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ABSTRACT	17	

Kelps	are	ecologically	important	primary	producers	and	ecosystem	engineers,	and	play	a	central	role	18	

in	structuring	nearshore	temperate	habitats.		They	play	an	important	role	in	nutrient	cycling,	energy	19	

capture	and	transfer,	and	provide	biogenic	coastal	defence.		Kelps	also	provide	extensive	substrata	20	

for	colonising	organisms,	ameliorate	conditions	for	understorey	assemblages,	and	provide	three-21	

dimensional	habitat	structure	for	a	vast	array	of	marine	plants	and	animals,	including	a	number	of	22	
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commercially	important	species.		Here,	we	review	and	synthesise	existing	knowledge	on	the	23	

functioning	of	kelp	species	as	biogenic	habitat	providers.		We	examine	biodiversity	patterns	24	

associated	with	kelp	holdfasts,	stipes	and	blades,	as	well	as	the	wider	understorey	habitat,	and	25	

search	for	generality	between	kelp	species	and	biogeographic	regions.		Environmental	factors	26	

influencing	biogenic	habitat	provision	and	the	structure	of	associated	assemblages	are	considered,	27	

as	are	current	threats	to	kelp-dominated	ecosystems.		Despite	considerable	variability	between	28	

species	and	regions,	kelps	are	key	habitat-forming	species	that	support	elevated	levels	of	29	

biodiversity,	diverse	and	abundant	assemblages	and	facilitate	trophic	linkages.	Enhanced	30	

appreciation	and	better	management	of	kelp	forests	are	vital	for	ensuring	sustainability	of	ecological	31	

goods	and	services	derived	from	temperate	marine	ecosystems.			32	

Keywords:	benthic	communities,	epifauna,	epiphyte,	facilitation,	macroalgae,	temperate	reefs		33	

	34	

	 	35	
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1.		Introduction	36	

Kelps	dominate	rocky	reefs	in	lower	intertidal	and	shallow	subtidal	zones	throughout	temperate	and	37	

subpolar	regions	of	the	world	(Fig.	1,	Steneck	et	al.,	2002).		Kelp	forests	represent	some	of	the	most	38	

productive	and	diverse	habitats	on	Earth	(Brady-Campbell	et	al.,	1984;	Mann,	1973;	Reed	et	al.,	39	

2008)	and	provide	humans	with	ecosystem	services	worth	billions	of	dollars	annually	(Beaumont	et	40	

al.,	2008).		Kelps	are	a	major	source	of	primary	production	in	coastal	zones	(Krumhansl	and	41	

Scheibling,	2012;	Mann,	1973).		They	promote	secondary	productivity	through	provision	of	three-42	

dimensional	habitat	structure,	which	supports	a	vast	array	of	marine	life,	including	species	of	43	

commercial	and	conservation	importance	(Smale	et	al.,	2013;	Steneck	et	al.,	2002).		The	biogenic	44	

habitat	structure	provided	by	large	canopy-forming	seaweeds	has	been	shown	to	offer	protection	to	45	

several	commercial	fish	species	(Bologna	and	Steneck,	1993),	and	kelp	forests	in	particular	serve	as	46	

important	nursery	grounds	(Holbrook	et	al.,	1990;	Tegner	and	Dayton,	2000).		Kelps	are	ecosystem	47	

engineers	(Jones	et	al.,	1994)	in	the	truest	sense;	they	alter	the	environment	and	resources	available	48	

to	other	organisms,	playing	a	crucial	role	in	the	functioning	of	ecosystems.		Specifically,	kelp	49	

canopies	alter	light	(Connell,	2003a),	sedimentation	(Connell,	2003b),	physical	abrasion	(Irving	and	50	

Connell,	2006),	flow	dynamics	(Eckman	et	al.,	1989),	substratum	availability	and	condition	(Christie	51	

et	al.,	2007)	and	food	quantity	and	quality	(Krumhansl	and	Scheibling,	2012).			52	

Strictly	speaking,	‘kelp’	is	a	taxonomic	distinction	that	refers	to	members	of	the	Order	Laminariales,	53	

although	several	species	of	large	canopy-forming	brown	algae	that	perform	similar	functions	are	54	

often	referred	to	as	kelp	in	ecological	studies	(and	will	be	considered	here).		While	the	phylogeny	of	55	

the	Laminariales	is	complex	and	still	uncertain	(Bolton,	2010),	significant	progress	has	been	made	56	

towards	unravelling	evolutionary	pathways	and	relationships.		There	are	currently	9	accepted	57	

families	of	Laminariales,	represented	by	59	genera	and	147	species	(Guiry	and	Guiry	2015).		At	58	

present,	84%	of	all	described	species	are	found	within	the	3	most	speciose	families	(Alariaceae,	59	

Laminariaceae,	Lessoniaceae)	and	63%	of	all	kelp	species	are	found	within	just	5	genera	(Alaria,	60	
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Laminaria,	Saccharina,	Ecklonia,	Lessonia).		Members	of	these	genera	are	widely	distributed	across	61	

the	temperate	regions	of	their	respective	hemispheres	where	they	serve	as	foundation	species	62	

within	rocky	reef	ecosystems	(Fig.		1).		Other	widespread	and	ecologically	important	genera	include	63	

Macrocystis,	Nereocystis	and	Undaria	(Fig.		1).	64	

Akin	to	other	benthic	foundation	species,	such	as	hard	corals,	seagrasses	and	massive	sponges,	kelps	65	

support	elevated	biodiversity	by	increasing	habitat	volume,	heterogeneity	and	complexity,	and	66	

through	direct	provision	of	food	and	shelter	(Bruno	and	Bertness,	2001).		A	great	deal	of	research	67	

globally	has	unequivocally	demonstrated	that	kelps	harbour	significant	biodiversity,	even	at	the	scale	68	

of	an	individual.		For	example,	Christie	et	al.	(2003)	found,	on	average,	~130	species	and	8,000	69	

individuals	on	individual	Laminaria	hyperborea	sporophytes	in	Norway.		As	habitat	formers,	mature	70	

thalli	directly	provide	three	distinct	micro-habitats:	the	holdfast,	the	stipe	and	the	lamina/blade	71	

(hereafter	referred	to	as	blade,	see	Fig	2).		These	biogenic	habitats	differ	considerably	in	structure	72	

(Fig.		2)	and,	as	a	result,	the	diversity	and	composition	of	their	associated	assemblages	is	also	highly	73	

variable.		In	addition	to	variability	within	individuals,	the	structure	and	quantity	of	biogenic	habitat	74	

provided	by	kelps	may	vary	markedly	between	populations	and	species,	so	that	the	abundance	or	75	

identity	of	kelp	species	within	macroalgal	canopies	influences	the	structure	and	diversity	of	the	76	

entire	community	(Arnold	et	al.,	2016).			77	

As	well	as	direct	provision	of	primary	habitat,	dense	stands	of	epiphytes	may	develop	on	some	kelp	78	

species,	such	as	on	Laminaria	stipes,	to	provide	a	secondary	habitat	which	may	be	utilised	by	a	rich	79	

and	abundant	invertebrate	assemblage	(Christie	et	al.,	2003).		These	invertebrate	assemblages	80	

comprise	highly	mobile	species	and	prey	species	for	fish	and	crustacean	predators,	thereby	providing	81	

a	direct	link	between	lower	and	higher	trophic	levels	(Norderhaug	et	al.,	2005).		The	extent	of	kelp	82	

forest	habitat	is	positively	related	to	the	abundance	of	fisheries	resources,	perhaps	due	to	an	83	

increased	abundance	of	prey	items	and	the	protection	offered	to	targeted	species,	especially	84	

juveniles,	within	the	kelp	canopy	(Bertocci	et	al.,	2015).		Previous	studies	on	kelp	forest	biodiversity	85	
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and	utilisation	of	kelp-derived	habitat	by	marine	flora	and	fauna	have	tended	to	focus	on	a	single	86	

species	and/or	region.		Here	we	synthesize	existing	knowledge	of	the	ecological	functioning	of	kelps	87	

(and	kelp-like	canopy-forming	brown	algae)	as	biogenic	habitat	providers	and	examine	consistency	88	

and	variability	in	patterns	of	associated	biodiversity	across	species	and	biogeographic	regions.		We	89	

also	present	novel	information	on	spatial	patterns	of	diversity	in	kelp	forests,	estimate	the	quantity	90	

of	biogenic	habitat	provided	by	kelps	in	typical	coastal	ecosystems,	identify	threats	to	habitat	91	

provision	by	kelps	and	highlight	knowledge	gaps	and	priority	research	areas.			92	

2.		Direct	provision	of	biogenic	habitat		93	

2.1.	Holdfast	assemblages	94	

The	holdfast	structure,	which	anchors	the	thallus	to	the	substratum,	is	the	most	complex	95	

microhabitat	offered	by	kelps	(e.g.	Arnold	et	al.,	2016).		The	vast	majority	of	true	kelps	share	a	96	

common	‘laminarian’	holdfast	structure,	formed	by	the	growth	of	individual	haptera	from	the	diffuse	97	

meristematic	tissue	at	the	base	of	the	stipe	(Novaczek,	1981;	Smith	et	al.,	1996).		As	the	plant	ages,	98	

additional	haptera	are	laid	down	in	layers,	growing	outwards	and	downwards,	to	form	a	dense	mass,	99	

in	a	broadly	conical	shape	(Smith	et	al.,	1996).		The	upper	and	outer	portions	of	the	holdfast	tend	to	100	

be	formed	by	large,	moderately	spaced	haptera;	while	towards	the	base	haptera	intertwine	to	form	101	

a	complex	of	fine	branches	and	smaller	interstitial	spaces	(Smith	et	al.,	1996).		The	holdfast	changes	102	

little	over	the	life	span	of	the	kelp.		For	large	perennial	species	like	Laminaria	hyperborea	this	is	103	

typically	~10	years	(Kain,	1979)	and	may	be	considerably	longer	under	optimal	conditions	(up	to	20	104	

years	old;	Sjøtun	et	al.,	1995).		Although	holdfasts	of	the	majority	of	kelp	species	are	formed	in	this	105	

way,	there	is	considerable	interspecific	variation	in	the	size,	structure,	complexity,	openness	and	106	

longevity	of	the	holdfast	habitat	(Fig.	3).			107	

Within	the	true	kelps	the	volume	of	the	holdfast	habitat	provided	by	mature	plants	may	range	from	108	

<100	cm3	for	smaller	species	such	as	Ecklonia	radiata	(Smith	et	al.,	1996)	and	Undaria	pinnatifida	109	
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(Raffo	et	al.,	2009)	to	>3500	cm3	for	Macrocystis	pyrifera	(Rios	et	al.,	2007).		The	morphology	of	the	110	

structure	is	also	highly	variable,	being	dependent	on	the	density,	thickness,	complexity	and	111	

arrangement	of	the	haptera	(Fig.	3).		For	example,	Macrocystis	and	Nereocystis	tend	to	form	112	

intricate	holdfast	structures,	with	many	fine	intertwining	haptera,	whereas	Laminaria	tend	to	grow	113	

fewer	but	thicker	haptera,	with	larger	interstitial	spaces	(Fig.		3).		Lessonia	holdfasts	are	highly	114	

atypical,	exhibiting	poorly	defined	haptera	and	a	flattened,	massive	basal	holdfast	structure.		With	115	

regards	to	important	‘false-kelps’,	the	holdfast	structure	of	Saccorhiza	polyschides	(Fig.	3)	differs	116	

much	from	the	laminarian	holdfast	structure.		It	characteristically	forms	a	large,	hollow,	bulbous	117	

structure	up	to	30cm	in	diameter,	of	which	the	upper	surface	is	covered	in	small	protuberances,	118	

while	the	lower	surface	attaches	to	the	substratum	through	small,	claw-like	haptera	(Norton,	1969).		119	

The	bull	kelp	Durvillaea	antarctica,	being	a	fucoid,	forms	a	solid,	robust	structure	with	little	120	

morphological	differentiation.		With	regards	to	intraspecific	variation,	holdfast	structure	can	vary	121	

markedly	between	populations	subjected	to	different	environmental	conditions,	particularly	in	122	

response	to	gradients	in	wave	exposure	or	current	flow	(Sjøtun	and	Fredriksen,	1995).		For	example,	123	

the	biomass	and	internal	volume	of	holdfasts	of	mature	Laminaria	plants	can	more	than	double	124	

along	a	wave	exposure	gradient	(Smale,	Teagle,	unpublished	data).		Thus	the	majority	of	studies	125	

include	some	measure	of	habitat	volume	(i.e.	the	volume	of	space	available	for	colonization	by	fauna	126	

between	haptera;	hereafter	called	‘habitable	space’,	as	opposed	to	the	total	space	of	the	holdfast;	127	

hereafter	‘holdfast	volume’);	using	either	a	mathematical	approach	(Jones,	1971),	or	displacement	128	

