall trends. While the interpretation of relative growth rate 

models in a two-species system is relatively straightforward (Fig. 1), it is considerably more 

complex with more than two species (Goldberg & Fleetwood 1987). Thus, while we can 
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identify many patterns through model coefficients (intercepts and density dependence 

coefficients), the combined effects of all coefficients (Figs. 3 and S2) are particularly useful 

for identifying net compositional dynamics in the ecosystem (May 2001). Overall, 

differences in the relative growth rates of competing species primarily drove dynamics, while 

density dependence played an additional role, in particular through inducing stabilising 

processes for the ME group.  

 

DIVERSITY EFFECTS ON YIELD SIGNIFICANT BUT REDUCED IN STRENGTH AS 

LEGUMES DECLINED 

We found three major results related to our estimated diversity effects on yield: (1) 

diversity effects were significant at the majority of sites in each year (Fig. S4), (2) estimated 

diversity effects were reduced in strength with legume decline in the previous year across 

sites (positive and common slopes in Fig. 6a,b), and (3) the estimated average diversity effect 

was positive for at least one year after the disappearance of legumes (Fig. 6; positive 

intercepts). We have also clearly demonstrated several drivers of change in these four-species 

mixtures (differences in relative growth rates, density dependence, and climate) which led to 

a decline in the evenness of the relative abundances of the four species. How can we explain 

the significant diversity effects in all three years, despite general reductions over time in 

species evenness and specifically in legume proportions?   

 

(1) Even if legume proportions are low to medium, there can be a maximum benefit to 

yield through positive grass-legume interactions. Only recently, Suter et al. (2015) 

demonstrated that mixtures with approximately one-third of legumes attained close to 

the maximum N yield, and a further increase in legumes did not improve the N 

output. This can be explained by strong stimulation of symbiotic N2 fixation in 
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legumes by N-demand from the co-occurring grasses (Høgh-Jensen & Schjoerring 

1997), with rates of symbiotic N2 fixation in legumes and competitive N uptake in 

grasses being particularly high when grasses are dominant in mixtures (Nyfeler et al. 

2011). In addition, the contributions of species’ interactions to yield may be non-

linearly related to species’ relative abundances (Connolly et al. 2013), i.e. a species 

with low relative abundance may contribute disproportionately and substantially to 

diversity effects.  

(2) The benefits of having had legumes in a grassland mixture may persist even after 

legumes decline or disappear. Legumes were sown in all mixtures and most sites had 

medium or high legume abundance in year 1 (Figs. 4 and S4). Even when legumes 

subsequently declined to very low proportions or disappeared, diversity effects in the 

following year were positive (Fig. 6; positive intercepts). Thus, ‘legacy benefits’ of 

legumes may partly explain diversity effects with low or no legumes. Several 

complex biological and environmental processes can produce legacy benefits. 

Legumes in mixtures contribute to increased N in the system, which may be retained 

and/or recycled over time, for example through root degradation, making the system 

more fertile even after legumes have declined.  

(3) Even if legumes reduce in proportion or disappear, complementarity from grass*grass 

interactions may compensate in part for the reduction in grass*legume 

complementarity. Increases in yield due to diversity have been observed in the 

absence of legumes (van Ruijven & Berendse 2003). 

 

Whatever the underlying processes, we found clear evidence of continued diversity effects on 

yield for three years alongside declines of species diversity (both evenness and richness); 

thus, having legumes initially preserved diversity effects on yield to a certain degree. 
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Whether diversity effects would continue for longer than three years or at what strength is 

unknown but of considerable importance.  

