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Abstract 

Controls on the characteristics of floodplain wetlands in drylands are diverse and 

may include extrinsic factors such as tectonic activity, lithology and climate, and 

intrinsic thresholds of channel change.  Correct analysis of the interplay between 

these controls is important for assessing possible channel-floodplain responses to 

changing environmental conditions.  Using analysis of aerial imagery, geological 

maps and field data, this paper investigates floodplain wetland characteristics in the 

Tshwane and Pienaars catchments, northern South Africa, and combines the 

findings with previous research to develop a new conceptual model highlighting the 

influence of variations in aridity on flow, sediment transport, and channel-floodplain 

morphology.  The Tshwane-Pienaars floodplain wetlands have formed in response to 

a complex interplay between climatic, lithological, and intrinsic controls.  In this 

semiarid setting, net aggradation (alluvium >5 m thick) in the wetlands is promoted 

by marked downstream declines in discharge and stream power that are related to 

transmission losses and declining downstream gradients.  Consideration of the 

Tshwane-Pienaars wetlands in their broader catchment and regional context 

highlights the key influence of climate, and demonstrates how floodplain wetland 

characteristics vary along a subhumid to semiarid climatic gradient.  Increasing 

aridity tends to be associated with a reduction in the ability of rivers to maintain 

through-going channels and an increase in the propensity for channel breakdown 

and floodout formation. Understanding the interplay between climate, hydrology and 

geomorphology may help to anticipate and manage pathways of floodplain wetland 

development under future drier, more variable climates, both in South African and 

other drylands. 

Keywords: alluvial river, avulsion, downstream changes, drylands, wetlands in 

drylands 
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Introduction 

Drylands (hyperarid, arid, semiarid and dry-subhumid regions) are characterised by 

net water deficits owing to low, often highly variable, precipitation and high 

evapotranspiration.  Despite such deficits, many drylands contain perennial, 

intermittent (seasonal) or ephemeral rivers. These dryland rivers are maintained by 

discharges generated in distant, more humid uplands or by local rainfall-runoff 

events (Tooth and Nanson, 2011; Tooth, 2013), and depending on hydroperiods 

(flooding extent, depth and duration), may be associated with extensive floodplain 

wetlands.  The morphological and sedimentary characteristics of these floodplain 

wetlands in drylands are very diverse and remain to be fully documented and 

explained (Tooth and McCarthy, 2007), particularly regarding the relative importance 

of extrinsic and intrinsic controls. 

Limited previous work has shown that at the broadest scale, most moderate to large 

floodplain wetlands in drylands form and develop in response to extrinsic factors 

(e.g. tectonic activity, lithology, climate) that typically combine with intrinsic factors 

(e.g. threshold channel responses to downstream declines in discharge, stream 

power, and sediment transport capacity).  Extrinsic controls may be associated with 

the development of local base levels (e.g. tectonic faulting, resistant bedrock 

outcrops, blocking aeolian or fluvial sedimentation) that promote low energy 

conditions and wetland formation in reaches upvalley (e.g. Tooth and McCarthy, 

2007; McCarthy et al., 2011; Joubert and Ellery, 2013; Tooth et al., 2014). Intrinsic 

controls, such as river channel size decreases and sediment aggradation that occur 

in response to downstream declines in discharge and stream power, may promote 

floodplain wetlands independently of, or in association with, these broader-scale 

changes in local base level (e.g. Tooth et al., 2002a; Ralph and Hesse, 2010). Within 
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these wetlands, channel and floodplain characteristics may vary widely.  Many 

wetlands are characterised by continuous, through-going channels but others are 

characterised by discontinuities, with channel breakdown commonly being 

associated with the formation of distributary channels and/or floodouts (e.g. O’Brien 

and Burne, 1994; McCarthy and Ellery, 1998; Tooth et al., 2002a, b, 2004, 2014; 

Pietsch and Nanson, 2011; Grenfell et al., 2014; Ralph et al., 2011, 2015). 

 

While the scientific understanding of extrinsic and intrinsic controls on floodplain 

wetland characteristics is improving, many uncertainties remain.  For instance, the 

combinations of tectonic, lithological, climatic and other factors that govern the 

thresholds between the existence of continuous, through-going channels and 

discontinuous channels remain poorly constrained.  Attempts have been made to 

isolate the role of climate in driving such changes to wetland structure and 

functioning (e.g. Grenfell et al., 2014) but need to be supported by a wider range of 

case studies of wetlands in different climatic settings in order to augment empirical 

datasets and develop conceptual models. 

As a contribution to this research effort, this paper combines new data from the 

Tswane-Pienaars floodplain wetlands with previous research from other floodplain 

wetlands in the South African drylands.  We assess whether broad-scale differences 

in floodplain wetland morphological characteristics are related to climatic (aridity) 

gradients, whereby subhumid fluvial systems are characterised by through-going 

channels and sediment throughput but more arid systems are characterised by 

fluvial discontinuity and sediment accumulation.  Hence, the aims are to: (i) describe 

the geomorphology of the rivers and associated floodplain wetlands in the Tshwane 

and Pienaars catchments; (ii) outline the extrinsic and intrinsic controls on channel 
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and floodplain characteristics; (iii) compare these floodplain wetlands with the 

characteristics of other South African wetlands; and (iv) present a conceptual model 

highlighting the influence of variations in aridity on floodplain wetlands that may be 

applicable to drylands more generally.  Given that future changes to drier and/or 

more variable climates are likely to impact significantly on drylands globally (IPCC, 

2013), such research is needed to characterise and quantify the processes 

determining floodplain wetland characteristics, both for scientific and applied 

purposes. In particular, many wetlands in drylands are key deliverers of ecosystem 

services (Mitsch and Gosselink, 2000; MEA, 2005), and so development of more 

robust geomorphological data and concepts may help with the development of 

conservation, remediation and management policies (e.g. McCarthy et al., 2010). 