(Sheppard	et	al.,	1980).		Recent	work	by	Walls	et	al.	(2016)	suggests	that	these	methods	provide	129	

similar	results,	and	can,	therefore,	be	compared	across	studies	using	these	different	techniques.	130	

The	biogenic	habitat	provided	by	kelp	holdfasts	is	generally	highly	complex,	extensive	(certainly	at	131	

the	scale	of	kelp	forest,	see	below)	and,	for	many	species,	temporally	stable.		The	interstitial	space	132	

between	the	hard	substratum	and	the	haptera	represents	favourable	habitat	for	colonising	fauna,	as	133	

the	holdfast	structure	offers	protection	from	predators	and	adverse	environmental	conditions,	134	

accumulates	food	sources	and	increases	the	area	of	substrata	and	volume	of	habitable	space	135	
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available	for	colonisation	(Ojeda	and	Santelices,	1984).		For	some	species,	such	as	L.	hyperborea,	the	136	

holdfast	offers	a	capacious	internal	habitable	space,	relative	to	the	overall	size	of	the	structure.		137	

Within	the	context	of	single	kelp	plants,	the	holdfast	generally	supports	the	greatest	diversity	of	the	138	

three	primary	habitats,	with	species	richness	per	holdfast	typically	reaching	30-70	macrofaunal	139	

species,	but	in	some	cases	reaching	up	to	90	species	(Christie	et	al.,	2003;	Jones,	1972;	Moore,	140	

1972a;	Thiel	and	Vásquez,	2000).		Invertebrate	abundance	can	exceed	10,000	individuals	per	141	

holdfast	(Christie	et	al.,	2003;	Schaal	et	al.,	2012).		Reported	values	for	the	richness	and	abundance	142	

of	holdfast	assemblages	vary	greatly	between	species	and	regions	(Table	1).		Even	so,	holdfast	143	

structures	consistently	support	high	levels	of	biodiversity	(Table	1)	and	the	vast	majority	of	studies	144	

conclude	that	invertebrate	richness	and	abundance	is	elevated	within	these	structures.		For	145	

example,	work	on	Ecklonia	radiata	in	Australia	has	yielded	study-wide	total	richness	values	in	excess	146	

of	350	taxa	inhabiting	holdfasts	(Anderson	et	al.,	2005;	Smith	et	al.,	1996).		Although	variability	147	

between	kelp	species	is	high,	generally	those	that	form	large,	laminarian	type	holdfasts	(e.g.	148	

Laminaria	hyperborea,	Ecklonia	radiata)	support	greatest	biodiversity	(Table	1).	149	

Holdfast	assemblages	are	typically	dominated	by		mobile	invertebrates	taxa	including	copepods,	150	

polychaetes,	gastropods	and	amphipods,	and	by	sessile	fauna	such	as	bryozoans,	bivalves	and	151	

sponges	(Anderson	et	al.,	2005;	Arroyo	et	al.,	2004;	Blight	and	Thompson,	2008;	Christie	et	al.,	2003;	152	

Christie	et	al.,	2009;	Moore,	1972a;	Norderhaug	et	al.,	2002;	Ojeda	and	Santelices,	1984;	Rios	et	al.,	153	

2007;	Schaal	et	al.,	2012).		Amphipods	and	polychaetes	are	typically	numerically	dominant,	often	154	

representing	>75%	of	total	faunal	abundance	(Smith	et	al.,	1996),	although	the	relative	abundance	155	

of	taxonomic	groups	is	strongly	influenced	by	environmental	conditions	(Moore,	1973a;	Sheppard	et	156	

al.,	1980;	Smith	and	Simpson,	1992).		A	significant	proportion	of	the	holdfast	fauna	is	highly	mobile	157	

and	can	quickly	colonise	new	available	habitat;	exchanges	between	kelp	plants	and	also	from	kelp	to	158	

surrounding	habitat	are	thought	to	occur	frequently	(Norderhaug	et	al.,	2002;	Waage-Nielsen	et	al.,	159	

2003).		The	composition	of	the	sessile	fauna	is	largely	dependent	on	the	availability	of	dispersal	160	

stages	in	the	overlying	water	column	(Marzinelli,	2012),	which	influences	recruitment	rates	onto	161	
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holdfasts,	as	well	as	local	turbidity	and	sedimentation	rates,	as	many	suspension	feeding	species	are	162	

susceptible	to	smothering	(Moore,	1973a).		Food	supply,	principally	from	detrital	kelp	and	other	163	

macroalgae	and	deposited	phytoplankton,	is	rarely	thought	to	be	limiting	in	most	kelp	forest	164	

habitats	(Schaal	et	al.,	2012).		Kelp	holdfasts	(particularly	laminarian	holdfasts)	efficiently	trap	and	165	

accumulate	sediment	(Arroyo	et	al.,	2004;	Moore,	1972b),	limiting	detritus	export	in	highly	166	

hydrodynamic	areas	(Schaal	et	al.,	2012).		Species	recorded	in	holdfasts	are	generally	found	167	

elsewhere	in	the	surrounding	wider	habitat,	such	as	amongst	epilithic	understorey	algae,	rather	than	168	

being	obligate	holdfast	inhabitants	(Christie	et	al.,	2003;	Smith	et	al.,	1996).		Perhaps	the	most	169	

remarkable	exception	to	this	observation	is	the	terrestrial	spider	(Desis	marina),	which	inhabits	bull	170	

kelp	(Durvillaea	antarctica)	holdfasts	found	on	the	extreme	low	shores	of	New	Zealand	(McQueen	171	

and	McLay,	1983).		The	specific	microhabitat	provided	by	the	holdfast	structure	allows	the	spider	to	172	

survive	submergence	during	neap	tides	for	at	least	19	days	(McQueen	and	McLay,	1983).				173	

A	range	of	trophic	guilds	are	represented	within	holdfasts,	including	deposit	feeders,	filter	feeders,	174	

grazers,	scavengers	and	predators	(McKenzie	and	Moore,	1981),	although	organisms	that	feed	on	175	

detrital	organic	matter	(i.e.	deposit	feeders	and	filter	feeders)	tend	to	dominate	(Schaal	et	al.,	2012).		176	

Larger	predators,	such	as	the	edible	crab	Cancer	pagurus	(McKenzie	and	Moore,	1981)	and	the	spiny	177	

lobster	Panulirus	interruptus	(Mai	and	Hovel,	2007),	commonly	shelter	in	kelp	holdfasts.		Recent	178	

stable	isotope	analysis	has	shed	light	on	kelp	holdfasts	as	micro-scale	ecosystems,	given	that	the	179	

food	web	within	a	holdfast	may	attain	3.5	trophic	levels	and	involve	many	complex	trophic	pathways	180	

(Schaal	et	al.,	2012).		The	overall	composition	of	holdfast	assemblages	in	terms	of	the	relative	181	

abundance	of	higher	taxa	or	trophic	groups	is,	to	some	extent,	predictable	and	consistent	across	182	

seasons	and	biogeographic	regions	where	habitats	are	relatively	unimpacted	by	human	activities	183	

(Anderson	et	al.,	2005;	Christie	et	al.,	2003;	Smith	et	al.,	1996).		Assemblage	composition	is,	184	

however,	sensitive	to	local	environmental	factors	and	predictable	shifts	in	holdfast	assemblages	185	

(especially	at	coarser	taxonomic	levels)	occur	in	response	to	increased	turbidity	(Sheppard	et	al.,	186	

1980),	pollution	from	oil	spills	(Smith	and	Simpson,	1998),	and	sewage	outfall	effluent	(Smith	and	187	
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Simpson,	1992).		This	has	led	to	feasibility	studies	on	the	utility	of	kelp	holdfasts	as	self-contained	188	

units	for	environmental	monitoring	(Anderson	et	al.,	2005;	Sheppard	et	al.,	1980;	Smith	and	189	

Simpson,	1992).			190	

The	structural	complexity	and	the	size	(volume)	of	the	holdfast	have	been	shown	to	impact	the	191	

diversity	and	abundance	of	associated	assemblages	(Norderhaug	et	al.,	2007).		Habitat	complexity	192	

has	been	shown	to	influence	assemblage	structure	in	a	number	of	macrophyte	groups	(Christie	et	193	

al.,	2009);	this	trend	holds	true	for	kelp	holdfasts.		Indeed,	by	experimentally	altering	the	complexity	194	

of	artificial	holdfast	mimics,	Hauser	et	al.	(2006)	found	significantly	higher	abundance	and	diversity	195	

on	high	complexity	mimics	in	comparison	to	those	of	a	lower	complexity.		The	increase	in	the	196	

complexity	potentially	providing	greater	niche	space	and	increased	microhabitat	availability	to	197	

inhabiting	fauna	(Kovalenko	et	al.,	2012).			198	

The	size	of	the	holdfast	habitat	(whether	quantified	by	total	volume,	biomass	or	internal	habitable	199	

space)	has	long	been	recognised	as	an	important	driver	of	faunal	richness	and	abundance	(Moore,	200	

1978;	Sheppard	et	al.,	1980).		However,	the	reported	relationships	between	habitat	volume	and	201	

faunal	richness	and	abundance	are	not	consistent,	and	appear	to	vary	between	kelp	species,	regions	202	

and	locations	(e.g.	Walls	et	al.,	2016).		While	all	studies	report	that	the	total	abundance	of	holdfast	203	

fauna	increases	with	habitat	size,	some	studies	have	found	this	relationship	only	holds	for	smaller,	204	

younger	holdfasts	and	abundance	is	independent	of	habitat	size	in	older	plants	(Anderson	et	al.,	205	

2005;	Ojeda	and	Santelices,	1984).		Others	have	reported	a	consistent	positive	relationship	between	206	

faunal	abundance	and	habitat	size	throughout	the	entire	size	range	of	the	kelp	holdfast	(Christie	et	207	

al.,	2003;	Smith	et	al.,	1996;	Tuya	et	al.,	2011).		Even	so,	space	availability	is	clearly	an	important	208	

determinant	of	faunal	density.		Patterns	of	faunal	richness	are	also	inconsistent,	with	some	studies	209	

reporting	positive	relationships	between	richness	and	habitat	size	(Smith	et	al.,	1996),	some	210	

reporting	asymptotic	trends	(Anderson	et	al.,	2005;	Ojeda	and	Santelices,	1984)	and	others	reporting	211	

no	clear	trend	at	all	(Christie	et	al.,	2003).		Richness	patterns	are	likely	to	be	dependent	on	the	212	
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regional/local	species	pool,	the	time	available	for	colonisation,	and	the	complexity	of	the	habitat.		213	

Several	studies	have	suggested	that	successional	processes	within	kelp	holdfasts	do	not	involve	214	

species	replacement	but	rather	an	additive	progression;	this	is	because	species	recorded	in	small	215	

holdfasts	are	also	recorded	in	older,	larger	ones	and	are	not	necessarily	replaced	by	competitively	216	

superior	species	(Ojeda	and	Santelices,	1984;	Smith	et	al.,	1996).		This	may	be	related	to	the	fact	that	217	

the	habitat	is	dynamic	and	grows	throughout	succession	or	that	the	complexity	of	the	holdfast	218	

promotes	and	maintains	niche	separation.		A	major	impediment	in	the	search	for	generality	in	219	

holdfast	assemblage	structure	and	functioning	is	that	the	methods	used	to	quantify	assemblages	220	

have	been	inconsistent,	with	many	studies	considering	only	mobile	or	sessile	fauna	(e.g.	Christie	et	221	

al.,	2003;	Tuya	et	al.,	2011)	and	other	studies	focussing	on	specific	taxonomic	groups	(e.g.	peracarid	222	

crustaceans;	Thiel	and	Vásquez,	2000),	which	makes	overarching	inferences	and	generalisations	223	

difficult.	224	

Several	studies	have	examined	interspecific	variability	in	holdfast	assemblage	structure	to	determine	225	

whether	different	kelps	support	different	levels	of	biodiversity.		McKenzie	and	Moore	(1981)	226	

compared	holdfast	assemblages	associated	with	Saccorhiza	polyschides	with	those	of	Laminaria	227	

hyperborea	in	the	UK	and	noted	marked	differences	in	faunal	composition,	richness	and	abundance.		228	

L.	hyperborea	supported	far	greater	diversity	and	abundance,	which	was	attributed	to	greater	229	

complexity	and	longevity	of	the	holdfast	structure;	but	S.	polyschides	housed	larger	animals,	230	

including	several	predatory	fish	and	crustaceans	that	were	typically	absent	from	L.	hyperborea.		231	

Some	years	later,	Tuya	et	al.	(2011)	repeated	the	comparison	in	northern	Portugal,	where	L.	232	

hyperborea	is	found	at	its	southern	range	edge	and	sporophytes	are	much	smaller,	and	found	no	233	

differences	in	faunal	composition	or	abundance	between	the	two	host	species	despite	marked	234	

differences	in	holdfast	morphology.		As	such,	biogeographic	context	–	in	terms	of	both	the	structure	235	

of	the	kelps	themselves	and	the	regional/local	species	pool	comprising	holdfast	assemblages	–	is	236	

clearly	important.		Recent	studies	have	examined	whether,	outside	its	native	range,	the	invasive	kelp	237	