 

LEGUME PERSISTENCE IS AFFECTED BY CLIMATE 

The growth and persistence of legumes were found to be favoured in milder (Newton 

et al. 1994; Nolan, Connolly & Wachendorf 2001) and Mediterranean (Dumont et al. 2015) 

environments. This agrees with the increased persistence of legumes with higher minimum 

temperature, which was particularly evident in the NE species group, where an increase from 

-22
 o

C to -14
o
C in minimum temperature predicted more than a doubling of legume relative 

abundance in year 3 (Fig. 5). While we showed both a positive effect of increasing minimum 

temperature on legume persistence (Fig. 5) and observed correlations between legume 

percentage and site minimum temperature in years 2 and 3 (Fig. S3b,c), the outliers in the 

correlation analysis show that it is possible to have good legume persistence in cold 

conditions (sites 7 and 33) and poor legume persistence in milder conditions (site 15). The 

unusually good persistence at sites 33 and 7 is likely attributed to snow cover which can 

facilitate winter survival of legumes in northern areas (Belanger et al. 2006), or grass 

persistence may have been hampered by fungal diseases under snow cover (Wali et al. 2006). 

These outliers may also have been caused by biotic and abiotic factors not considered here 

(see Suter et al. 2015 for a discussion). For example, inorganic N content in the soil, which 

depends on N mineralization being itself driven by temperature, can influence legume 

performance and persistence. Indeed, sudden frost (Elgersma & Schlepers 1997) or repeated 

freeze-thaw cycles (Brandsæter et al. 2002) may have detrimental effects at various stages of 

the legume development.  
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RELATIVE COMPETITIVE ABILITIES A KEY FACTOR TO IMPROVE LEGUME 

PERSISTENCE  

There is a need to carefully select the species for use in mixtures. It is important to 

consider what species are suitable for the local environment, the value of the outputs of each 

species, and how the traits and growing patterns of the species will complement or hinder one 

another. We expected that strategically selecting the functional traits of the species in our 

agronomic mixtures across N acquisition and temporal establishment would lead to the 

dominance of temporally persistent species over time and would also contribute to a strong 

presence of legumes alongside grasses. It was not expected that grass species would become 

quite so dominant over legume species; nevertheless, medium (> 15%) or high (> 30%) 

legume abundance was observed in year 3 for 12 of the 24 sites and at these sites, the 

temporally persistent legume (LP) was typically more abundant in year 3 than the fast 

establishing legume (LF) (Fig. S5). Legume persistence was stronger at the NE sites than at 

the ME sites (Figs. S1b,c and S5). Due to its stoloniferous growth pattern, T. repens is a weak 

competitor for light, and across the ME sites it was generally not able to compete with D. 

glomerata (GP) which has a tussock-like and tall growing pattern conducive to outcompeting 

T. repens. However, across the NE sites, T. repens was better able to compete against P. 

pratensis (GP) which is also a creeping plant. Conversely, Medicago sativa (Lp) with its erect 

habitus showed ability to compete with D. glomerata in the two DM sites (Fig. S5, Table 

S2). Thus, the use of four species that combined two functional contrasts (grass-legume by 

fast establishing-temporally persistent) and the identity of the selected species within each 

species group contributed to legume persistence to a certain degree at many sites, but the 

grass-legume balance was far from a 50:50 representation. These results demonstrate the 

clear potential to improve our knowledge of the relative competitive abilities of grasses and 

legumes, and to better ensure their persistence and complementarity in mixture: a different 
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choice of less competitive grass species at some sites may have led to a better balance in 

composition of grasses and legumes over time. Recent work has also shown D. glomerata to 

be an aggressive competitor but with promising results for legume persistence when less 

aggressive sowing partners were selected (Malisch et al. 2017). 

 

A general categorisation of legumes according to fast establishing and temporally 

persistent groups could be confounded by site-specific conditions. For example, a legume that 

is classified as temporally persistent at a site with mild climate might not persist well at an 

extremely cold site. Legume persistence in mixed swards could be enhanced by selecting 

legume species and cultivars with proven persistence abilities for the local environment and 

that have good competitive abilities, and by matching legumes with grasses that are less 

aggressive in competition (Annicchiarico & Proietti 2010). Genotypic diversity has 

successfully increased yields of L. perenne (Pollnac, Smith & Warren 2014) suggesting that 

enhancing functional trait diversity by combining mixtures of cultivars with mixtures of 

species may lead to additional diversity effects to ecosystem function than mixing species 

alone. Further research is needed to explore this. 