 

REGIONAL SETTING 

The Tshwane and Pienaars Rivers are located in northern South Africa and form part 

of the larger Limpopo River catchment (Fig. 1 inset).  Upstream of the Klipvoor Dam 

in the west (Fig. 1), the combined catchment area is ~6940 km2.  The headwaters of 

the Tshwane and Pienaars Rivers arise in the Magaliesberg at elevations of around 

~1470 m.a.s.l., and then both rivers flow north for ~90 km towards the towns of 

Kgomo Kgomo and Pienaarsrivier, respectively.  The upper catchments are heavily 

urbanised (Greater Pretoria area).  Several dams have been built for industrial, 

domestic and agricultural water supply, and there is substantial irrigation along the 

middle reaches of the Pienaars River.  At Pienaarsrivier, the Pienaars River turns 

west (Fig. 1), and then the Tshwane River joins from the south near Kgomo Kgomo.  

Downstream of the Tshwane-Pienaars confluence, the river is sometimes referred to 

as the Moretele River, but to avoid confusion, in this paper the river will be referred 
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to as the Pienaars as far as the Klipvoor Dam (Fig. 1).  Near the confluence and 

extending downstream, extensive floodplain wetlands cover ~55 km2 (Fig. 1) and are 

characterised by prominently leveed, meandering trunk channels, oxbows, 

palaeochannels and backswamps. 

 

The geology of the Tshwane-Pienaars catchments comprises Pretoria Group shales 

and quartzites in the headwaters, with sandstones, mudstones and shales of the 

Karoo Supergroup (Ecca and Irrigasie Formation) in the lower reaches (Fig. 2).  

Dolerite intrusions and granites of the Bushveld Complex (Lebowa Suite) crop out 

locally, particularly in the middle reaches and approaching Klipvoor Dam (Fig. 2). 

 

Climate in the area is characterised by distinct wet (November through March) and 

dry (April through October) seasons.  Mean annual precipitation (MAP) is ~585 mm, 

falling mostly in the wet season during convective thunderstorms, whilst mean 

annual potential evapotranspiration (MAE) is ~1 750 mm (Working for Wetlands, 

2008; GDARD, 2011).  The aridity index is 0.33, as defined by mean annual 

precipitation/mean annual potential evapotranspiration (UNEP, 1992).  Despite urban 

and agricultural developments in the catchments, discharges in the Tshwane and 

Pienaars Rivers remain perennial, albeit strongly seasonal (Fig. 3).  During the wet 

season, the floodplains of both rivers are inundated by overbank flows and local 

rainfall, while during the dry season, low flows are confined to the main channel and 

many backswamps, oxbows and abandoned channels slowly desiccate. 

Given the depth to groundwater throughout much of the Pienaars catchment (>10 

m), little to no base flow in the river can be attributed to groundwater (DWAF, 1999).  
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Sewage discharge and irrigation returns likely have increased base flows in both the 

Tshwane and Pienaars Rivers, however, as seen on the Tshwane where there is 

evidence for a slight increase in dry season base flow over the 1961 to 1982 interval 

(Fig. 3).  There are no measured sediment transport data, but the quartzites and 

granites in the headwaters and middle reaches of the rivers break down to supply 

predominantly fine-grained material (e.g. minor gravel, sand, silt, and clay) to 

reaches farther downstream. 

Natural vegetation in both catchments is dominated by grassland, mixed bushveld, 

and open woodland.  Hillslopes flanking the floodplain wetlands support shrubs and 

trees (e.g. Senegalia mellifera, Acacia tortilis, Colophospermum mopane).  In 

floodplain wetland areas, the dominant vegetation is grasses (Setaria incrassate, 

Ischaemum afrum) and exotic willows (Salix spp.) on the channel banks, with reeds 

(Phragmites spp.) and bulrushes (Typha spp.) characterising backswamps with near-

permanent standing water and regularly flooded palaeochannels and oxbows.  

Locally, water lilies (Nymphaea spp.) occupy open standing water in oxbows and 

palaeochannels. 

The principal study site is located in the lower reaches of the Tshwane River and 

extends downstream along the Pienaars River until ~10 km upstream of Klipvoor 

Dam (Fig. 1).  The floodplain wetlands in these reaches are important waterbird 

habitats and have been minimally altered by weirs or other flow control structures 

(Marais and Peacock 2008).  Despite likely poor water quality entering the wetlands 

and some subsistence cattle grazing, the wetlands are in good geomorphological 

condition.  There is no evidence of the deeply entrenched channels or gullies that in 

some other South African catchments provide evidence for base-level controlled 
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channel incision (e.g. Keen-Zebert et al., 2013) or significant human impacts (e.g. 

Boardman et al., 2003). . 

 

 

One aim of this study is to assess the influence of climate on floodplain wetland 

characteristics, so it is important to place the Tshwane-Pienaars wetlands in their 

broader catchment and regional context.  Consequently, additional investigations 

focused on two other wetlands in the Tshwane catchment; the wetlands on the 

Stinkwaterspruit tributary (upstream catchment area ~165 km2) and the Itsoseng 

wetlands on the Soutpanspruit tributary (upstream catchment area ~120 km2) (Fig. 

1).  Both wetlands are characterised by discontinuous channels and floodouts (here 

comprising unchannelled floodplains and reedswamps) and their investigations 

provide a basis for comparison with the characteristics of the Tshwane and Pienaars 

floodplain wetlands. 

 

METHODS 

The Tshwane-Pienaars floodplain wetlands were investigated using aerial 

photographs, satellite imagery, geological maps, and field surveys.  Recent (2012) 

aerial photos at 1:30 000 scale provided the basis for detailed mapping of 

geomorphological features, such as palaeochannels, oxbows, alluvial ridges, 

knickpoints and backswamps.  The mapping framework was based on a hierarchical 

system developed for floodplain wetlands in Australia by Hesse and Ralph (2011): 

‘landforms’ are grouped by their dominant processes of formation and modification 

(e.g. fluvial, aeolian, lacustrine, anthropogenic), and ‘landform types’ comprise the 
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landforms (e.g. palaeochannel, oxbow, alluvial ridge).  In addition to mapping, 

morphological analysis was used to define downstream channel and floodplain 

trends.  Using standardised methods for both rivers, quantified characteristics 

included floodplain width, channel sinuosity, bankfull channel width, number of 

channels, and floodplain and channel gradients. 