Undaria	pinnatifida	supports	impoverished	assemblages	compared	with	native	habitat-forming	238	
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macroalgae	(Arnold	et	al.,	2016;	Raffo	et	al.,	2009).		In	Argentina,	the	larger	holdfasts	offered	by	M.	239	

pyrifera	support	higher	faunal	richness	and	abundance	than	U.	pinnatifida	(Raffo	et	al.,	2009).		In	the	240	

UK	the	longer-lived	holdfasts	offered	by	native	perennial	kelps	support	greater	richness	and	biomass	241	

of	sessile	fauna	(Arnold	et	al.,	2016).		Both	studies	stated,	however,	that	native	kelp	species	may	not	242	

be	negatively	impacted	by	non-native	U.	pinnatifida,	which	may	occupy	a	different	niche	both	243	

spatially	and	temporally,	and	community-wide	responses	to	invasion	are	likely	to	be	complex	and	244	

context-specific.		With	further	reference	to	intraspecific	variability,	studies	on	Macrocystis	pyrifera	in	245	

Chile	have	revealed	high	levels	of	variation	in	holdfast	assemblage	structure	and	diversity	between	246	

kelp	populations	(Ojeda	and	Santelices,	1984;	Rios	et	al.,	2007).		Spatial	differences	in	physical	247	

disturbance	regimes	driven	by	wave	exposure	and	storm	intensity	were	suggested	as	the	most	likely	248	

driver	of	associated	biodiversity	patterns	(see	below).			249	

2.2.	Stipe	assemblages	250	

In	contrast	to	the	holdfast,	the	stipe	is	relatively	simple	in	structure	but	also	exhibits	significant	251	

variability	between	species	and	populations.		The	majority	of	kelps	have	a	defined	stipe;	a	single	rigid	252	

structure	arising	from	the	apex	of	the	holdfast	and	supporting	the	blade	in	the	water	column.		The	253	

structure	of	the	stipe	itself,	in	terms	of	rugosity,	rigidity,	tensile	strength	and	whether	it	is	branching,	254	

terete,	solid	or	hollow,	varies	considerably	between	species.		The	length	of	the	stipe,	and	therefore	255	

the	total	area	of	biogenic	habitat	available	for	colonisation,	also	varies	considerably	between	256	

populations	and	species.		For	example,	the	average	stipe	length	of	mature	Laminaria	hyperborea	257	

plants	may	more	than	double	along	a	steep	wave	exposure	gradient	(Smale	et	al.,	2016),	although	258	

smaller	differences	in	water	motion	between	moderately	exposed	and	sheltered	habitats	may	have	259	

minimal	effect	on	the	rate	of	stipe	elongation	(Kregting	et	al.,	2013).		Interspecific	variation	is	260	

considerable,	with	some	kelp	species	exhibiting	stipe	lengths	in	excess	of	15	(Ecklonia	maxima)	or	261	

even	30	m	(Nereocystis	luetkeana).		Several	species	(e.g.	Nereocystis	spp.,	Macrocystis	pyrifera)	have	262	

evolved	gas-filled	bladders	to	assist	with	flotation	and	some	species	(e.g.	M.	pyrifera)	develop	mid-263	
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water	fronds	to	facilitate	photosynthesis	(Graham	et	al.,	2007).		Several	ecologically-important	264	

species,	including	Undaria	pinnatifida	and	Saccorhiza	polyschides	have	flattened	stipes	(Castric-Fey	265	

et	al.,	1999;	Norton,	1969;	Norton	and	Burrows,	1969).		Although	most	kelps	produce	a	single	stipe,	266	

some	species	(including	Lessonia	nigrescens	and	M.	pyrifera)	grow	multiple	stipes	from	the	same	267	

holdfast	structure.		As	such,	the	physical	structure	and	properties	of	kelp	stipes	are	likely	to	have	a	268	

major	influence	on	the	structure	and	diversity	of	the	associated	assemblage.			269	

Studies	on	the	invertebrate	assemblages	associated	with	the	surface	of	kelp	stipes	are	scarce,	with	270	

most	focus	on	the	assemblage	associated	with	secondary	epiphytic	algae.		However,	there	is	271	

emerging	evidence	to	suggest	that	some	species	(e.g.	L.	hyperborea)	can	support	rich	and	abundant	272	

assemblages	of	sessile	invertebrates	attached	directly	to	the	stipe	(Leclerc	et	al.,	2015).		Within	a	273	

kelp	forest,	the	total	biomass	of	filter	feeders,	particularly	demosponges,	attached	to	stipes	can	be	274	

substantial,	and	represents	an	important	link	between	trophic	levels.		With	regards	to	flora,	275	

epiphytic	algae	are	common	on	marine	macroalgae	(Bartsch	et	al.,	2008).		Some	are	obligate	276	

epiphytes	(e.g.	on	Ecklonia	maxima	in	South	Africa;	Anderson	et	al.,	2006),	while	the	majority	are	277	

facultative,	simply	occupying	free	space	on	the	surface	of	larger	macroalgae,	as	well	as	being	found	278	

attached	to	abiotic	substrata	(Bartsch	et	al.,	2008).		Experimental	removals	of	kelp	canopies	have	279	

resulted	in	early	settlement	of	common	epiphytic	species	in	cleared	areas,	perhaps	suggesting	that	280	

competition	for	light	with	canopy	algae	limits	these	facultative	species	to	an	epiphytic	strategy	281	

(Hawkins	and	Harkin,	1985).		Studies	utilising	artificial	macrophyte	mimics	have	shown	that	282	

epiphytes	readily	grow	on	abiotic	structures,	supporting	the	assertion	that	the	biotic	nature	of	the	283	

macrophyte	involved	is	often	insignificant	(Cattaneo	and	Klaff,	1979;	Harlin,	1973).			284	

The	diversity	and	abundance	of	epiphytic	algae	colonising	kelp	is	highly	variable.		Nearly	80	species	285	

of	epiphytes	(red,	green	and	brown	algae)	have	been	recorded	on	Laminaria	species	in	the	Sea	of	286	

Japan	(Sukhoveeva,	1975),	whereas	in	the	North	Sea,	7	and	8	species	of	epiphytes	(predominantly	287	

red	algae)	were	recorded	on	Laminaria	digitata	and	L.	hyperborea	respectively	(Schultze	et	al.,	288	



13	
	

1990).		L.	hyperborea	stipes	in	Norway	support	a	diverse,	red	algae	dominated,	epiphytic	community	289	

of	up	to	40	species	(Christie	et	al.,	1998;	Sørlie,	1994).		Whittick	(1983),	however,	found	that	95%	of	290	

epiphyte	biomass	found	on	samples	of	L.	hyperborea	in	southeast	Scotland	comprised	just	4	species.		291	

The	diversity	and	abundance	of	epiphytes	can	also	be	extremely	variable	between	host	species,	with	292	

significant	differences	observed	between	closely	related	and	morphologically	similar	species.		For	293	

instance,	L.	hyperborea	has	been	shown	to	support	up	to	86	times	more	epiphytes	(by	weight)	than	294	

Laminaria	ochroleuca,	in	areas	where	both	species	co-exist	in	mixed	stands	(Smale	et	al.,	2015).		In	295	

this	case,	differences	were	most	likely	related	to	variability	in	surface	texture	and,	perhaps,	296	

production	of	chemical	antifoulants	(see	Jennings	and	Steinberg,	1997	for	Ecklonia	example;	Smale	297	

et	al.,	2015).		The	composition	of	epiphytes	often	changes	vertically	along	the	stipe	(Whittick,	1983),	298	

and	also	exhibits	pronounced	differentiation	along	abiotic	gradients	(Bartsch	et	al.,	2008).		Epiphyte	299	

biomass	decreases	with	depth,	due	to	light	attenuation	in	the	water	column,	often	by	a	factor	of	ten	300	

or	more	(Allen	and	Griffiths,	1981;	Marshall,	1960;	Whittick,	1983).		Depth	(and	associated	changes	301	

in	light	levels)	also	plays	a	part	in	structuring	epiphyte	assemblages,	with	distinct	zonation	of	302	

different	epiphytic	algal	species	along	depth	gradients	(e.g.	Palmaria	palmata	and	Phycodrys	rubens	303	

on	L.	hyperborea;	Whittick,	1983).		Under	certain	conditions,	specifically	where	light	levels,	water	304	

motion	(particularly	tidally-driven	currents)	and	kelp	densities	are	very	high,	the	kelp	sporophytes	305	

themselves	may	be	epiphytic	on	older	kelp	plants	(Velimirov	et	al.,	1977),	thereby	initiating	a	306	

complex	facilitation	cascade	(Thomsen	et	al.,	2010).			307	

The	often	extensive	secondary	habitat	provided	by	epiphytic	algae	on	kelp	stipes,	has	been	shown	to	308	

support	a	diverse	and	extremely	abundant	faunal	assemblage	(Christie,	1995;	Christie	et	al.,	2003).		309	

While	the	holdfast	generally	supports	the	most	diverse	assemblage,	the	stipe/epiphyte	complex	310	

usually	supports	the	greatest	densities	of	fauna	(Table	1).		Christie	et	al.	(2003)	recorded	in	excess	of	311	

55,000	individual	mobile	macrofauna	per	kelp	on	the	stipe	of	L.	hyperborea	in	Norway;	but	noted	312	

that	the	assemblage	associated	with	the	stipe	was	the	most	variable,	with	very	low	abundances	313	

observed	on	some	specimens.		These	assemblages	tend	to	be	dominated	by	amphipods,	gastropods,	314	
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and	other	molluscs	(Norderhaug	et	al.,	2002).		Habitat	size	is	very	important	for	stipe	and	epiphytic	315	

algal	associated	macrofauna,	as	it	is	for	holdfast	fauna.		Larger	habitats	(i.e.	larger	biomass	of	316	

epiphytic	algae)	have	been	shown	to	support	a	more	abundant	and	diverse	assemblage	(Norderhaug	317	

et	al.,	2007).		It	is,	once	again,	also	important	to	consider	the	complexity	of	the	epiphytic	algal	318	

material	concerned	when	considering	the	effect	of	habitat	space,	not	only	considering	the	algal	319	

surface	itself,	but	also	the	interstitial	volume	(Christie	et	al.,	2009;	Hacker	and	Steneck,	1990).		It	has	320	

been	shown	that	macrofaunal	density	on	epiphytic	red	algae	is	higher	on	structurally	complex	321	

species	(e.g.	Rhodomela	spp.	and	Ptilota	gunneri)	than	those	with	simple,	smooth	surfaces	(e.g.	322	

Palmaria	palmata;	Christie	et	al.,	2009;	also	see	Schmidt	and	Scheibling,	2006).		Similarly,	recent	323	

work	has	shown	that	the	diversity	and	richness	of	faunal	assemblages	is	greater	on	large,	roughened	324	

epiphytes	compared	with	smooth,	simple	forms	(Norderhaug	et	al.,	2014).		This	assertion	is	325	

supported	by	work	with	artificial	mimics	of	differing	complexity	(Christie	et	al.,	2007).		It	is	important	326	

to	note,	however,	that	while	habitat	size	seems	to	be	of	importance	in	driving	the	abundance	of	327	

macrofauna,	the	patterns	do	not	hold	true	for	meiofauna,	suggesting	that	other	processes	(e.g.	328	

predation	by	macrofauna)	may	be	playing	a	role	in	controlling	their	abundance	(Norderhaug	et	al.,	329	

2007),	and	that	meiofauna	may	be	more	closely	associated	with	holdfasts	than	epiphytes	(Arroyo	et	330	

al.,	2004).	331	

2.3.	Blade	assemblages	332	

The	blade,	or	lamina,	provides	a	large	surface	area	for	photosynthesis	and	also	for	colonisation	by	a	333	

range	of	epibionts.		Although	the	blade	has	the	lowest	structural	complexity	of	the	primary	334	

microhabitats,	inter	and	intraspecific	variability	in	morphology	is	still	evident	(Arnold	et	al.,	2016;	335	

Włodarska-Kowalczuk	et	al.,	2009).		Blade	structures	vary	in	thickness,	rigidity,	surface	texture,	edge	336	

formations,	presence	of	a	mid-rib,	and	the	number	and	arrangement	of	divisions;	all	of	which	can	337	

differ	between	species	and	populations	and	will	have	some	influence	on	the	settlement,	growth	and	338	

survivorship	of	epiflora	and	epifauna.			339	
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The	blade	generally	supports	the	lowest	diversity	of	epibionts	of	the	primary	habitats	(Włodarska-340	