 

In our plots, nitrogen fertiliser application varied across sites from 0 to 150 kg N ha
-1

 

(Table S1). While N fertiliser is associated with higher yields, it can also reduce the 

competitive ability and hence persistence of legumes (Nyfeler et al. 2009) and may have 

contributed to the poor legume persistence observed at some sites (e.g. site 15). However, 

intensively managed grassland monocultures typically have substantially higher levels of N 

fertiliser applied than our maximum level of N fertiliser, and more importantly, Nyfeler et al. 

(2009; 2011) showed that fertiliser rates up to 150 kg N ha
-1

 did not negatively affect positive 

mutualistic interactions between grasses and legumes in mixture. Therefore, our low levels of 
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fertiliser application are unlikely to saturate the system with N, thereby still permitting 

additional N to enter through symbiotic N2 fixation of legumes (as shown for a subset of 

these sites in Suter et al. 2015). This allows the possibility of a legume legacy effect to occur, 

as discussed earlier, if legumes decline or disappear.  

 

LESSONS FOR THE DESIGN OF MULTI-SPECIES MIXTURES 

Although it has been suggested that an optimal benefit from legumes in a mixture can 

be achieved by 20 to 50% proportional contribution to dry matter yield (Thomas 1992), our 

results provide evidence that positive diversity effects can still be present, albeit at reduced 

strength, when legume contributions have dropped below this. More importantly, we provide 

evidence that sowing legumes in a mixture sward can be beneficial for ecosystem function for 

some time (a year or two) after strong declines in legume proportion (Finn et al. 2013; Suter 

et al. 2015). Moreover, at the Northern European (NE) sites, positive diversity effects on 

yield were not accompanied by a reduction in herbage digestibility and crude protein 

concentration that is usually observed with increased yield (Sturludóttir et al. 2014). Our 

results are particularly relevant for one- to three-year grassland leys where it is evident that 

strong diversity effects on yield can be maintained. Adaptive management practices to 

enhance legume persistence or regeneration may be useful for short term (2-3 year) and 

longer term (3-5 year) managed grasslands or for intensive ‘permanent’ grasslands. 

 

This continental-scale field experiment demonstrated the importance of the relative 

growth rates of competing species for community dynamics and species shift over time. 

Thus, considerable care is needed in selecting the identity of the species for use in grassland 

mixtures, paying particular attention to their traits and competitive abilities relative to each 

other. This fits well to the overwhelming evidence on benefits from pre-selection of species 
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with traits to enhance ecosystem functions such as biomass yield, N yield, weed suppression 

and drought resistance in managed grassland systems (e.g. Sanderson 2010; Roscher et al. 

2013; Lüscher et al. 2014; Dooley et al. 2015; Hofer et al. 2016). While we have shown the 

presence of significant diversity effects on yield with reduced legume abundance, we have 

also shown that the strength of diversity effects were improved with higher legume 

proportions. Thus, we strongly recommend the use of mixture swards as an alternative to the 

long-standing practice of monocultures in agronomy and that legume species are included in 

the mixture. We also recommend choosing species with comparable competitive abilities to 

avoid rapid dominance of one species. Ideally the species will have high agronomic 

performance (proven already in monoculture) to maximise yields, and diverse traits that span 

functional axes (Suter, Hofer & Lüscher 2017), in addition to grass-legume, to maximise 

diversity effects; this could be manipulation of temporal development over years as was done 

here, temporal development within growing season (Husse et al. 2016) or rooting depth 