Longitudinal profiles for the Tshwane and Pienaars Rivers were derived from 5 m 

contour intervals on 1:10 000 scale orthophoto maps and from georeferenced 

topographic data in ArcMap. Correspondence between the longitudinal profiles and 

local lithology was assessed using the 1:250 000 Geological Map Series (Sheet 

2526 Rustenburg and Sheet 2528 Pretoria). 

Topographic field surveys were conducted using an automatic level and supported 

by observations and descriptions of geomorphological and sedimentological 

features, particularly during and following a wet season flood (March 2015).  

Following the method of Bjerklie (2007), discharge and stream power were modelled 

for the rivers using remotely sensed channel morphology data.  Meander 

wavelength, bankfull channel width, floodplain slope, and channel slope were 

measured using satellite imagery and orthophoto maps, and channel depth was 

estimated (surveyed cross sections of the lower Tshwane River indicated an average 

channel depth of 1.95 m, which was used for all discharge calculations).  A velocity 

calculation based on these morphological parameters allowed discharge and stream 

power to be calculated (equation based on hydraulic geometry relationships between 

river morphology variables, meander wavelength, channel width, channel slope, and 

flow velocity - see Bjerklie, 2007), and this process was completed at 1 km intervals 

downstream along 35 and 55 km long reaches of the Tshwane and Pienaars rivers, 

respectively.  As meander wavelength is a key variable in Bjerklie’s (2007) method of 
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estimating velocity, discharge and stream power estimations could not be made 

where the channel is relatively straight, such as in the confined headwater reaches 

and the lower confined reach of the Pienaars near Klipvoor Dam. For comparison 

with these modelled values, discharge and stream power were also estimated for the 

lower Tshwane River using the Manning equation.  Channel dimensions were taken 

from four cross-section surveys, slope was derived from orthophoto maps, and 

roughness was assessed by assigning Manning’s n values to channels following field 

observations (Arcement and Schneider, 1989).  

 

RESULTS  

Downstream changes in select channel and floodplain variables along the Tshwane 

and Pienaars Rivers are outlined in Table 1 and illustrated in Figures 4-11.  These 

changes are described below, with particular emphasis placed on describing and 

explaining the characteristics of the floodplain wetlands. 

Longitudinal profiles, and channel and floodplain characteristics 

In the Tshwane and Pienaars catchments, changes in longitudinal profiles and in 

channel and floodplain characteristics are closely associated with lithological 

variations.  Confined, relatively steep, straight channels with floodplains that are 

absent or limited in width (<0.2 km) are generally associated with more erosion-

resistant lithologies (e.g. Pretoria Group quartzites and Bushveld Complex granites) 

while unconfined, lower gradient, meandering channels with wide floodplains (~1-2 

km) tend to be associated with the more erodible sandstones and shales of the 

Karoo Supergroup (Figs 4-6). 
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The upper ~17 km of the Tshwane River is confined and relatively steep (~0.01 m m-

1), with floodplain alluvium largely absent (Fig. 4A).  Continuous floodplain begins 

farther downstream, with floodplain width increasing from <0.4 km to >1 km once the 

river crosses from Bushveld Complex granites to Karoo Supergroup sandstones and 

shales (Fig. 4A).  In these lower reaches, slope decreases sharply (<0.001 m m-1).  

Similarly, the upper ~50 km of the Pienaars River is confined and relatively steep 

(~0.01 m m-1) with floodplain alluvium largely absent (Fig. 4B).  Downstream of 

Roodeplaat Dam, floodplain width widens to ~0.4 km, before increasing sharply to 

>1.5 km once the Pienaars River crosses from the Bushveld Complex granites to the 

Karoo Supergroup sandstones and shales.  Floodplain gradient is very low in 

reaches that lie atop the Karoo bedrock (~0.0008 m m-1) but steepens significantly 

(~0.002 m m-1) farther downstream as the Pienaars River crosses from the Karoo 

sandstones to Bushveld granites.  Here, there is a concomitant sharp decline in 

floodplain width to <0.3 km (Fig. 4B). 

On both the Tshwane and Pienaars rivers, channel characteristics also exhibit 

marked downstream changes (Table 1; Figs 5-6).  Confined headwater reaches tend 

to have relatively wide (>20 m), straight (sinuosity <1.2) channels, the partly confined 

middle reaches have relatively wide (>15 m), moderately sinuous (<2) channels, and 

the unconfined lower reaches have narrower (<15 m), more sinuous (>2) channels 

(Table 1).  On both rivers, these marked increases in channel sinuosity and the 

number of sinuous abandoned channels in the middle and lower reaches (Figs 5D 

and 6D) indicates that dominant forms of channel adjustment are by meander 

migration and channel avulsion.  On the Pienaars River, the channel again becomes 

laterally confined downstream of the floodplain wetlands, and has a morphology 

similar to the headwater reaches (Fig. 6). 
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On both the Tshwane and Pienaars Rivers, there are strong positive correlations 

between floodplain width and channel sinuosity (Fig. 7A-B), but strong negative 

correlations between floodplain width and channel width (Fig. 7C-D).  Floodplain 

wetlands occur where floodplain widths are greatest (up to ~2 km) and sinuosities 

are maximised (locally >3.5), but where channel widths are lowest (locally ~5 m).  

Below the Tshwane-Pienaars confluence, floodplain width and channel sinuosity 

both decrease once the Pienaars River starts to traverse the Bushveld Complex 

granites, while channel width increases once more (Fig. 6). 

Downstream changes in discharge and stream power  

For the unconfined lower reaches of the Tshwane River, bankfull discharge and 

stream power were modelled by following the method of Bjerklie (2007) and also 

estimated using the Manning equation.  Comparisons between the two sets of 

results reveal positive correlations (Fig. 8).  Despite some over- and under-

estimations of the modelled discharges and stream powers relative to the Manning 

equation estimates, the strength of the relationship (Fig. 8) indicates that similar 

trends will be identified with both methods. 