Kowalczuk	et	al.,	2009),		although	competitively	inferior	species	may	persist	here	due	to	intense	341	

competition	for	space	in	other	areas	(i.e.	the	stipe;	Seed	and	Harris,	1980).		The	blade	of	healthy	kelp	342	

plants	typically	support	a	low	coverage	of	epiphytic	algae,	which	would	likely	compete	for	light	and	343	

nutrients	to	the	detriment	of	the	host	alga.		However,	heavy	epiphytic	loading	on	kelps	has	been	344	

observed	under	stressful	conditions,	such	as	periods	of	intense	warming	or	low	light	and	high	345	

nutrients	(Andersen	et	al.,	2011;	Moy	and	Christie,	2012;	Smale	and	Wernberg,	2012),	and,	in	346	

perennial	species,	as	the	old	blade	senesces	at	the	end	of	the	growing	season	(e.g.	Andersen	et	al.,	347	

2011).		Moreover,	kelps	with	short	annual	life-cycles	(e.g.	Undaria	pinnatifida	and	Saccorhiza	348	

polyschides)	often	support	dense	epiphytic	assemblages	during	the	senescent	period	of	the	349	

sporophyte	stage	(e.g.	Norton	and	Burrows,	1969).	350	

The	low	faunal	diversity	characteristic	of	kelp	blades	may	be	due,	in	part,	to	the	inherent	flexibility	351	

and	instability	of	the	substratum	(Bartsch	et	al.,	2008).		However,	in	certain	conditions,	epifaunal	352	

abundance	and	spatial	cover	can	be	high	(Saunders	and	Metaxas,	2008).		The	bryozoan	353	

Membranipora	membranacea	has	been	noted	to	be	one	of	the	few,	often	the	only,	species	of	sessile	354	

fauna	associated	with	the	blade	of	Laminaria	species	(Seed	and	Harris,	1980).		This	is	probably	due	355	

to	the	growth	plan	of	this	species,	which	develops	non-calcified	bands	of	zooids	thought	to	prevent	356	

cracking	of	colonies	on	a	flexible	substratum	(Ryland	and	Hayward,	1977).		M.	membranacea	is	now	357	

a	common	invasive	species	in	the	northwest	Atlantic,	thought	to	be	introduced	from	Europe	via	ship	358	

ballast	water	(Lambert	et	al.,	1992).		Survival	of	native	northwest	Atlantic	kelp	has	been	shown	to	be	359	

lower	in	the	presence	of	invasive	M.	membranacea	(Levin	et	al.,	2002),	making	plants	more	360	

susceptible	to	defoliation	during	intense	wave	action	by	making	the	blade	of	affected	species	brittle	361	

(Dixon	et	al.,	1981;	Lambert	et	al.,	1992;	Saunders	and	Metaxas,	2008;	Scheibling	et	al.,	1999).		It	362	

should	be	noted,	however,	that	in	other	settings	extensive	growth	of	sessile	epiphytic	fauna	363	

(including	M.	membranacea)	have	been	shown	to	have	no	negative	impact	on	the	growth	of	kelps	364	

(Hepburn	and	Hurd,	2005).		There	is	evidence	that	growth	rates	increase	in	heavily	colonised	fronds	365	
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during	periods	of	low	inorganic	nitrogen	concentrations	in	seawater,	potentially	due	to	the	provision	366	

of	ammonium	excreted	by	sessile	fauna	(e.g.	hydroids	on	Macrocystis	pyrifera;	Hepburn	and	Hurd,	367	

2005).		Recent	work	on	four	kelp	species	by	Arnold	et	al.	(2016)	reported	a	maximum	of	just	five	or	368	

six	sessile	invertebrate	species	attached	to	kelp	blades,	which	were	predominantly	bryozoans.		Other	369	

work	conducted	at	larger	scales	have,	however,	reported	considerably	higher	richness	values	370	

(Włodarska-Kowalczuk	et	al.,	2009).		Clearly,	richness	of	blade	epifauna	varies	considerably	between	371	

host	species	and	location	(Table	1).			372	

Larger	mobile	organisms	can	also	be	locally	abundant	on	blade	surfaces,	some	of	which	have	a	very	373	

high	affinity	to	kelp	species.		For	example,	the	blue-rayed	limpet,	Patella	pellucida	(previously	374	

Helcion	pellucidum),	is	a	common	and	locally	abundant	grazer	found	on	Laminaria	spp.,	where	it	375	

feeds	predominantly	on	the	kelp	tissue	(Christie	et	al.,	2003;	Vahl,	1971).		Similarly,	the	gastropod	376	

Lacuna	vincta	can	colonise	laminae	in	high	densities	(Johnson	and	Mann,	1986)	and,	although	the	377	

direct	impacts	of	grazing	may	be	relatively	minor	and	spatially	restricted	across	the	blade	surface,	378	

the	indirect	effects	of	tissue	weakening	may	promote	defoliation	of	kelp	canopies	during	intense	379	

storms	(Krumhansl	and	Scheibling,	2011b).		Other	conspicuous	and	ecologically	important	380	

macroinvertebrates	include	the	sea	urchin	Holopneustes	spp.	found	within	E.	radiata	canopies	381	

(Steinberg,	1995)	and	the	turban	snails	Tegula	spp.,	which	inhabit	M.	pyrifera	fronds	(Watanabe,	382	

1984).		More	generally,	the	mid-water	fronds	and	surface	canopies	of	the	giant	kelp	M.	pyrifera	can	383	

form	mini-ecosystems	that	support	high	abundances	of	invertebrates	and	fish	(see	Graham	et	al.,	384	

2007	and	references	therein).			385	

Crucially,	many	invertebrates	associated	with	kelp	thalli	maintain	their	association	with	the	host	386	

plant	even	if	it	becomes	detached	from	the	substratum.		Detached	kelp	may	be	transported	great	387	

distances	from	source	populations	and,	as	a	result,	aid	the	dispersal	of	fauna	that	remains	affiliated	388	

and	viable.		Positively	buoyant	kelps,	such	as	M.	pyrifera	and	Durvillaea	antarctica,	form	kelp	rafts	389	

which	can	drift	many	hundreds	of	km,	facilitating	the	dispersal	of	associated	invertebrate	390	
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assemblages	(Fraser	et	al.,	2011;	Hobday,	2000;	Ingólfsson,	1995).		Such	rafts	are	particularly	391	

numerous	in	the	Southern	Ocean	(Smith,	2002)	and	may	have	played	an	important	role	in	species	392	

dispersal	and	colonisation	of	novel	habitats	over	both	ecological	and	evolutionary	timescales	(Fraser	393	

et	al.,	2011).		Rafting	may	also	be	an	effective	means	of	long-range	dispersal	for	positively	buoyant	394	

species	of	invasive	algae	(e.g.	Sargassum	muticum;	Kraan,	2008;	Rueness,	1989).			395	

2.4.	Habitat	preference	of	kelp	fauna	396	

Although	most	species	of	kelp	associated	fauna	are	found	in	more	than	one	micro-habitat	(e.g.	stipe	397	

and	holdfast),	there	is	some	evidence	of	habitat	‘preference’	among	a	number	of	taxa.		A	study	of	L.	398	

hyperborea	along	an	extensive	stretch	of	the	Norwegian	coastline	found	no	species	associated	solely	399	

with	the	blade,	but	that	around	70	species	were	exclusively	associated	with	either	the	holdfast	or	400	

the	epiphytes	on	the	stipe	(Christie	et	al.,	2003).		This	pattern	has	also	been	shown	in	other	studies	401	

of	L.	hyperborea	(Norton	et	al.,	1977;	Schultze	et	al.,	1990).		It	is	important	to	note	that	these	402	

patterns	are	consistent	in	highly	mobile	groups	that	have	the	means	to	move	throughout	the	entire	403	

plant	(Christie	et	al.,	2003).		Dispersal	beyond	a	single	plant	has,	however,	been	documented	with	404	

both	holdfast	and	stipe	epiphyte	associated	species	(Jorgensen	and	Christie,	2003).		Jorgensen	and	405	

Christie	(2003)	found,	using	artificial	substrata,	that	holdfast	related	species	tended	to	disperse	close	406	

to	the	seabed,	but	that	stipe	epiphyte	associated	fauna	travelled	throughout	the	kelp	forest	as	a	407	

whole,	and	even	above	the	canopy	layer.		Some	of	these	very	mobile	fauna	(e.g.	amphipods	and	408	

isopods)	have	been	shown	to	actively	emigrate	from	kelp	forest	systems	in	relatively	high	numbers	409	

(1	-	2%	total	biomass	daily;	Jorgensen	and	Christie,	2003),	and	kelp	associated	fauna	represent	a	410	

large	source	of	food	for	adjacent	systems	(Bartsch	et	al.,	2008).		Thus	kelp	forests	can	be	considered	411	

ecologically	important	near	shore	export	centres	(Bartsch	et	al.,	2008).			412	

While	the	majority	of	mobile	kelp	associated	fauna	can	be	found	on	other	macroalage,	a	number	of	413	

species	may	be	considered	‘kelp	specialists’.		For	instance,	the	limpets	Cymbula	compressa	and	414	

Patella	pellucida	are	found	almost	exclusively	on	kelps	(C.	compressa	on	E.	radiata	in	South	Africa;	415	
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Anderson	et	al.,	2006;	and	P.	pellucida	on	laminarian	kelps	in	the	northeast	Atlantic;	Marques	de	416	

Silva	et	al.,	2006).		Although	P.	pellucida	spat	settle	on	crustose	algae	and	later	migrate	to	417	

macroalgae,	including	Mastocarpus	stellatus	(McGrath,	2001),	those	individuals	found	on	Laminaria	418	

spp.	have	been	shown	to	have	higher	growth	rates	than	those	found	elsewhere	(McGrath,	1992).			419	

2.5.	The	quantity	of	biogenic	habitat	provided	by	kelps		420	

Kelp	species	are	widespread	throughout	temperate	and	subpolar	regions,	where	they	provide	vast,	421	

complex	habitat	for	a	myriad	of	other	organisms.		Although	estimating	the	actual	standing	stock	of	422	

kelps	is	problematic	and	subject	to	some	uncertainty,	it	is	possible	to	use	a	combination	of	high-423	

resolution	fine	scale	sampling	techniques	and	larger-scale	survey	approaches	to	generate	useful	424	

approximations	of	kelp	distribution	and	biomass.		For	example,	the	estimated	standing	biomass	of	425	

Laminaria	spp.	along	the	northwest	coastline	of	Europe	is	in	excess	of	20	million	tonnes	(wet	weight,	426	

Burrows	et	al.,	2014;	Werner	and	Kraan,	2004).		The	biomass	and	volume	of	habitat	provided	by	427	

kelps	varies	considerably	between	species,	sites	and	regions,	and	is	strongly	influenced	by	428	

environmental	factors	including	wave	exposure,	light	availability	and	substratum	characteristics	429	

(Smale	et	al.,	2016).		Even	so,	it	is	possible	to	use	existing	data	on	kelp	populations	to	illustrate	the	430	

quantity	of	biogenic	habitat	provided	on	representative	kelp-dominated	rocky	reefs.		At	a	relatively	431	

wave	sheltered	site	in	Plymouth	Sound	(Firestone	Bay),	subtidal	rocky	reefs	support	a	mixed	kelp	432	

bed	comprising	Laminaria	ochroleuca,	Saccharina	latissima,	Undaria	pinnatifida	and	Saccorhiza	433	

polyschides	(Arnold	et	al.		2016).		While	the	total	biomass,	internal	holdfast	volume	and	surface	area	434	

(annual	means)	provided	varies	considerably	between	species,	the	total	kelp	canopy	generates	435	

significant	biogenic	habitat	(Table	2).		Within	a	typical	1	m2	area	of	rocky	substrata,	kelps	supply	an	436	

average	(wet	weight)	biomass	of	>2.5	kg,	holdfast	habitable	space	of	~380	ml	and	a	surface	area	437	

available	for	colonisation	of	>4	m2	(Table	2).		To	contextualise,	the	total	biomass	and	surface	area	of	438	

biogenic	habitat	provided	by	kelps	exceeds	most	reported	values	for	mature	seagrass	meadows	(~95	439	
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g	dry	weight	m2	and	~3.7	m2	respectively;	Duarte	and	Sand-Jensen,	1990;	Larkum	et	al.,	1984;	440	

McKenzie,	1994).	441	

At	the	more	wave	exposed	site,	which	is	dominated	by	Laminaria	hyperborea	but	also	supports	442	

populations	of	L.	ochroleuca,	S.	latissima	and	S.	polyschides	(Smale	et	al.,	2015),	the	quantity	of	443	

biogenic	habitat	provided	by	kelps	is	even	greater,	particularly	with	regards	to	total	biomass	and	444	

internal	holdfast	habitable	space	(Table	2).		Due	to	the	much	larger	holdfasts,	the	internal	habitable	445	

space	generated	(>1.7	L	m-2)	is	almost	5	times	that	of	the	wave-sheltered	site,	and	represents	sizable	446	

high-quality	protective	habitat.		For	both	examples,	when	values	are	scaled-up	to	the	site	level	447	