(Hofer et al. 2016). Our results support that mixing four agronomic species can generate 

strong positive diversity effects if they are selected accordingly. It is likely that increasing the 

number of species beyond four would further enhance diversity effects through additional 

system resource usage, but saturation of mixture performance could occur fast as discussed 

by Lüscher, Soussana & Huguenin (2011); research is urgently needed to determine this. As 

advocated elsewhere (Lüscher, Soussana & Huguenin-Elie 2011; Litrico & Violle 2015), we 

show the need for simultaneously considering the traits of candidate species for multi-species 

mixtures that govern their population dynamics in mixture, as well as their traits that govern 

their agronomic properties (yield and digestibility) and enhance resource use efficiency 

(through synergistic interactions). 
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Figure S2. Predicted relative abundances for the North European (NE) sites in years 2 and 3 

as affected by the relative abundance of each species in years 1 and 2, respectively.  

Figure S3. Average legume percentage versus minimum temperature for each site and year.  
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Figure S5. Average relative abundance in each year for the twelve sites that had medium or 
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Table 1. Species identities by species group and functional group classifications along with 

the number of sites per species group.  

 

              

 
Species functional group classifications 

 

 
Grass  Legume  

 
Fast 

establishing 

Temporally 

persistent 
  

Fast 

establishing 

Temporally 

persistent 
 

Species group GF GP   LF LP 
No. of 

sites 

1 Mid-European 

(ME) 

Lolium 

perenne L. 

Dactylis 

glomerata 

L. 

 
Trifolium 

pratense L. 

Trifolium 

repens L. 
18 

2 North 

European (NE) 

Phleum 

pratense L. 

Poa 

pratensis L. 
 

Trifolium 

pratense L. 

Trifolium 

repens L. 
6 

3 Moist 

Mediterranean 

(MM) 

Lolium 

perenne L. 

Dactylis 

glomerata 

L. 

 
Trifolium 

pratense L. 

Medicago 

sativa L. 
1 

4 Dry 

Mediterranean 

(DM) 

Lolium 

rigidum L. 

Dactylis 

glomerata 

L. 

 

Medicago 

polymorpha 

L. 

Medicago 

sativa L. 
2 

5 West European 

(WE) 

Lolium 

perenne L. 

Phleum 

pratense L. 
 

Trifolium 

repens L. 

Trifolium 

ambiguum 

M. Bieb. 

2 

6 Other 1 (O1) 
Lolium 

perenne L.  

Phleum 

pratense L. 
 

Trifolium 

pratense L.  

Trifolium 

repens L. 
1 

7 Other 2 (O2) 
Phleum 

pratense L. 

Festuca 

arundinacea 

Schreb. 

  
Trifolium 

pratense L. 

Trifolium 

repens L. 
1 
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Table 2. Relative growth rate (RGR) model coefficients for each species and each period of comparison. Intraspecific density dependence 

coefficients are highlighted in grey. The final row provides likelihood ratio test (LRT) P-values for the inclusion of the four initial 

biomasses. 

                                      

 
Year 1 to year 2 

  

Year 2 to year 3 

 
GF   GP   LF   LP   

  

GF   GP   LF   LP   

Intercepts 
                  

ME -0.90 a 0.97 b -1.37 a -1.22 a 
 

 

-1.60 a 0.22 b -3.09 c -1.71 a 

NE -0.87 a 0.22 b -1.46 a -0.69 ab 
 

 

-0.92 a 0.05 a -1.22 a -1.06 a 

  
 

 
 

 
 

 
  

  
 

 
 

 
 

 
 

Seed abundance 0.03 
a 

0.01 
a 

0.13 
a 

0.02 
a 

 
 

-0.02 
a 

-0.01 
a 

-0.11 
a 

-0.09 
a 

  
 

 
 

 
 

 
  

  
 

 
 

 
 

 
 

Initial biomass (density dependence)  
 

  
  

 
 

 
 

 
 

 

  
 

 
 

 
 

 
  

  
 

 
 

 
 