Plots of the modelled discharges show that both the Tshwane and the Pienaars 

Rivers experience downstream declines in discharge and unit stream power once 

they enter the partly confined middle and unconfined lower reaches (Fig. 9).  Bankfull 

discharge along the middle Tshwane River is initially ~40 m3 s-1 but declines to 

~9 m3 s-1 by the Pienaars River junction (Fig. 9A).  Unit stream power follows a 

similar pattern, declining from ~30-60 W m-2 in the middle reaches to <5 W m-2 by 

the Pienaars junction (Fig. 9B).  Along the Pienaars River, discharge decreases 

downstream from ~20-30 m3 s-1 to ~5-15 m3 s-1 (Fig. 9C) while unit stream power 

decreases from ~20-25 to ~5 W m-2 (Fig. 9D). 
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Channel and floodplain morphology within the Tshwane-Pienaars wetlands  

A geomorphological map (Fig. 10A), and aerial and ground-level photographs (Figs 

10B and 11) illustrate the range of channel and floodplain features present in the 

Tshwane-Pienaars floodplain wetlands.  Through these wetlands, the Tshwane River 

decreases from ~14 m to ~9 m wide and sinuosity is variable.  Relatively straight 

(<1.3) reaches are separated by more sinuous reaches (>3), with all reaches 

displaying prominent levees that stand up to 0.6 m above the adjacent floodplain and 

backswamps (Fig. 10A).  Numerous local cutoffs have formed oxbows and the 

modern channel is flanked by many straight to sinuous palaeochannels up to ~1-5 

km long (Fig. 10 and 11B). 

This range of channel and floodplain features provides evidence for widespread 

lateral meander migration, active sedimentation, and channel avulsion, as was 

confirmed by field observations along the lower Tshwane during and following 

bankfull floods (March 2015).  Field surveys revealed fresh vertical accretion of fine 

sand on levees (Fig. 11A) although nowhere is there evidence for crevasse splays 

(Fig. 10), suggesting that most medium to coarse sand and minor gravel remains 

within the base of the channels.  Field surveys also revealed widespread evidence 

for oblique accretion of clay, silt, and fine sand on point bars and counterpoint bars.  

Bank collapse (toppling and slumping) was observed along straighter reaches and 

on concave banks (Fig. 11C), and may have occurred in response to stage 

decreases as the steep, saturated banks collapse under their own weight.  Field 

observations also revealed evidence for small (<1 m high), steep knickpoints that 

have retreated some tens of metres headwards from the channel banks into adjacent 

backswamps (Fig. 11D), especially on the western floodplain margin where 

backswamps are situated in the depression between the channel levee and the 
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adjacent hillslope (Figs 10A and 11A).  Knickpoint retreat likely occurs as overbank 

floodwaters drain from the backswamps to the channel after the passage of the peak 

floodwave. Continued knickpoint retreat may lead to formation of a new channel on a 

topographically-lower part of the floodplain, and ultimately may result in 

abandonment of an older, more elevated channel reach.  Backswamps are also 

prominent towards the confluence with the Pienaars River, particularly where 

overbank floodwaters pond against a prominent (~0.5 m high) alluvial ridge that is 

related to a palaeochannel of the Pienaars River (Fig. 10B).  This ponding likely also 

promotes backflooding of the lower Tshwane River and may help to explain why 

there is no evidence for a discharge increase along the Pienaars immediately 

downstream of the Tshwane junction (Fig. 9C).  Across the floodplain wetlands 

generally, the fine-grained nature of overbank sediment (dominantly clay, silt, and 

minor sand) means that overbank floodwaters and local rainfall do not infiltrate 

readily, which typically prolongs surface inundation. 

Within the floodplain wetlands, the Pienaars River is also characterised by a highly 

sinuous (>2.5) channel that displays evidence for active lateral meander migration, 

sedimentation and local avulsion (Fig. 10).  Many of the larger meanders have 

distinct scroll bar (ridge and swale) topography associated with lateral migration and 

numerous oxbow lakes and palaeochannels are present.  Numerous knickpoints 

extend from channels into backswamps. 
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INTERPRETATIONS 

Channelled floodplains 

Overall, the floodplain wetlands of the Tshwane and Pienaars Rivers are 

characterised by a similar range of geomorphological processes and forms (Figs 4-

11).  Both rivers undergo downstream declines in discharge and stream power, and 

in the unconfined lower reaches are prominently leveed, sinuous channels that 

display evidence of lateral meander migration, active sedimentation, and avulsion.  A 

complex interplay between extrinsic and intrinsic controls appears to determine 

these floodplain wetland characteristics, as outlined below. 

The broadest scale control on floodplain wetland characteristics is catchment 

lithology, which influences the degree of valley confinement, floodplain width, and 

alluvial accommodation space.  On both the Tshwane and the Pienaars Rivers, 

lithological variations control the transition from confined headwater reaches, to 

partly confined middle reaches, to the unconfined lower reaches with floodplain 

wetlands.  The confined and partly confined upper and middle reaches are 

associated with relatively resistant quartzite and granite outcrop while the unconfined 

reaches farther downstream are underlain by more erodible sandstones and shales 

(Figs 2 and 4).  At the downstream end of the floodplain wetlands, the Pienaars 

River reverts to a confined channel where resistant Bushveld Complex granites crop 

out (Fig. 4B).  Similar to other resistant bedrock outcrop in South African rivers 

(Tooth et al., 2002a, 2004; Grenfell et al., 2008, 2014; Keen-Zebert et al., 2013), this 

granite outcrop restricts lateral meander migration and incision, thereby providing a 

relatively stable local base level for the upstream reaches of the Pienaars River (Fig. 

12).  Lateral migration has occurred atop the more erodible rocks upstream, over 

time leading to the formation of a broad valley with a wide, aggrading floodplain.  In 
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turn, the aggrading Pienaars River acts as the local base level for the Tshwane 

River, particularly because a prominent alluvial ridge acts to pond Tshwane River 

floodwaters, promoting sedimentation and prolonging inundation (Fig. 12).  