(which	is	prone	to	error	but	still	a	valuable	‘best	guess’	approach),	it	is	clear	that	kelps	yield	448	

substantial	biogenic	habitat	(Table	2)	and	that	deforestation	of	such	reefs	(see	5.	Threats	to	biogenic	449	

habitat	provided	by	kelps)	would	result	in	significant	loss	of	three-dimensional	structure	and	habitat	450	

complexity,	as	has	been	observed	in	kelp	forests	in	many	regions	in	response	to	contemporary	451	

stressors	(Ling	et	al.,	2009;	Moy	and	Christie,	2012;	Wernberg	et	al.,	2013).				452	

	3.		Physical	and	biological	regulation	of	habitat	provision	453	

3.	1.	Physical	regulation	454	

Hydrodynamic	forces	(i.e.	wave	action	and	currents)	have	long	been	recognised	to	influence	the	455	

structure	of	marine	communities	(Ballantine,	1961;	Brattström,	1968;	Knights	et	al.,	2012).		With	456	

regards	to	macroalgae-associated	assemblages,	wave	action	represents	a	physical	disturbance,	and	457	

can	result	in	considerable	loss	of	fauna	due	to	dislodgement	and	mortality	(Fenwick,	1976;	Fincham,	458	

1974).		Such	disturbance	may,	however,	increase	overall	diversity	of	the	community	by	preventing	459	

superior	competitors	from	outcompeting	other,	less	competitive,	species	and	by	creating	a	mosaic	of	460	

habitats	at	different	stages	of	succession	(Connell,	1978).		The	intermediate	disturbance	hypothesis	461	

(Connell,	1978)	would	suggest	that	moderately	exposed	sites	would	harbour	the	highest	diversity	of	462	

flora	and	fauna	(Dial	and	Roughgarden,	1998),	a	prediction	supported	by	experimental	work	in	some	463	
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areas	(e.g.	England	et	al.,	2008;	Norderhaug	et	al.,	2014).		Hydrodynamics	also	influence	the	464	

availability	of	food	and	rates	of	sedimentation,	which	can	influence	biotic	assemblages	by	limiting	465	

access	to	food,	or	through	the	smothering	of	some	filter	feeding	fauna	(Moore,	1973a).	466	

Wave	exposure	can	also	have	an	effect	on	the	kelps	themselves,	and	therefore	a	subsequent	indirect	467	

effect	on	associated	communities.		A	number	of	kelp	species	have	been	shown	to	exhibit	changes	in	468	

morphology	in	response	to	changes	in	wave	exposure	(Fowler-Walker	et	al.,	2006;	Molloy	and	469	

Bolton,	1996;	Wernberg	and	Thomsen,	2005).		Adaptations	to	exposed	environments	can	result	in	an	470	

increase	in	holdfast	size	and	volume	(Sjøtun	and	Fredriksen,	1995,	Smale,	Teagle,	unpublished	data),	471	

increased	stipe	length	(Smale	et	al.,	2016)	and	thickness	(Klinger	and	De	Wreede,	1988),	and	472	

increased	blade	thickness	(Kregting	et	al.,	2016;	Molloy	and	Bolton,	1996).		Such	strength-increasing	473	

adaptations	may	reduce	the	probability	of	dislodgement,	or	other	damage	caused	by	wave	action	474	

(Wernberg	and	Thomsen,	2005).			An	increase	in	overall	thallus	size	is	also	a	common	adaptation	to	475	

increased	wave	exposure	in	kelps	(Klinger	and	De	Wreede,	1988;	Pedersen	et	al.,	2012;	Wernberg	476	

and	Thomsen,	2005;	Wernberg	and	Vanderklift,	2010);	‘going	with	the	flow’	with	a	long,	flexible	477	

thallus	reduces	hydrodynamic	forces	(Denny	et	al.,	1998;	Denny	and	Hale,	2003;	Friedland	and	478	

Denny,	1995;	Koehl,	1999).		Some	species,	however,	also	exhibit	an	increase	in	overall	thallus	size	in	479	

very	sheltered	conditions	(e.g.	Laminaria	hyperborea;	Sjøtun	and	Fredriksen,	1995;	and	L.	digitata;	480	

Sundene,	1961).		Faunal	abundances	generally	increase	with	increasing	habitat	size	(Norderhaug	et	481	

al.,	2007);	thus	a	relationship	exists	between	local	hydrodynamic	conditions,	and	the	diversity	of	482	

communities	found	in	association	with	kelps	(Anderson	et	al.,	2005;	Christie	et	al.,	1998;	Christie	et	483	

al.,	2003;	Norderhaug	and	Christie,	2011;	Norderhaug	et	al.,	2012;	Norderhaug	et	al.,	2007;	484	

Norderhaug	et	al.,	2014;	Schultze	et	al.,	1990;	Walls	et	al.,	2016).		Water	movement	can	dislodge	485	

epiphytic	algae,	but	also	increases	algal	growth	by	transporting	nutrients	over	algal	surfaces	486	

(Norderhaug	et	al.,	2014).		The	abundance	of	kelp-associated	assemblages	depends	on	both	the	487	

amount	of	habitat	provided	by	the	algae	(Norderhaug	et	al.,	2007)	and	on	algal	morphology	(Christie	488	

et	al.,	2007).		Christie	et	al.	(2003)	found	that	the	volume	of	epiphytic	algae	on	the	stipe	of	L.	489	
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hyperborea	increased	by	a	factor	of	35,	and	the	number	of	algal	species	increased	by	a	factor	of	1.7,	490	

in	response	to	increasing	wave	exposure.		The	abundance	of	associated	fauna	increased	by	a	factor	491	

100	(Christie	et	al.,	2003).	It	is	important	to	note,	however,	that	most	studies	conducted	along	wave	492	

exposure	gradients	have	not	sampled	‘extremely’	exposed	sites	(e.g.	remote	offshore	islands	which	493	

are	rarely	visited	due	to	logistical	constraints)	and	under	such	conditions	the	morphology	of	kelp	494	

sporophytes	and	the	composition	and	density	of	the	kelp	canopy	will	be	distinct	(e.g.	Rockall,	see	495	

Holland	and	Gardiner,	1975).						496	

At	high	latitudes	physical	disturbance	by	ice-scour	can	limit	the	distribution	of	some	species	of	kelp,	497	

reducing	available	biogenic	habitat	significantly.		For	example,	Durvillaea	antarctica	is	absent	from	498	

severely	ice-scoured	areas	around	the	Antarctic	and	sub-Antarctic	islands	(Fraser	et	al.,	2009;	Pugh	499	

and	Davenport,	1997).		Macrocystis	pyrifera,	however,	will	persist	in	such	areas	as	its	holdfast	can	500	

anchor	below	the	maximum	keel	depth	of	ice-bergs	(Pugh	and	Davenport,	1997).		501	

Increased	temperature	and	decreased	nutrients	(e.g.	during	El	Niño	events)	can	also	reduce	the	502	

quality	or	quantity	of	habitat	provided	by	kelps	by	increasing	mortality	and	reducing	recruitment	of	503	

kelps	(Edwards	and	Hernández-Carmona,	2005),	and	reducing	growth	rates	(Dean	and	Jacobsen,	504	

1986).		Recent	work	from	Norway	has	highlighted	how	increased	temperature	and	nutrient	levels	505	

may	interact	to	influence	host	kelp	species	and	their	associated	communities,	reducing	overall	506	

benthic	diversity	(Norderhaug	et	al.,	2015).	507	

Alongside	temperature	and	nutrient	availability,	light	defines	where	kelps,	and	in	turn	their	508	

associated	assemblages,	can	develop	(Steneck	and	Johnson,	2013).		Kelps	are	constrained	to	shallow,	509	

well-illuminated	coastal	areas;	in	areas	lacking	herbivores	or	other	disturbance,	kelp	densities	and	510	

thallus	size	decline	rapidly	with	depth	(Steneck	et	al.,	2002).		High	levels	of	turbidity	reduce	the	511	

amount	of	light	that	can	penetrate	the	water	column,	thus	restricting	the	photic	zone	and	therefore	512	

the	habitable	area	for	kelps	(Steneck	et	al.,	2002;	Vadas	and	Steneck,	1988).		As	such,	levels	of	light	513	

(whether	as	a	function	of	latitude,	depth	or	water	clarity)	can	control	the	amount	of	habitat	514	
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provided	by	kelps.		Singularly,	turbidity	can	also	impact	on	kelp	associated	assemblages,	reducing	515	

diversity	by	to	the	increased	dominance	of	few	species	in	turbid	waters	(e.g.	Moore,	1978),	or	516	

through	the	increased	provision	of	particulate	organic	matter	as	a	food	source	(Moore,	1972b).	517	

3.	2.	Biological	regulation			518	

The	longevity	of	individual	kelp	plants	can	have	an	effect	on	the	faunal	assemblages	associated	with	519	

them.		Age	has	been	shown	to	have	significant	impacts	on	the	epiphytes	growing	on	the	stipe	of	520	

Laminaria	hyperborea	(Whittick,	1983),	and	the	diversity	and	abundance	of	epiphytes	has	been	521	

shown	to	increase	with	the	age	of	the	host	(Christie	et	al.,	1994);	a	pattern	also	shown	in	other	522	

species	(e.g.	Saccharina	latissima;	Russell,	1983).		Epiphytes	are	often	confined	to	the	older,	more	523	

rugose,	basal	parts	of	the	stipe	(Whittick,	1983),	and	the	distal,	older	parts	of	the	blade	(Bartsch	et	524	

al.,	2008;	Christie	et	al.,	2003;	Norton	et	al.,	1977).		The	holdfasts	of	L.	hyperborea,	however,	have	525	

been	shown	to	reach	maximal	diversity	at	around	six	years	old,	despite	the	plant	persisting	for	up	to	526	

15	years,	potentially	due	to	reduced	habitable	space	within	the	holdfast	as	encrusting	fauna	increase	527	

in	size	and	coverage	(Anderson	et	al.,	2005),	or	to	the	more	accessible	nature	of	larger	holdfasts	to	528	

predators	(Christie	et	al.,	1998).		Age	structure	of	entire	kelp	populations	can	be	affected	by	local	529	

environmental	conditions,	particularly	wave	exposure.		Studies	of	Laminaria	setchellii	(Klinger	and	530	

De	Wreede,	1988)	and	L.	hyperborea	(Kain,	1971,	1976)	have	documented	a	higher	proportion	of	531	

younger	plants	at	more	exposed	sites,	suggesting	a	higher	mortality	of	plants	in	these	areas.		Thus	532	

the	influences	of	wave	exposure,	kelp	size,	and	kelp	age	are	intrinsically	linked	and	highly	dependent	533	

on	both	the	species	and	the	local	conditions	involved.	534	

A	major	factor	limiting	the	abundance	and	diversity	of	the	assemblages	associated	with	kelps,	535	

particularly	the	blade	microhabitat,	is	the	longevity	of	the	substrata.		While	the	stipe	(excluding	the	536	

epiphytes)	and	holdfast	structures	persist	for	the	life	span	of	the	kelp	(in	excess	of	15	years	for	some	537	

species),	the	blade	is	a	more	ephemeral	structure	and	in	many	species	is	replaced	annually,	which	538	

can	limit	the	persistence	and	accumulation	of	species	(Christie	et	al.,	2003;	Norton	et	al.,	1977).		For	539	
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kelp	species	with	blades	that	persist	for	multiple	years,	the	age	of	the	substratum	may	influence	the	540	

diversity	and	structure	of	the	associated	epibiotic	assemblage	(Carlsen	et	al.,	2007).		Carlsen	et	al.	541	

(2007)	found	that	the	number	of	epifaunal	species	found	on	the	blade	of	Laminaria	digitata	and	542	

Saccharina	latissima	in	Svalbard	was	negatively	correlated	with	increasing	age,	possibly	due	to	a	543	

reduction	of	substrate	(blade)	surface	area,	increased	physical	stress	at	the	distal	tips,	and	increased	544	

tissue	decay	with	age.	545	

While	assemblages	associated	with	the	holdfast	seem	to	be	relatively	stable	throughout	the	year,	546	

stipe	epiphytes	are	prone	to	a	high	degree	of	variability	between	seasons	(Christie	et	al.,	2003).		The	547	

biomass	of	epiphytic	algae	tends	to	decline	in	the	winter,	reducing	available	habitat	(Whittick,	1983)	548	

and	therefore	faunal	diversity	and	abundance	(Christie	et	al.,	2003).		Christie	et	al.	(2003),	however,	549	

found	no	reduction	in	the	volume	of	epiphytic	algae	growing	on	Laminaria	hyperborea	in	winter,	550	

instead	suggesting	that	other	factors	may	also	be	responsible	for	the	observed	reduction	in	the	551	

abundance	of	faunal	assemblages	(e.g.	reduced	habitat	complexity,	greater	predation	pressure,	552	

increased	exposure	to	winter	storm	events,	and	emigration;	Christie	et	al.,	2003;	Christie	and	553	