 
 

yc
1GF -0.16 a -0.08 b -0.06 b -0.06 ab 

 y2GF -0.08 a 0.06 bc 0.10 b 0.04 ac 

yc
1GP -0.30 ab -0.58 a -0.19 b -0.19 ab 

 y2GP -0.07 a -0.09 a 0.01 a -0.06 a 

yc
1LF -0.06 a -0.05 a -0.13 b -0.10 ab 

 y2LF 0.03 ab 0.05 ab 0.08 a -0.05 b 

Yc
1LP 0.00 a -0.05 a -0.24 b -0.55 b 

 Y2LP 0.02 a 0.09 a -0.05 ac -0.46 bc 

  
 

     
  

         
LRT P-value <0.001   <0.001   <0.001   <0.001       <0.001   <0.001   0.059   0.050   
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The Mid-European (ME) and North European (NE) values are the intercept coefficients for these species groups; they estimate the mean relative 

growth rate for each species in their respective competitive setting and period of comparison, at average seed abundance and average initial 

biomass of each species. Intercepts for the MM, DM, WE, O1 and O2 species groups were included in the model but are displayed in Table S3, 

given the small number of sites in these groups. The estimated density dependence coefficients shown here hold for all species groups (i.e. they 

were not crossed with species group as the intercept was). Bold indicates significantly different from 0 at =0.05. Within each row and each 

period of comparison, coefficients that share a letter are not significantly different from one another. It follows, that letters on coefficients are 

only comparable within but not across rows.  
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Fig. 1. Hypothetical scenarios of how the relative abundances of two species (Sp 1 and 2) 

may change due to varying the average relative growth rate of species 2 relative to 

species 1 (y-axis) and varying the intraspecific density dependence of species 1 (x-

axis). Displayed in each pie chart is the final composition of the community after a 

fixed period of time assuming the initial composition of each community to have an 

equal share of the two species. For illustrative purposes, it is further assumed that the 

average relative growth rate of species 1 is fixed and that its interspecific density 

dependence on species 2 is neutral.  
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Fig. 2. The distribution of site-level relative abundance means for each species (GF, GP, LF 

and LP) and year across all sites; each box displays the upper quartile, median and 

lower quartile of the site-level means.  
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Fig. 3. Predicted species relative abundances for the Mid-European (ME) sites in years 2 and 

3 as affected by the relative abundance of each species in years 1 and 2, respectively. 

The total biomass in the initial year is kept constant at the ME average of 11.9 (year 

1) and 11.3 (year 2); likewise, the relative abundances of the three species other than 

the target species (on the x-axis) are kept equal. Predictions are made at average seed 

abundance and respect the ranges of the predictor variables in the observed data. D. 

glomerata predictions in grey are ignoring density dependence. 
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Fig. 4. Legume percentage (LF + LP) versus temporally persistent (GP + LP) percentage on 

average for each year (year 1 , year 2 , year 3 ) and each site. The dotted 

horizontal lines indicate low (0-15%), medium (15-30%) and high (>30%) legume 

abundance categories. The left side of the plot indicates dominance (>50%) of fast 

establishing species, the right side dominance of temporally persistent species. The 

ellipses highlight the general trend in each year and were estimated using the methods 

of Halíř and Flusser (1998).  
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Fig. 5. Predicted relative species abundances for the Mid-European (ME) and the North 

European (NE) sites in years 2 and 3 as affected by minimum temperatures in years 1 

and 2, respectively. Predictions are made at average sown seed abundance and 

average species biomasses in the preceding year. Annual minimum temperature for 

each site was computed as the average of the lowest ten daily minimum temperature 

values.  
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Fig. 6. The estimated diversity effect on yield coefficient scaled by the average monoculture 

performance in (a) year 2 and (b) year 3 versus average legume percent in the 

preceding year at each site. The diversity effect coefficient () and monoculture 

performances (βi’s) were estimated at each site using sown proportions (eqn 2). Sites 

where the diversity effect was not significant are indicated by an unfilled circle (with 

site number indicated below the x-axis label). The vertical dashed grey lines indicate 

legume abundance categories (low=0-15%, medium=15-30% and high=30-100%).  

 