While catchment lithology thus exerts a broad control on the location of the 

Tshwane-Pienaars floodplain wetlands, net aggradation within the wetlands is 

promoted by downstream declines in discharge, stream power and sediment 

transport capacity.  As shown by studies of other South African and Australian 

wetlands in drylands, downstream decreases in discharge and associated 

sedimentation arise from a complex interplay between climatic and intrinsic controls 

(e.g. O’Brien and Burne, 1994; Tooth et al., 2002b, 2014; Ralph and Hesse, 2010; 

Pietsch and Nanson, 2011).  In the confined headwater reaches of the Tshwane and 

Pienaars rivers, relatively large discharges are competent to transport supplied 

sediment and the channels have stable beds or undergo net incision.  Once the 

channels begins to traverse wider floodplains farther downstream, however, 

discharge starts to decrease (Fig. 9A, C) owing to transmission losses resulting from 

seepage through bed and banks, increased evapotranspiration as overbank 

floodwaters disperse, and a general lack of significant tributary inputs.  Downstream 

discharge decreases are associated with decreases in stream power (Fig. 9B, D) 

and thus sediment transport capacity.  Finer sediment is deposited on levees and 

alluvial ridges (Fig. 11A), while coarser bedload sediment remains largely within the 

channel beds, contributing further to downstream channel size decreases. 

In the unconfined lower reaches, lateral meander migration leads to some reworking 

of alluvium, but net vertical aggradation is clearly occurring.  Topographic surveys 

(Fig. 10A) and satellite imagery (Fig. 10B) reveal the prominent alluvial ridges and 

levees of the modern channels and palaeochannels in the Tshwane-Pienaars 
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wetlands, and augering indicates that all channels are fully alluvial and not grounded 

on bedrock.  Alluvial sediment is at least 5 m thick, and combined with the floodplain 

width (1-2 km), indicates substantial sediment storage in these floodplain wetlands.  

Development of prominent alluvial ridges and/or levees primes some older, more 

elevated channel reaches for abandonment, with flows commonly being diverted into 

new channels on topographically-lower parts of the floodplain.  As Larkin et al. 

(submitted) demonstrate, these new channels typically form when knickpoints 

develop at breaches in the channel banks and retreat headward as overbank 

floodwaters drain from the backswamps (Fig. 11D).  In other South African floodplain 

wetlands, this process of incisional avulsion (Tooth et al., 2007, 2009) has been 

shown to be another key process by which meandering channels rework floodplain 

alluvium, and the numerous palaeochannels in the Tshwane-Pienaars floodplain 

wetlands suggest that here too avulsion is a key component of channel-floodplain 

dynamics.  Finally, as noted above, the development of prominent alluvial ridges and 

levees on trunk channels can also prolong inundation and promote sedimentation 

along tributaries such as the Tshwane. 

Unchannelled floodplains (floodouts) 

Other floodplain wetlands in the Tshwane and Pienaars catchments are 

characterised by distinctly different channel and floodplain features.  The 

Stinkwaterspruit and the Soutpanspruit, for instance, are both characterised by 

discontinuous channels and floodouts.  Stinkwaterspruit is an ephemeral tributary of 

the Tshwane River (Fig. 1). Approximately 8 km upstream from the confluence, the 

channel breaks down into numerous straight distributary channels, many of which 

terminate at a floodout (Fig. 13A).  Very little sediment is transported beyond the 

floodout, and water likely reaches the Tshwane only during the largest floods.  The 
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Itsoseng wetlands occur where Soutpanspruit breaks down into a series of straight 

distributary channels, forming a floodout that is characterised by an unchannelled 

reedswamp (Fig. 13B).  Much sediment is trapped within the floodout, and deposition 

has formed a pronounced fan-shaped lobe with a slightly steepened downstream 

edge (Fig. 13B-C).  Similar to the situation in some other South African floodplain 

wetlands (Tooth et al., 2014; Grenfell et al., 2014), discontinuous ephemeral rivers 

(Schumann, 1989; Bull, 1997; Merritt and Wohl, 2003), and floodouts in eastern 

Australia (Gore et al., 2000), shallow headcutting channels have formed on the 

slightly steepened downstream edge, and serve to convey the limited flows seeping 

across the floodouts. 

By comparison with the larger Tshwane and Pienaars Rivers, where there is a strong 

lithological influence on floodplain width and wetland location (Fig. 4), clear or 

systematic lithological influences on these discontinuous systems are less readily 

apparent.  On the Stinkwaterspruit, channel breakdown and floodout formation occur 

atop the sedimentary lithologies of the Karoo Supergroup (Fig. 2).  On the 

Soutpanspruit, channel breakdown starts on the Bushveld Complex granite, and the 

Itsoseng wetlands have developed atop the transition to the Karoo Supergroup 

lithologies where they reach maximum width (Figs 2 and 13C).  Additional 

morphological, hydraulic and sedimentological analyses of these wetlands will be 

required to determine whether channel breakdown and floodout formation is related 

to decreases in slope, and associated reductions in stream power and sediment 

transport capacity, that may coincide with the transition from Bushveld Complex 

granite to Karoo Supergroup lithologies (e.g. Fig. 13C). 
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Evidence from other small, discontinuous channels in the catchment, however, 

suggests that lithological influences may be muted relative to other possible 

influences on channel breakdown.  For instance, the Plat River, a south-flowing 

tributary of the Pienaars River near the town of Kgomo Kgomo (Fig. 1), does not 

maintain a channel to the confluence but instead is characterised by a discontinuous, 

sinuous channel and terminates in backswamps (Fig. 10B).  Downslope, a sinuous 

palaeochannel appears to have formerly maintained a course to the Pienaars (Fig. 

10B) but is now slowly being infilled.  A similar situation occurs in some other South 

African and Australian floodplain wetlands where wetlands or temporary lakes 

develop along small tributaries that are blocked by alluvial ridges and/or levees 

developed along trunk channels (O’Brien and Burne, 1994; Finlayson and Kenyon, 

2007; Grenfell et al., 2009). In the case of the Plat River, channel breakdown may 

have been driven by base level rise associated with the aggradation of the Pienaars 

floodplain wetland. 

 

DISCUSSION 

In the Tshwane and Pienaars catchments, it is intriguing that such a variety of 

floodplain wetlands are found in close proximity in an area with similar extrinsic 

(lithological, climatic) controls.  Larger rivers such as the Tshwane and Pienaars 

undergo downstream declines in discharge and stream power but maintain 

continuous, through-going channels, while some smaller rivers are more 

discontinuous, with channel breakdown leading to floodout formation.  Across the 

South African drylands more generally, similar contrasts can be found.  In the 

subhumid parts of eastern and northeastern South Africa, most floodplain wetlands 

tend to be characterised by continuous, through-going channels (e.g. Tooth et al., 
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2002a; Grenfell et al., 2009), while in the semiarid to arid parts of northern and 

southwestern South Africa, many channels are more discontinuous and associated 

with floodouts (Tooth et al., 2002b; Grenfell et al., 2014).  Although there are some 

notable exceptions (e.g. Tooth et al., 2014; Joubert and Ellery, 2013), this broad 

pattern suggests that at the subcontinental scale, climate may exert a strong, 

possibly dominant, influence on floodplain wetland characteristics, albeit in 

combination with local lithological and intrinsic factors. 