Kraufvelin,	2004).		Increases	in	the	abundance	of	holdfast	fauna	have	also	been	observed	in	winter	554	

months,	suggesting	that	stipe/epiphytic	algae	associated	species	may	migrate	down	to	the	holdfast	555	

during	the	winter	(Christie	et	al.,	2003);	holdfasts	represent	a	year	round	stable	habitat	and	a	source	556	

of	food	(i.e.	through	retention	of	sediment;	Moore,	1972b).		Faunal	species	in	epiphyte-associated	557	

assemblages	generally	have	higher	dispersal	rates	than	those	found	within	the	holdfast	(Norderhaug	558	

et	al.,	2002),	perhaps	partly	in	response	to	this	annual	cycle.		Epibiotic	assemblages	associated	with	559	

kelp	blades	also	exhibit	seasonality	as	they	are	strongly	influenced	by	processes	occurring	in	the	560	

overlying	water	column,	such	as	seasonal	variability	in	phytoplankton	production	and	related	561	

patterns	of	invertebrate	larvae	density	(Carlsen	et	al.,	2007).			562	

While	patterns	in	the	abundance,	diversity	and	structure	of	faunal	assemblages	inhabiting	kelps	can	563	

vary	at	small	scales,	similarities	can	be	seen	at	much	larger	spatial	scales.		Comparisons	between	564	
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studies	carried	out	in	the	northeast	Atlantic	show	that	the	species	utilising	kelps	as	habitat	in	this	565	

area	are	relatively	consistent	(Blight	and	Thompson,	2008;	Christie	et	al.,	2003;	Jones,	1971;	Moore,	566	

1973a,	b;	Schultze	et	al.,	1990).		Similarly,	Anderson	et	al.	(2005)	examined	assemblages	in	Ecklonia	567	

radiata	holdfasts	in	New	Zealand	and	reported	high	levels	of	consistency	in	structure	and	diversity	at	568	

large	spatial	scales.		At	coarser	taxonomic	levels,	and	global	scales,	Smith	et	al.	(1996)	commented	569	

that	the	dominant	faunal	groups	found	within	E.	radiata	in	Australia	were	comparable	to	those	570	

inhabiting	Laminaria	hyperborea	holdfasts	in	the	UK.		Conversely,	early	work	on	Macrocystis	pyrifera	571	

in	the	eastern	Pacific	reported	pronounced	large-scale	variability	in	holdfast	assemblage	structure,	572	

which	was	attributed	to	biogeographic	differences	in	faunistic	composition	(Ojeda	and	Santelices,	573	

1984;	Santelices,	1980).		Similarly,	holdfast	assemblages	in	the	high	Arctic	are	impoverished	and	574	

distinct	from	those	at	lower	latitudes,	most	likely	due	to	a	smaller	species	pool	arising	from	575	

ecological	and	evolutionary	processes	(Włodarska-Kowalczuk	et	al.,	2009).	576	

While	kelp	detritus	is	an	important	source	of	carbon	and	nitrogen	for	both	subtidal	(Fielding	and	577	

Davis,	1989;	Mann,	1988)	and	intertidal	consumers	(Bustamante	and	Branch,	1996;	Krumhansl	and	578	

Scheibling,	2012),	the	majority	of	fauna	inhabiting	kelps	do	not	directly	feed	on	fresh	kelp	material,	579	

due	in	part	to	their	high	C:N	ratios	(Norderhaug	et	al.,	2003;	Schaal	et	al.,	2010)	and	the	presence	of	580	

anti-herbivory	compounds	in	their	tissues	(Bustamante	and	Branch,	1996;	Duggins	and	Eckman,	581	

1997;	Norderhaug	et	al.,	2003).		There	is	evidence	that	palatability,	and	thus	the	susceptibility	to	582	

grazing,	of	kelp	differs	between	species,	which	may	be	related	to	the	phlorotannin	concentration	of	583	

the	tissue,	but	also	to	tissue	toughness,	the	area	of	the	kelp	concerned	and	overall	nutritive	values	584	

(Dubois	and	Iken,	2012;	Macaya	et	al.,	2005;	Norderhaug	et	al.,	2006).		Nevertheless,	a	number	of	585	

species	do	feed	directly	on	fresh	kelp	material.		The	blue-rayed	limpet,	Patella	pellucida,	for	586	

example,	is	commonly	found	on	laminarian	kelps	(McGrath,	1997,	2001)	and	it	is	known	for	those	587	

that	are	to	feed	exclusively	on	kelp	tissue	(Vahl,	1971).		Two	forms	of	the	species	exist;	the	annual	588	

pellucida	form	is	found	solely	on	the	blade,	while	the	laevis	form	migrates	downwards	where	it	589	

grazes	the	stipe,	and	excavates	the	base	of	the	stipe	within	the	holdfast	where	it	can	persist	for	2	590	
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years	(Graham	and	Fretter,	1947;	McGrath	and	Foley,	2005).		As	such,	this	species	may	cause	591	

considerable	mortality	of	host	kelps	due	to	the	weakening	of	the	holdfast	(Kain	and	Svendsen,	1969).		592	

Grazing	by	larger	invertebrate	herbivores	(e.g.	sea	urchins)	can	reduce	the	amount	of	biogenic	593	

habitat	available	to	the	wider	community	by	over-grazing	kelp	sporophytes	and	in	extreme	instances	594	

can	cause	phase	shifts	from	structurally	and	biologically	complex	and	diverse	habitats	to	595	

depauperate	“barrens”	(Filbee-Dexter	and	Scheibling,	2014;	Johnson	et	al.,	2011;	Ling	et	al.,	2015;	596	

Steneck	et	al.,	2002).	597	

Competition	for	suitable	hard	substratum,	light	and	nutrients	can	also	influence	biogenic	habitat	598	

provision	by	kelps.		Shading	by	neighbouring	canopy-forming	macroalgae	and	epibionts	can	restrict	599	

light	availability,	while	dense	epibiont	assemblages	can	limit	the	exchange	of	nutrients	and/or	gases	600	

by	blocking	the	surface	of	thallus	cells	(Wahl	et	al.,	2015),	potentially	reducing	growth	rates,	altering	601	

morphology	and,	in	extreme	cases,	leading	to	mortality.	602	

4.		Understorey	assemblages	and	wider	biodiversity	603	

At	spatial	scales	greater	than	a	single	kelp,	multiple	individuals	form	extensive	canopies	that	provide	604	

three-dimensional	habitat	for	a	vast	array	of	larger	marine	organisms	(Smale	et	al.,	2013),	a	number	605	

of	which	are	of	ecological	(e.g.	sea	urchins;	Kitching	and	Thain,	1983)	or	economical	(e.g.	the	606	

European	Lobster;	Johnson	and	Hart,	2001)	importance.		Kelp	forests	have	long	been	recognised	to	607	

be	important	in	regards	to	a	number	of	fish	species,	which	utilise	them	as	nursery	and	feeding	areas,	608	

and	as	refugia	from	predators	(Bodkin,	1988;	Norderhaug	et	al.,	2005;	Reisewitz	et	al.,	2006).		609	

Elevated	abundances	of	fish	species	consequently	attracts	larger	piscivores,	such	as	seabirds	and	sea	610	

otters,	whose	distribution	may	be	closely	linked	to	kelp	forests	(Estes	et	al.,	2004;	Graham,	2004;	611	

Steneck	et	al.,	2002).		Stable	isotope	analysis	has	shown	that	a	number	of	species	of	seabird	derive	a	612	

high	proportion	of	their	carbon	from	local	kelps	(e.g.	the	great	cormorant	and	the	eider	duck;	613	

Fredriksen,	2003).			614	
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The	kelp	canopy	ameliorates	conditions	for	the	development	of	diverse	epilithic,	understorey	algal	615	

assemblage	(Maggs,	1986;	Norton	et	al.,	1977),	which	provides	habitat	for	an	array	of	invertebrate	616	

fauna.		Understorey	assemblages	are	generally	dominated	by	red	algae,	with	commonly	over	40	617	

species	present	(Clark	et	al.,	2004;	Flukes	et	al.,	2014;	Maggs,	1986).		For	example,	recent	618	

biodiversity	surveys	within	kelp	forests	in	the	UK	and	Australia	have	recorded	between	40	and	108	619	

species	of	understorey	macroalgae	with	richness	values	generally	in	the	order	of	50-60	species	(Fig.	620	

4).	Spatial	variability	in	the	richness	of	understorey	algal	assemblages	is	likely	to	be	influenced	by	621	

both	local	(e.g.	wave	exposure,	turbidity)	and	regional	(e.g.	available	species	pool)	processes	(Fig.	4).		622	

It	is	clear,	however,	that	understorey	assemblages	are	generally	species-rich	(Dayton,	1985).		They	623	

have	been	shown	to	be	more	diverse	than	comparable	assemblages	on	reefs	lacking	a	canopy	624	

(Melville	and	Connell,	2001;	Watt	and	Scrosati,	2013),	most	likely	because	canopies	increase	habitat	625	

heterogeneity	and	ameliorate	environmental	conditions.		626	

The	influence	of	canopy-forming	macroalgae	on	understorey	assemblages	has	been	examined	627	

through	both	monitoring	natural	occurrences	of	canopy	removal	or	thinning	(e.g.	by	grazing;	Bulleri	628	

and	Benedetti-Cecchi,	2006;	Ling,	2008;	or	localised	warming	events;	Smale	and	Wernberg,	2013;	629	

storms;	Thomsen	et	al.,	2004;	Wernberg	et	al.,	2013),	and	experimentally	by	in	situ	removal	630	

experiments	(Clark	et	al.,	2004;	Flukes	et	al.,	2014;	Hawkins	and	Harkin,	1985;	Melville	and	Connell,	631	

2001;	Reed	and	Foster,	1984;	Toohey	et	al.,	2007).		The	structure,	abundance	and	diversity	of	632	

understorey	assemblages	is	regulated	by	shading	(Arkema	et	al.,	2009;	Foster,	1982;	Kennelly,	1987;	633	

Reed	and	Foster,	1984)	and	alterations	to	water	flow	caused	by	the	canopy	(Eckman,	1983),	as	well	634	

as	physical	disturbance	caused	by	the	kelps	themselves	(i.e.	thallus	scour,	particularly	by	those	635	

species	lacking	an	erect	stipe,	e.g.	Ecklonia	radiata;	Irving	and	Connell,	2006).	The	majority	of	algal	636	

species	commonly	found	beneath	kelp	canopies	are	tolerant	of	low	light	conditions,	and	often	occur	637	

below	the	depth	limits	of	the	kelps	themselves	(Norton	et	al.,	1977).		Culture	experiments	have	638	

shown	that	a	number	of	typical	understorey	algae	grow	more	rapidly	and	successfully	at	lower	639	
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irradiances	(Boney	and	Corner,	1963;	Norton	et	al.,	1977),	and	suffer	mortality	at	higher	irradiances	640	

(see	Jones	and	Dent,	1971	and	references	therein).			641	

Changes	in	hydrodynamics	caused	by	macroalgae	and	seagrass	canopies	may	alter	the	supply	and	642	

dispersal	of	algal	propagules	and	invertebrate	larvae,	thereby	affecting	settlement	processes	643	

(Eckman,	1983;	Eckman	et	al.,	1989).		With	respect	to	adult	life	stages,	alterations	to	water	flow	can	644	

influence	feeding	activities,	and	therefore	the	growth	and	survival,	of	filter	feeding	invertebrates	645	

(Knights	et	al.,	2012;	Leichter	and	Witman,	1997)	and	increased	sedimentation	has	been	shown	to	646	

have	a	negative	impact	on	the	recruitment	and	survival	of	sessile	invertebrates	(Airoldi,	2003;	Irving	647	

and	Connell,	2002).	Moreover,	physical	disturbance	caused	by	the	scouring	of	the	seabed	by	kelp	648	

thalli	has	been	shown	to	have	negative	effects	on	the	abundance	of	some	morphological	(i.e.	erect)	649	

forms	of	understorey	algae	(Irving	and	Connell,	2006).			650	

Habitat-forming	kelps	may	also	interact	with	habitat-forming	sessile	invertebrates,	with	spatial	and	651	

temporal	variability	in	their	relative	abundances	influencing	the	wider	community.		An	interesting	652	

example	is	the	sea	palm	Postelsia	palmaeformis,	an	annual	kelp	which	occurs	in	patches	within	653	

mussel	beds	(Mytlius	californianus)	along	wave-exposed	coastlines	of	the	northeast	Pacific	654	

(Blanchette,	1996;	Dayton,	1973).		P.	palmaeformis	has	limited	dispersal	potential	and	is	655	

competitively	inferior	to	M.	californianus,	but	can	rapidly	colonise	areas	of	reef	following	656	

disturbance	to	mussel	beds	(Blanchette,	1996).		Moreover,	recruitment	of	P.	palmaeformis	657	

sporophytes	onto	M.	californianus	individuals	increases	the	probability	of	their	dislodgement	during	658	

winter	storms,	which	subsequently	frees	up	space	on	the	reef	for	further	P.	palmaeformis	659	

colonisation	(Dayton,	1973).		As	such,	the	interaction	between	these	species	and	their	environment	660	