 

A conceptual model of climatic influences on floodplain wetland 

characteristics 

Based on these observations and interpretations, we propose a new conceptual 

model to account for the influence of climate on floodplain wetlands in South Africa 

that may also be applicable to other dryland regions (Fig. 14).  We focus on a 

subhumid to semiarid gradient from eastern to northern South Africa that covers 

floodplain wetlands studied previously and as part of this study (Table 2; Fig. 14), but 

a similar east-southwest climatic gradient also exists.  The Klip River in eastern 

South Africa (aridity index 0.42), the Tshwane and Pienaars rivers (aridity index 

0.33), and the Nyl River in northern South Africa (aridity index 0.26) are found along 

this gradient (Fig. 1), and each system is characterised by distinctly different fluvial 

processes and forms (Table 2): 

a. The Klip River wetlands have formed upvalley of a resistant dolerite sill that 

promotes lateral channel migration and valley widening in the reaches upstream 

(Tooth et al. 2002a).  In this subhumid setting, discharge increases slightly 

downstream and the Klip River maintains a continuous, through-going channel.  

Long-term vertical aggradation rates are effectively zero (Rodnight et al., 2005; 
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Tooth et al., 2007, 2009), suggesting an approximate balance between sediment 

input and output. 

b. The Tshwane-Pienaars wetlands (this study) are located in a more semiarid 

climate, which leads to downstream decreases in discharge and channel size.  Net 

vertical aggradation in the wetlands results from an imbalance between sediment 

input and output.  Despite downstream decreases in channel size, both the Tshwane 

and Pienaars Rivers nonetheless maintain continuous, through-going channels, 

although evidence for channel breakdown and floodout formation on several smaller 

tributaries suggests that both rivers may be operating close to a threshold between 

through-going and discontinuous. In the larger Tshwane and Pienaars Rivers, 

discharges are sufficient to maintain continuous channels, whereas in smaller rivers 

with lower and/or more irregular discharges, this appears to not be the case. 

c. The Nyl River wetlands are located in a marginally more arid setting, and this river 

and many of its tributaries are also subject to downstream decreases in discharge 

and channel size (Tooth et al., 2002b; McCarthy et al., 2011).  Many channels get 

progressively smaller downstream before terminating at floodouts.  Along the 

unchannelled part of the main Nyl valley, net aggradation is clearly occurring, as 

evidenced by alluvial deposits that are up to 35 m thick (Tooth et al., 2002b; 

McCarthy et al., 2011).  Local aridity and vegetation growth leads to high 

evapotranspiration, as evidenced by subsurface chemical sedimentation and the 

formation of salinised islands on the floodouts (Tooth et al., 2002b). 
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Climatic influences relative to other extrinsic and intrinsic factors 

These observations complement and extend previous attempts to isolate the 

influence of climate on wetland forms and processes in the South African drylands.  

Using an east-west transect, Grenfell et al. (2014) compared two different wetlands 

that have formed on Karoo Supergroup sandstones and mudstones upstream of 

intrusive dolerite dykes; the Nsonge River in the subhumid Drakensberg foothills, 

eastern South Africa (aridity index 0.59) and the Seekoei River in semiarid, central 

South Africa (aridity index 0.18).  The Nsonge River is characterised by a through-

going, laterally migrating channel with very little vertical aggradation (Grenfell et al., 

2014).  The Seekoei River is characterised by a discontinuous channel separated by 

floodouts.  Avulsion is driven by aggradation on the floodout, and channels reform on 

the steepened downstream end of the associated sediment lobe.  Similar to our 

findings and interpretations, Grenfell et al. (2014) argue that while the flows along 

the Nsonge River are able to maintain a through-going, meandering channel that 

slowly recycles floodplain sediment, the more seasonal, sporadic flows along the 

Seekoei are not sufficient to maintain a continuous channel and sediment is 

sequestered in floodouts for longer periods of time. 

This comparison of floodplain wetlands across the South African drylands supports 

an hypothesis that increasing aridity, with its influence on discharge and sediment 

transport capacity, tends to be associated with a reduction in the ability of rivers to 

maintain through-going channels and an increase in the propensity for channel 

breakdown and floodout formation (Fig. 14).  Other extrinsic controls (especially local 

and regional lithological variations) and intrinsic controls can exert influences on 

floodplain wetland characteristics but in many instances climate may be the 

dominant control.  These insights are significant in view of future climate projections 
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that suggest that total rainfall in southern Africa will either decline or remain constant, 

but in either instance is likely to become more spatially and temporally variable 

(IPCC, 2013).  While river responses to such climatic changes are hard to predict, 

the range of fluvial processes and forms observed across the climatic gradient 

outlined above may provide indications of the future developmental pathways of 

some floodplain wetlands.  Both across South Africa and other drylands that may be 

subject to similar climate changes, it is possible that currently through-going rivers 

may become discontinuous under increasingly arid climates and/or more variable 

rainfall, with significant implications for changes to water supplies, sediment storage, 

habitat provision, and many other ecosystem services.  Against this backdrop, 

further study of rivers such as the Tshwane and Pienaars, both of which appear to 

be operating close to a threshold between continuous and discontinuous river styles, 

will be particularly important.  These rivers might be seen to represent ‘sentinel 

wetlands’ for examining channel and floodplain responses to future climatic changes, 

and may also provide test cases for the development of adaptive management 

strategies or mitigation measures to limit undesirable changes to wetland ecosystem 

service delivery.  

 

CONCLUSION 

The findings presented in this paper demonstrate the complex interplay between 

extrinsic and intrinsic controls on the characteristics of floodplain wetlands in 

drylands.  By combining a detailed examination of the Tshwane-Pienaars floodplain 

wetlands with previous findings from several other South African wetlands, we have 

developed a new conceptual model that explains variations in floodplain wetland 

characteristics across a subhumid to semiarid climatic gradient. Wetter, subhumid 
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systems are characterised by an approximate balance between sediment supply and 

sediment transport, which helps to maintain through-going channels, while more arid 

systems are characterised by decreasing sediment transport capacity, leading to 

aggradation and channel breakdown. Ergodic reasoning can be used to suggest that 

as aridity increases in drylands due to anthropogenic climate change, some currently 

through-going rivers may become more discontinuous, with significant implications 

for changes to downstream water supply, sediment storage, habitat provision and 

many other ecosystem services.  Further analysis of the interplay between extrinsic 

and intrinsic factors may provide a firmer basis for anticipating and managing 

potential wetland changes, particularly under projected future drier, more variable 

climates, both in South Africa and other drylands.  The challenge for 

geomorphologists will then be to translate such research findings into knowledge that 

can be assimilated by wetland managers and implemented in on-the-ground 

activities. 
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Table 1. Downstream changes in the characteristics of the Tshwane and Pienaars Rivers.  

 

 

TSHWANE RIVER 

Average Gradient (m m
-1

) 
a 

Average 
sinuosity 

b 

Average 
floodplain 

width  
( ± SD; km) 

c 

Average 
channel 

width (± SD; 
m) 

d
 

Dominant underlying  
lithology 

e
 

Bed material 
f
 

Floodplain (± SD) Channel (± SD) 

Confined headwaters 0.015 ± 0.009 0.015 ± 0.009 1.00 - 1.20 0.05 ± 0.09 20.7 ± 6.5 Quartzite, Shale, Granite 
Bedrock, sand and 
gravel 

Partly confined middle 
reaches 

0.0048 ± 0.004 0.0051 ± 0.007 1.20 – 1.70 0.31 ± 0.29 19.3 ± 4.0 
Sandstone, Mudstone, 
Shale, Granite 

Mud, sand and minor 
gravel – partly alluvial 

Unconfined lower reaches 
(floodplain wetlands) 

0.0015 ± 0.0007 0.00083 ± 0.0003 1.50 – 2.70 1.13 ± 0.28 10.9 ± 1.5 
Sandstone, Mudstone, 
Shale 

Mud, sand and minor 
gravel – fully alluvial 

PIENAARS RIVER   

Confined headwaters 0.012 ± 0.01 0.011 ± 0.01 1.00 - 1.19 0.02 ± 0.04 19.7 ± 3.7 Quartzite, Shale 
Bedrock, sand and 
gravel 

Partly confined middle 
reaches 

0.003 ± 0.002 0.002 ± 0.001 1.49 - 2.07 0.59 ± 0.52 14.1 ± 3.7 
Sandstone, Mudstone, 
Shale, Granite 

Mud, sand and minor 
gravel – partly alluvial 

Unconfined lower reaches 
(floodplain wetlands) 

0.0008 ± 0.0001 0.0004 ± 0.00005 1.71 – 3.60 1.23 ± 0.28 9.2 ± 1.7 
Sandstone, Mudstone, 
Shale 

Mud, sand and minor 
gravel – fully alluvial 

Lower confined reach  0.001 ± 0.0009 0.001 ± 0.0009 1.00 - 1.50 0.19 ± 0.18 20.5 ± 4.0 Granite 
Bedrock, sand and 
gravel 

 

a
 Floodplain and channel gradient measured using 5 m contour topographic data and measuring tool in ArcMap (elevation change/valley or channel distance). 

b
 Sinuosity measured along 1 km reaches of the channel (channel distance/straight line distance).  

c
 Floodplain width measured every kilometre downstream. Boundary between floodplain and valley hillslope estimated using topographic data derived from a 30 m DEM 

of the region and distinct vegetation zonation patterns (hillslope vegetation vs. floodplain vegetation). 
d
 Bankfull channel width measured every 1 km downstream, generally focusing on straighter sections to avoid results being skewed by local increases in channel width 

at meander bends. 
e
 Lithologies derived from 1:250 000 geological map series (2526 Rustenburg and 2528 Pretoria). 

f
 Channel bed material estimations follow field observations and identification of bedrock outcrop in channels in aerial photographs. 

 



 

 
This article is protected by copyright. All rights reserved. 

Table 2. Comparison of the Klip, Tshwane-Pienaars and Nyl River wetlands (for location, see Fig. 1 inset), highlighting the influence of increasing aridity on 

wetland geomorphology.  

 Wetland Local climatic setting 

(MAP, MAE and aridity 

index) 

Key factors influencing development of 

floodplain wetlands 

Geomorphological 

features and processes 

associated with the 

wetlands 

Key references and 

other example wetlands 
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Klip River, Free State, 

South Africa 

Subhumid  

(~800 mm, ~1890 mm; 

aridity index – 0.42) 

Wetlands located upvalley of erosion-

resistant dolerite sill, which resists 

downcutting and promotes lateral migration 

and floodplain wetland formation. 

Mixed bedrock-alluvial, 

through-going channel. 

Oxbows, backswamps, 

palaeochannels, 

meandering channels, 

scroll bars, muted levees 

and alluvial ridges 

Tooth et al., 2002b, 2004, 

2007 

Nsonge River, eastern SA 

– Grenfell et al., 2014 

Tshwane-Pienaars, 

North West Province, 

South Africa 

Semiarid 

(~585 mm, ~1750 mm; 

aridity index – 0.33) 

Pienaars wetlands formed upstream of 

resistant granite bedrock. In the reaches 

upstream, downstream declines in discharge 

and stream power promote channel size 

decreases, lateral instability, sediment 

accumulation and wetland formation. 

Fully alluvial, narrowing but 

through-going channel. 

Oxbows, backswamps, 

palaeochannels, prominent 

levees and alluvial ridges, 

floodouts on some 

tributaries 

This study 

Nyl River, Northern 

Province, South 

Africa 

Semiarid 

(~623 mm, ~2400 mm; 

aridity index – 0.26) 

Downstream declines in channel size and 

sediment transport efficiency predispose the 

Nyl to channel breakdown. Farther 

downvalley, prograding tributary fan 

sediments promote ponding and floodout 

formation.  