(i.e.	storm	disturbance)	shapes	the	wider	habitat	and	influences	community	structure.			661	

All	of	the	governing	factors	are	context	dependent	and	differ	between	kelp	species,	reef	topography,	662	

and	local	hydrodynamic	conditions	(e.g.	Harrold	et	al.,	1988).		For	instance,	while	all	kelp	canopies	663	

regulate	the	amount	of	light	reaching	the	seabed,	the	degree	of	shading	is	dependent	on	the	664	
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morphological	structure	of	the	species.			The	rigid	stipe	and	relatively	small	blade	of	Laminaria	665	

hyperborea	can	reduce	sub-canopy	light	levels	to	as	little	as	10%	of	surface	irradiance	in	the	summer	666	

(Norton	et	al.,	1977;	Pedersen	et	al.,	2014).		The	buoyant,	extensive	fronds	of	Macrocystis	pyrifera,	667	

however,	can	reduce	light	levels	to	<1%	of	surface	levels	(Reed	and	Foster,	1984).		Indeed,	within	668	

Californian	M.	pyrifera	systems	the	abundance	of	understorey	algae	beneath	the	canopy	may	be	669	

light-limited	(Foster,	1982;	Rosenthal	et	al.,	1974),	so	that	removal	of	the	canopy	can	lead	to	670	

increases	in	both	abundance	and	richness	of	understorey	assemblages	(Kimura	and	Foster,	1984;	671	

Reed	and	Foster,	1984).		In	Chile,	however,	similar	canopy	removal	experiments	deliver	a	672	

comparatively	muted	ecological	response	(Santelices	and	Ojeda,	1984).			673	

Unlike	in	M.	pyrifera	dominated	systems,	sessile	invertebrates	are	conspicuously	absent	from	the	674	

understorey	assemblages	in	temperate	Australia	(Fowler-Walker	and	Connell,	2002).		It	appears	that	675	

the	negative	impacts	of	the	constant	sweeping	of	the	seabed	by	the	dominant	canopy	forming	kelp,	676	

Ecklonia	radiata,	outweighs	the	positive	effects	of	the	canopy,	and	act	to	exclude	sessile	677	

invertebrates	(Connell,	2003b).		Thus	the	morphological	differences	between	M.	pyrifera	(large,	678	

buoyant	species)	and	E.	radiata	(small,	sweeping	species)	act	to	provide	conditions	suitable	for	vastly	679	

different	understorey	assemblages.		Within	a	single	species	of	kelp,	wider	environmental	conditions	680	

will	also	lead	to	differences	in	the	morphology	of	individual	kelps,	and	to	the	population	structure	of	681	

localised	forests,	and	therefore	to	a	difference	in	conditions	experienced	by	understorey	species.		682	

The	age	structure	of	L.	hyperborea	has	been	shown	to	be	different	in	more	exposed	conditions,	with	683	

generally	younger	individuals	due	to	the	high	mortality	of	larger	plants	(Kain,	1971,	1976).			Young	L.	684	

hyperborea	plants	have	a	shorter,	more	flexible	stipe,	potentially	resulting	(particularly	with	the	high	685	

degree	of	wave	action	associated	with	more	exposed	locations)	more	physical	disturbance	of	the	686	

seabed,	in	comparison	to	older,	larger	plants	(Leclerc	et	al.,	2015).		This,	again,	highlights	the	687	

importance	of	context	in	the	study	of	understorey	assemblages	(see	Santelices	and	Ojeda,	1984).			688	
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The	majority	of	experimental	manipulations	of	understorey	assemblages	are	concerned	with	a	689	

monospecific	canopy,	and	studies	on	diverse	algal	canopies	are	comparatively	scarce.		Diverse	690	

macroalgae	canopies	may	promote	greater	biodiversity	in	understorey	assemblages	than	691	

monospecific	canopies	(Smale	et	al.,	2010)	due	to	the	enhanced	habitat	heterogeneity	and	niche	692	

diversification	found	under	mixed	canopies	(Clark	et	al.,	2004;	Smale	et	al.,	2013).		The	reef	itself	693	

also	plays	a	role	in	regulating	understories,	by	altering	the	structure	of	the	forest	canopy	(Toohey	et	694	

al.,	2007).		Topographically	complex	reefs	have	a	higher	irradiance	and	greater	water	motion	than	695	

simple,	flat	reefs,	and	are	therefore	less	likely	to	impact	the	degree	to	which	the	seabed	is	shaded	by	696	

the	canopy	(Toohey	and	Kendrick,	2008).		Thus,	such	reef	communities	are	complex,	and	should	be	697	

taken	into	account	both	in	future	work	on	these	systems,	and	in	future	management	decisions	698	

(Leclerc	et	al.,	2015).			699	

Removal	or	thinning	of	kelp	forest	canopies	cannot	only	serve	to	alter	the	structure	of	understorey	700	

assemblages,	but	such	disturbances	can	also	provide	opportunity	for	the	recruitment	and	growth	of	701	

non-native	species	(Valentine	and	Johnson,	2003),	potentially	with	detrimental	effects	on	the	702	

diversity	and	habitat	structure	of	these	systems	(Bax	et	al.,	2001).		It	has	been	shown	that	703	

disturbance	to	native	algal	assemblages	is	required	for	the	colonisation	of	non-native	species	such	as	704	

Undaria	pinnatifida	(Valentine	and	Johnson,	2003).		U.	pinnatifida	has	also	been	shown	to	host	a	less	705	

diverse,	and	structurally	distinct	epibiotic	assemblage	when	compared	with	native	algae	(Arnold	et	706	

al.,	2016;	Raffo	et	al.,	2009).		Thus	invasion	of	native	reef	assemblages	by	non-native	species	may	707	

result	in	impoverished	kelp	associated	assemblages	and	overall	lower	local	biodiversity	(Arnold	et	708	

al.,	2016;	Casas	et	al.,	2004).			709	

Along	urbanised	coastlines	globally,	replacement	of	natural	substrate	with	artificial	structures	710	

relating	to	human	activities	is	common	and	widespread	(e.g.	>50%	of	shores	in	Sydney	Harbour	are	711	

artificial	seawalls;	Chapman,	2003).		Such	structures	differ	from	natural	reefs	in	a	number	of	ways,	712	

including	their	composition,	complexity	and	orientation,	and	have	been	shown	to	support	distinct	713	
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assemblages	from	those	found	on	natural	substrates	(Bulleri	et	al.,	2005;	Glasby,	1999).		Recently	714	

there	has	been	a	focus	on	elevating	the	ecological	value	of	such	structures,	including	the	‘gardening’	715	

of	habitat-forming	species	(Firth	et	al.,	2014;	Perkol-Finkel	et	al.,	2012).		Habitat-forming	species	716	

growing	on	artificial	substrates,	however,	support	different	associated	assemblages	compared	to	717	

those	growing	on	natural	substrate	(Marzinelli	et	al.,	2009;	People,	2006).		For	example,	Marzinelli	718	

(2012)	showed	that	Ecklonia	radiata	growing	on	pier-pilings	supported	different	assemblages	of	719	

bryozoans	than	those	found	on	natural	reefs,	and	that	the	abundances	of	bryozoans,	including	the	720	

invasive	Membranipora	membranacea,	were	significantly	greater	on	kelps	on	artificial	substrates.		721	

This	variability	in	ecological	pattern	was	driven	by	both	direct	(through	shading)	and	indirect	factors	722	

(by	altering	abundances	of	sea	urchins;	Marzinelli	et	al.,	2011).		Clearly,	the	functioning	of	kelps	as	723	

habitat	forming	species	varies	between	natural	and	artificial	habitats	and,	given	the	rate	of	coastal	724	

development	and	habitat	modification,	this	represents	an	important	area	of	research.			725	

5.	Threats	to	biogenic	habitat	provided	by	kelps		726	

Kelp	forests	are	under	threat	from	a	range	of	anthropogenic	pressures,	such	as	decreased	water	727	

quality,	climate	change	and	overgrazing	driven	by	trophic	cascade	effects	from	overfishing	(Brodie	et	728	

al.,	2014;	Smale	et	al.,	2013;	Steneck	et	al.,	2002;	Steneck	and	Johnson,	2013).		Threats	to	729	

ecosystems	services	provided	by	kelp	forests	have	been	examined	in	recent	reviews	by	Smale	et	al.	730	

(2013)	and	Steneck	and	Johnson	(2013)	and	will	be	briefly	considered	here	in	relation	to	biogenic	731	

habitat	provision.	While	physical	disturbance	by	wave	action	is	important	in	maintaining	diversity	732	

within	kelp	forests,	as	well	as	promoting	turnover	of	nutrients	and	species	(Kendrick	et	al.,	2004;	733	

Smale	et	al.,	2010;	Smale	and	Vance,	2015),	extreme	wave	action	can	cause	damage	to	kelps	and	734	

associated	fauna,	leading	to	high	rates	of	mortality	and	widespread	loss	of	habitat	(Filbee-Dexter	735	

and	Scheibling,	2012;	Krumhansl	and	Scheibling,	2011a).		During	intense	storms,	wave	action	can	736	

cause	dislodgement	of	entire	kelp	plants,	and	can	lead	to	large	areas	of	reef	being	cleared	of	canopy	737	

cover	(e.g.	Reed	et	al.,	2011;	Thomsen	et	al.,	2004).		As	many	climate	models	predict	an	increase	in	738	
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the	frequency	of	extreme	high-intensity	storms	in	the	future,	as	a	consequence	of	anthropogenic	739	

climate	change	(Easterling	et	al.,	2000;	Meehl	et	al.,	2000),	increased	wave	action	may	reduce	kelp	740	

forest	extent	and	biodiversity	and	simplify	food	webs	(Byrnes	et	al.,	2011),	and	possibly	facilitate	741	

invasion	by	non-native	species	(e.g.	Edgar	et	al.,	2004).		An	increase	in	the	frequency	or	magnitude	742	

of	storm	events	will	probably	impact	the	quality	and	quantity	of	biogenic	habitat	available	for	743	

associated	assemblages,	as	removal	of	material,	from	an	individual	kelp	plant	to	large	swathes	of	744	

kelp	forest,	represents	removal	of	a	vast	amount	of	biogenic	habitat	from	the	system.		Smaller-scale	745	

removal	and	thinning	of	kelp	forest	canopies	will	also	influence	associated	species,	and	alter	746	

associated	structure	(Clark	et	al.,	2004;	Connell,	2003b;	Flukes	et	al.,	2014;	Hawkins	and	Harkin,	747	

1985;	Santelices	and	Ojeda,	1984).		Furthermore,	increased	storminess	and	physical	disturbance	may	748	

interact	with	other	environmental	change	factors,	such	as	climate-driven	range	shifts	of	species	749	

(Smale	and	Vance,	2015)	or	the	spread	of	non-native	species		(Krumhansl	et	al.,	2011),	to	further	750	

drive	alterations	or	loss	of	biogenic	habitat.						751	

Over-grazing	of	kelp	forests,	particularly	by	sea	urchins,	can	lead	to	considerable	loss	of	biogenic	752	

habitat	from	temperate	ecosystems,	in	extreme	cases	causing	phase-shifts	from	structurally	complex	753	

habitat	to	depauperate	“barrens”	(Breen	and	Mann,	1976b;	Filbee-Dexter	and	Scheibling,	2014;	754	

Hagan,	1983;	Johnson	et	al.,	2011;	Ling	et	al.,	2015;	Steneck	et	al.,	2002).		The	regulation	of	sea	755	

urchin	abundances	is	often	linked	to	the	structure	and	spatial	extent	of	kelp	forests	(Steneck	et	al.,	756	

2002).		Disease	(Scheibling	et	al.,	1999),	storms	(Dayton,	1985)	and	turbulence	(Choat	and	Schiel,	757	

1982)	can	all	influence	sea	urchin	abundances,	but	predators	are	the	single	most	important	regulator	758	

of	sea	urchin	populations	(Estes	and	Duggins,	1995;	Johnson	et	al.,	2011;	Ling	et	al.,	2015;	Sala	et	al.,	759	

1998;	Steneck,	1998).		Where	key	sea	urchin	predators	(e.g.	lobster;	Breen	and	Mann,	1976a;	Ling	et	760	

al.,	2009;	and	cod;	Tegner	and	Dayton,	2000)	are	the	focus	of	intensive	fishing	pressure,	a	trophic	761	

cascade	may	occur	whereby	sea	urchin	populations	proliferate	and	large-scale	deforestation	of	kelp	762	

forests	ensues.		763	
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	The	regularity	and	intensity	of	the	removal	of	kelp	canopies,	through	storms	or	harvesting,	is	764	

important	with	regards	to	the	recovery	of	affected	communities.		Studies	on	the	impacts	of	regular	765	

harvesting	of	kelp	(e.g.	in	Norway;	Christie	et	al.,	1998)	have	shown	that	recovery	rates	for	kelps	766	

themselves	may	not	reflect	recovery	rates	for	the	whole	community.			While	kelp	density	and	767	

morphology	may	return	to	a	pre-harvested	state	(>	1	m	in	height)	within	2	–	3	years,	associated	768	

epiphytic	assemblages	can	take	considerably	longer	to	recover	(4	-	6	years;	Christie	et	al.,	1998).		769	