Fully alluvial channel that 

declines in size 

downstream. Floodout 

formation, backswamps, 

islands formed by chemical 

sedimentation resulting 

from high 

evapotranspiration 

Tooth et al., 2002a; 

McCarthy et al., 2011 

Seekoei River, central SA 

– Grenfell et al., 2014 
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Fig. 1. The location of the Tshwane and Pienaars river catchments in northern South Africa.  The 

boxed area on the main map indicates the principal study site, located around the confluence of the 

two rivers where extensive floodplain wetlands are characterised by through-going rivers (stippled 

areas).  Other wetlands characterised by channel breakdown and floodouts (also stippled) occur on 

the Soutpanspruit and Stinkwaterspruit tributaries. On the inset map, note the locations of: 1. The Klip 

River, and 2. The Nyl River. 
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Fig. 2. Regional geology of the Tshwane and Pienaars catchments.  The floodplain wetlands near the 

confluence of the two rivers are underlain by sedimentary rocks of the Karoo Supergroup, with 

igneous rocks cropping out farther downstream (redrawn from 1:250 000 Geological Map Series, 

Sheet 2526 Rustenburg, and Sheet 2528 Pretoria). 
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Fig. 3. Peak monthly flow at the Hammanskraal gauge on the Tshwane River for the period of gauge 

activity, 1961-1982 (see Fig. 1 for location).  The seasonality of peak flows is clear, with flows 

regularly topping the gauge limit of ~60 m<sup>3</sup> s<sup>-1</sup> during the wet season.  

Data sourced from DWA Hydrological Services (2015). 
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Fig. 4. Longitudinal profiles of the (A) Tshwane River; and (B) Pienaars River. The profiles are 

superimposed onto the underlying geology and also show the relationship with floodplain width 

(geology generalised from 1:250 000 Geological Map Series, Sheet 2528 Pretoria and Sheet 2526 

Rustenburg). Downward pointing arrows indicate the major confluences. 



 

 
This article is protected by copyright. All rights reserved. 

 

Fig. 5. Changes in the characteristics of the Tshwane River (1 km intervals downstream): (A) 

sinuosity; (B) floodplain width; (C) trunk channel bankfull width; (D) number of active channels and 

number of abandoned palaeochannels on the floodplain; (E) floodplain gradient.  Gaps in the data 

correspond with the location of Bon Accord Dam. 
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Fig. 6. Changes in the characteristics of the Pienaars River (1 km intervals downstream), (A) 

sinuosity; (B) floodplain width; (C) trunk channel bankfull width; (D) number of active and abandoned 

channels; (E) floodplain gradient.  Gaps in the data correspond with the locations of Roodeplaat and 

Klipvoor dams. 
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Fig. 7. Correlation between floodplain width and sinuosity for the: (A) Tshwane River; and (B) 

Pienaars River.  Correlation between floodplain width and channel width for the: (C) Tshwane River; 

and (D) Pienaars River. 
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Fig. 8. (A) Modelled bankfull discharge (following Bjerklie, 2007) plotted against estimated bankfull 

discharge using the Manning equation for the lower Tshwane River.  (B) Modelled unit stream power 

using Bjerklie’s (2007) discharge estimate plotted against estimate of unit stream power incorporating 

the Manning equation estimate of discharge (Q) for the lower Tshwane River.  Grey data points are 

estimates for the modern channel, and black data points are estimates for palaeochannels whose 

depth is known after augering to bedload sand. Pearson’s R (<i>R</i>) indicates the strength of the 

linear association between both variables. P-value (<i>p</i>) indicates the statistical significance of 

the relationship between the variables. 
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Fig. 9. Downstream changes in bankfull discharge and unit stream power along the Tshwane and 

Pienaars Rivers from the point at which they start to traverse wider floodplains in the partly confined 

middle reaches: (A) bankfull discharge along the Tshwane; (B) unit stream power along the Tshwane; 

(C) bankfull discharge along the Pienaars; (D) unit stream power along the Pienaars. 
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Fig. 10. (A) Geomorphological map of the Tshwane-Pienaars floodplain wetlands (see Fig. 1 for 

broader context), indicating the location of cross-section surveys on the lower Tshwane River (B-B’, 

C-C’) and across the Pienaars alluvial ridge (A-A’). (B) High-resolution satellite imagery of the area 

around the Tshwane-Pienaars River junction taken after a period of flooding.  Note the pronounced 

alluvial ridge (lighter tones) visible along the abandoned Pienaars River palaeochannel.  See part A 

for topographic survey (A-A’).  Darker tones represent backswamps and regularly inundated parts of 

the floodplain, such as results from backflooding of the Tshwane River. 
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Fig. 11. Photographs illustrating key features of the Tshwane-Pienaars floodplain wetlands: (A) fresh 

levee sedimentation (foreground) following overbank flooding on the modern Tshwane River, with a 

backswamp in the depression (right).  Note the reedswamp situated in the depression between the 

levee and the hillslope in the background (view looking upstream); (B) relatively straight section of the 

Tshwane River, which nonetheless is beginning to develop a greater sinuosity (looking upstream); (C) 

bank collapse on the Tshwane River (looking downstream); (D) small knickpoint retreating upstream 

towards backswamp in background (looking upvalley). 
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Fig. 12. Schematic illustration of the different base level control on the Tshwane and Pienaars Rivers. 

The local base level for the Pienaars River is provided by the resistant granites of the Bushveld 

Complex, while the base level for the Tshwane River is the aggrading Pienaars River. 
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Fig. 13. Images showing floodouts on the (A) lower reach of the ephemeral Stinkwaterspruit, and (B) 

Soutpanspruit (see Fig. 1 for location). (C) Longitudinal profile of the Soutpanspruit superimposed 

onto underlying geology and the relationship with floodplain width (geology generalised from 1:250 

000 Geological Map Series, Sheet 2528 Pretoria).  An estimation of the lateral extent and thickness of 

the floodout sediment lobe is given by the horizontal hatching. 



 

 
This article is protected by copyright. All rights reserved. 

 

Fig. 14. Conceptual model outlining the influence of increasing aridity on sediment transport capacity 

(SS:ST ratio) and channel breakdown (see text for details). 