Epiphytic	algal	communities	have	been	shown	to	recover	particularly	slowly	and,	despite	species	770	

richness	returning	to	pre-disturbance	levels	in	line	with	kelp	recovery	(2	–	3	years),	the	three-771	

dimensional	structure	of	these	assemblages	requires	a	longer	period	to	fully	recover,	potentially	772	

limiting	the	recovery	of	associated	faunal	assemblages	(Christie	et	al.,	1998).		This	level	of	773	

disturbance	has	also	been	shown	to	impact	the	abundance	of	some	fish	species,	as	well	as	impact	on	774	

the	foraging	behaviour	of	some	seabirds	(Lorentsen	et	al.,	2010).		Commercial-scale	kelp	harvesting	775	

(for	alginates,	food,	biofuel	and	other	products)	has	the	potential	to	severely	impact	provision	of	776	

biogenic	habitat	(e.g.	Anderson	et	al.,	2006;	Christie	et	al.,	1998),	and	consequently	biodiversity	and	777	

ecosystem	structure,	and	needs	to	be	carefully	managed	and	regulated	into	the	future.		Similarly,	778	

aquaculture	of	kelps	and	other	seaweeds	is	a	rapidly	growing	global	industry	(Loureiro	et	al.,	2015)	779	

and	farming	practises	have	the	potential	to	impact	biogenic	habitat	provision	by	kelps	through	the	780	

spread	of	disease	(Loureiro	et	al.,	2015)	and	non-native	species	(James	and	Shears,	2016),	as	well	as	781	

through	interbreeding	between	wild	and	farmed	populations	(Tano	et	al.,	2015).		Kelps	are	cool	782	

water	species	and	are	stressed	by	high	temperatures	(Steneck	et	al.,	2002).			As	such,	seawater	783	

warming	(in	association	with	global	climate	change)	will	impact	the	distribution,	productivity,	784	

resilience	and	structure	of	kelp	forests	(Harley	et	al.,	2012;	Merzouk	and	Johnson,	2011;	Wernberg	785	

et	al.,	2010).		Both	increased	frequency	and	severity	of	extreme	warming	events	(Dayton	and	786	

Tegner,	1984;	Smale	and	Wernberg,	2013)	and	longer-term	gradual	warming	(Wernberg	et	al.,	2011)	787	

are	likely	to	have	significant	impacts	on	habitat	structure	and,	particularly	for	those	species	at	the	788	
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equatorial	range	edge,	may	cause	widespread	losses	of	kelp	populations	(Fernandez,	2011;	Raybaud	789	

et	al.,	2013;	Voerman	et	al.,	2013).		790	

In	addition	to	increasing	temperature,	changes	in	water	quality	(particularly	turbidity)	will	influence	791	

the	spatial	extent	(i.e.	both	the	geographical	distribution	and	maximum	depth	of	populations)	and	792	

the	structure	of	kelp	habitat	which,	in	turn,	will	influence	associated	biodiversity	patterns.	793	

Decreased	water	quality	(i.e.	increased	nutrients,	sediments	and	turbidity)	in	coastal	environments	794	

has	led	to	widespread	losses	of	kelp	populations	and	caused	structural	shifts	in	habitats	and	795	

communities	(Connell	et	al.,	2008;	Moy	and	Christie,	2012).	As	such,	human	activities	influencing	796	

processes	acting	across	the	land-sea	interface,	such	as	coastal	development,	agricultural	practises	797	

and	catchment	management,	have	the	potential	to	significantly	alter	kelp	forest	structure.									798	

Physiological	stresses	are	likely	to	make	kelps	more	susceptible	to	disease.		Disease	can	cause	wide-799	

spread	mortality	or	have	sub-lethal	impacts,	such	as	reduced	growth	and	fecundity	(Wahl	et	al.,	800	

2015),	and	may	induce	alterations	in	community	structure	and	facilitate	the	spread	of	non-native	801	

species	(Gachon	et	al.,	2010).		Mass	mortality	of	kelps	in	New	Zealand	was	attributed	to	disease,	802	

induced	by	increased	physiological	stress	(Cole	and	Babcock,	1996).		Infected	Saccharina	latissima	803	

individuals	have	been	shown	to	grow	more	slowly	than	healthy	plants	(Schatz,	1984),	and	infection	804	

can	cause	thallus	deformity	(Peters	and	Schaffelke,	1996),	and	affect	depth	distributions	(Schaffelke	805	

et	al.,	1996).		The	virulence	of	many	marine	microbes	is	temperature-regulated	(Eggert	et	al.,	2010;	806	

Harvell	et	al.,	2002).		Thus,	warmer	temperatures	may	lead	to	stressed	susceptible	hosts	being	807	

exposed	to	more	abundant	and	virulent	pathogens	(Wahl	et	al.,	2015),	which	will	ultimately	affect	808	

biogenic	habitat	provision.		The	influence	of	multiple	concurrent	stressors	will	impact	habitat	809	

provision	by	kelps	in	complex	and	potentially	unexpected	ways.		Thus,	more	research	is	required	in	810	

order	to	predict	how	the	diversity	and	abundance	of	kelp	associated	flora	and	fauna	will	respond	to	811	

future	conditions.	812	
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In	order	to	alleviate	the	impacts	of	current	threats	and	stressors,	and	to	reduce	further	loss	of	813	

habitat,	there	are	a	few	recent	examples	of	management	and	conservation	measures	specially	814	

targeted	at	kelp	species.		In	eastern	Tasmania,	dramatic	declines	in	the	extent	of	Macrocystis	815	

pyrifera	have	been	observed	since	the	1980s;	likely	caused	by	the	southward	penetration	of	the	816	

warm,	nutrient-poor	waters	of	the	Eastern	Australian	Current	(Johnson	et	al.,	2011).		In	August	2012,	817	

as	a	result	of	these	losses,	the	Australian	giant	kelp	forests	were	listed	as	‘endangered’	under	the	818	

Environmental	Protection	and	Biodiversity	Conservation	Act	(see	Bennett	et	al.,	2016	and	references	819	

therein).		Recent	evidence	also	shows	that	the	Adriatic	population	of	the	Mediterranean	deep-water	820	

kelp,	Laminaria	rodriguezii,	has	suffered	a	decline	of	>85%	of	its	historical	range,	presumably	from	821	

bottom	trawling,	and	is	now	present	only	around	the	small	off-shore	island	of	Palagruža	(Žuljević	et	822	

al.,	2016).		This	has	prompted	calls	for	the	species	to	be	classified	as	‘endangered’	under	the	IUCN	823	

Red	List	in	the	Adriatic	(Žuljević	et	al.,	2016).		In	Europe	‘Reefs’	are	listed	under	Annex	I	of	the	824	

Habitats	Directive	as	a	marine	habitat	to	be	protected	by	the	designation	of	Special	Areas	of	825	

Conservation	(SACs).			While	kelp	forests	are	not	specifically	targeted	in	the	Habitats	Directive,	826	

species	of	the	genus	Laminaria	are	named	components	of	the	‘Reefs’	habitat	(Airoldi	and	Beck,	827	

2007).		Additionally,	two	species	of	Laminaria	from	the	Mediterranean	(L.	rodriguezii	and	L.	828	

ochroleuca)	are	listed	in	Annex	1	of	the	Bern	Convention	(Airoldi	and	Beck,	2007).		At	the	National	829	

level,	some	countries	have	implemented	legislation	and	policies	specifically	aimed	at	kelp	830	

populations	and	communities.	For	instance,	the	commercial	harvesting	of	kelp	is	strictly	regulated	in	831	

France	and	Norway	(Birkett	et	al.,	1998;	Christie	et	al.,	1998).	832	

6.		Knowledge	gaps	and	recommendations	for	further	research		833	

1.	The	provision	of	biogenic	habitat	by	kelp	species	globally	represents	a	significant	and	highly-834	

valuable	ecological	service,	which	is	increasingly	under	threat	from	environmental	change.		While	835	

the	patterns	of	change	and	driving	processes	have	been	studied	extensively	over	the	last	60	years	or	836	

so,	our	current	knowledge	on	the	ecology	of	kelp	forests	is	not	evenly	spread.		The	majority	of	837	
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research	concerns	just	a	few	species	(namely	Laminaria	hyperborea	in	the	northeast	Atlantic,	838	

Macrocystis	pyrifera	in	the	north	Pacific	and	southern	Atlantic,	and	Ecklonia	radiata	in	South	Africa	839	

and	Australasia),	and	information	on	others	is	sparse,	or	even	non-existent.		Indeed,	several	areas	of	840	

kelp	distribution	seem	to	be	understudied,	with	very	little	information	from	East	Asia	currently	841	

available	or	accessible.			842	

2.	While	steps	must	be	taken	to	form	an	accurate	picture	of	habitat	provision	and	associated	843	

biodiversity	patterns	from	a	representative	number	of	kelp	species,	the	experimental	design	used	to	844	

do	so	should	also	be	taken	into	account.		Currently,	it	is	difficult	to	make	overarching	inferences	or	845	

comparisons	between	kelp	species	or	geographic	regions	from	existing	data,	due	to	the	different	846	

sampling	methods,	survey	designs,	habitat	metrics	(e.g.	total	habitat	volume	versus	habitable	space)	847	

and	ecological	response	variables	used	and	presented	between	studies.			848	

3.	A	standardised	sampling	approach	would	allow	comparisons	to	be	made	between	species	and	849	

across	large	spatial	scales.	Given	that	several	key	ecological	processes	operate	at	large	spatial	scales	850	

(e.g.	climate	change,	global	spread	of	non-native	species),	consistent	and	comparable	observations	851	

of	kelp	populations	and	their	associated	communities	across	similar	spatial	scales	are	needed	to	852	

advance	understanding	and	improve	management	of	these	highly-valuable	ecosystems.	Adequately	853	

resourced	international	projects	or	networks	would	facilitate	these	goals.					854	

4.	Recent	advances	in	technology	should	be	employed	in	order	to	advance	understanding	of	855	

ecological	pattern	and	processes	within	kelp	forests.		For	example,	previous	work	unravelling	the	856	

influence	of	habitat	complexity	and	size	have	used	simplified	mimics	of	biogenic	structures	(e.g.	857	

holdfasts)	that	do	not	accurately	represent	the	complexity	seen	in	nature.	Developments	in	3D	858	

modelling	and	printing,	for	example,	could	be	used	to	manipulate	aspects	of	habitat	complexity	and	859	

size	in	an	ecologically-relevant	manner	to	shed	new	light	on	their	influence	on	kelp-associated	860	

biodiversity.	Similarly,	reliable	information	on	the	structure	and	spatial	extent	of	kelp	forest	habitat	861	

is	lacking	for	many	regions,	partly	because	shallow	rocky	reef	habitat	is	logistically-difficult	to	sample	862	
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at	large	spatial	scales.		Advances	in	remote	sampling	technologies,	such	as	Automated	Underwater	863	

Vehicles	(AUVs,	see	Smale	et	al.,	2012)	and	Gliders	could	dramatically	increase	the	spatial	and	864	

temporal	scale	of	benthic	sampling,	which	would	provide	more	accurate	assessment	of	the	structure	865	

and	distribution	of	kelp	forest	habitats.	This	information	would	feed	into	spatial	modelling	866	

approaches	(e.g.	Bekkby	et	al.,	2009)	and,	ultimately,	marine	management.										867	

5.	Kelp-dominated	habitats	provide	a	wealth	of	ecosystem	goods	and	services,	both	directly	(such	as	868	

harvesting	of	kelp	for	food,	alginates	and	other	products	as	well	as	extraction	of	associated	species	869	

including	crabs	and	lobsters)	and	indirectly	(such	as	biogenic	coastal	defence	and	nutrient	cycling).	870	

However,	current	understanding	of	the	provision	of	these	goods	and	services,	and	their	value	and	871	

importance	to	human	society,	is	limited.	A	better	appreciation	of	the	direct	and	indirect	value	of	kelp	872	

forests,	and	marine	ecosystems	generally,	to	regional	industries	such	as	fishing	and	tourism	will	873	

benefit	conservation	and	management	of	these	habitats.		874	

6.	Global	environmental	change	factors,	such	as	the	spread	of	invasive	species,	overfishing	and	875	

climate	change,	are	impacting	the	structure	and	quantity	of	biogenic	habitat	provided	by	kelp	876	

species.	Targeted	field	studies	on	the	wider	implications	(e.g.	changes	in	primary	productivity,	877	

biodiversity,	coastal	geomorphology)	of	the	loss	or	replacement	of	habitat-forming	species,	878	

conducted	across	multiple	spatial	scales	and	trophic	levels,	is	urgently	needed	to	document	879	

ecological	impacts,	and	to	inform	management	and	support	conservation.					880	
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