
Aberystwyth University

Feature selection for high dimensional imbalanced class data using harmony
search
Moayedikia, Alireza; Ong, Kok-Leong; Boo, Yee Ling; Yeoh, William G. S.; Jensen, Richard

Published in:
Engineering Applications of Artificial Intelligence

DOI:
10.1016/j.engappai.2016.10.008

Publication date:
2017

Citation for published version (APA):
Moayedikia, A., Ong, K-L., Boo, Y. L., Yeoh, W. G. S., & Jensen, R. (2017). Feature selection for high
dimensional imbalanced class data using harmony search. Engineering Applications of Artificial Intelligence, 57,
38-49. https://doi.org/10.1016/j.engappai.2016.10.008

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326671773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.engappai.2016.10.008
https://doi.org/10.1016/j.engappai.2016.10.008

Feature selection for high dimensional imbalanced class data

using harmony search

Alireza Moayedikia1a, Kok-Leong Ongb, Yee Ling Booc, William GS Yeoha, Richard Jensend

aDepartment of Information Systems and Business Analytics, Deakin University, Victoria 3125, Australia
bSAS Analytics Innovation Lab, La Trobe University, Victoria 3086, Australia

cSchool of Business IT and Logistics, RMIT University, Victoria 3000, Australia
dDepartment of Computer Science, IMPACS, Aberystwyth University, Wales, UK

Abstract

Misclassification costs of minority class data in real-world applications can be very high. This
is a challenging problem especially when the data is also high in dimensionality because of the
increase in overfitting and lower model interpretability. Feature selection is recently a popular
way to address this problem by identifying features that best predict a minority class. This paper
introduces a novel feature selection method call SYMON which uses symmetrical uncertainty
and harmony search. Unlike existing methods, SYMON uses symmetrical uncertainty to weigh
features with respect to their dependency to class labels. This helps to identify powerful features
in retrieving the least frequent class labels. SYMON also uses harmony search to formulate the
feature selection phase as an optimisation problem to select the best possible combination of
features. The proposed algorithm is able to deal with situations where a set of features have
the same weight, by incorporating two vector tuning operations embedded in the harmony
search process. In this paper, SYMON is compared against various benchmark feature selection
algorithms that were developed to address the same issue. Our empirical evaluation on different
micro-array data sets using G-Mean and AUC measures confirm that SYMON is a comparable
or a better solution to current benchmarks.

Keywords: Feature selection, harmony search, high-dimensionality, imbalanced class,
symmetrical uncertainty

1. Introduction

The presence of imbalanced data is a problem for classification algorithms [1, 2]. An im-
balanced data set is one where at least one class is under-represented compared to the others.
Such data creates many challenges to the process of knowledge discovery and has many implica-
tions in real-world applications [3]. Addressing these issues brings about many good solutions,
such as MIROS2 that is used to detect the possibility of oil spilling [4], or to detect malicious
activities of users in the context of network intrusion as seen in the AIDE [5] environment3. In
this paper, we investigate the imbalanced class problem further by considering cases where the
data set is also high in dimensionality (e.g. large-scale data sets [6]), thus making the problem
more pronounced as the efficacy of learning algorithms is further reduced [7, 8, 9].

Different approaches have been proposed to address the imbalanced learning problem, in-
cluding resampling [10, 11], one-class learning [10], cost-sensitive learning [12, 13] and feature
selection [8, 9, 14]. In resampling, the two most common techniques used for the imbalanced
data problem are (i) random oversampling and (ii) random undersampling [7, 9]. In the former,

1Corresponding author, E-mail: amoayedi@deakin.edu.au
2http://goo.gl/aR5elt
3http://aide.sourceforge.net/

Preprint submitted to Engineering Applications of Artificial Intelligence November 1, 2016

random duplicates of instances from the minority class are added to the original data set, lead-
ing to longer classifier training time. With the latter, the instances from the majority classes
are randomly discarded, thus the information loss [7] usually leads to sub-optimal learning
outcomes.

One example of random oversampling is Synthetic Minority Over-sampling TEchnique
(SMOTE) proposed by Chawla et al. [10, 11]. The algorithm generates artificial examples
for the minority class by interpolating the current minority instances and has been shown [15]
to improve classification performance over imbalanced data. Unfortunately, creating artificial
examples may not always be possible, such as in critical applications like medical diagnosis tools
that rely on real data for diagnosis [16]. In this case, artificial data might affect the accuracy
of diagnosis adversely. Hence, solutions that do not attempt to alter the original data in the
learning process remain desirable.

One-class learning is an exemplar that does not alter the original data during the learning
process. It operates by classifying each instance based on a similarity threshold [10]. This
approach minimises overfitting seen in other classifiers when one class is significantly over-
represented than the others in the data. Consequently, one-class learners may lead to better
predictive performance but that accuracy is dependent on the similarity threshold, which needs
to be empirically tuned [10] to achieve the desired performance.

Another way to address the challenge of classification from imbalanced data is cost-sensitive
learners. As the name suggests, these learners consider the cost of misclassification and therefore
seek to minimise the likelihood of misclassifying a minority class through a cost matrix. They
are also quite effective for large data sets as they concurrently minimise learning time [9] and
the misclassification of minority classes.

Recently, researchers are gaining interest in using feature selection [17, 8, 18, 19] as a way to
address the imbalanced class problem. Previous approaches (i.e. resampling, one-class learning
and cost-sensitive learning) have focused on the samples of the training data. Feature selection
on the other hand, takes a different view by shifting the focus to the features (i.e. dimensions)
rather than the training examples. The key idea is to find a subset of features that optimise
the contrast between classes in the data.

Within feature selection, there are three further sub-approaches: filter, wrapper and hybrid
(also known as embedded). Generally, filter approaches will find a subset that is good but may
not be optimal for a specific classifier [17]. Hence, wrapper [20, 8] and embedded approaches
[9] were proposed to produce a more targeted feature subset. These approaches can be based
on the ranking of features, where the criteria is often a loss function, e.g. the contribution of a
feature to the classification rate [7, 9], or the discriminative power of features [8].

We argue that selecting features based on a loss function does not always yield the best
learning outcome for the classifier. Rather, ranking features with respect to their dependency
towards a class label and using that information to select the feature subset would give better
performance, especially in predicting the minority class. As a result, the algorithm that we
propose, called SYMON, is unique in the following ways:

• SYMON is a wrapper approach. Hence the chosen subset will be more relevant to the
induced classifier [17].

• SYMON uses Symmetrical Uncertainty to rank features, giving insight to how relevant a
feature is to a class label. This differs from other feature selection algorithms (addressing
the imbalanced class problem) which select features based on a loss function. As seen
later in the experimental results, this gives SYMON better overall performance.

• SYMON handles high dimensionality well. This is important especially when there is a
large number of features and finding the best feature combination should be computa-
tionally efficient. SYMON uses Harmony Search to reduce the complexity of the search
process [21], thus ensuring its relevance in practice.

2

• With high dimensionality, the likelihood of multiple features sharing the same rank is
high. This presents a challenge as most feature selection algorithms lack a mechanism to
pick the best subset from identically-ranked features. SYMON does not suffer from this
issue as it incorporates vector tuning operations.

In the next section, we review recent feature selection algorithms that deal with learning from
high dimensional imbalanced data. Once this context is established, we will introduce SYMON
in Section 3 with discussion of the experimental results in Section 4. We then conclude with
future work for SYMON in Section 5.

2. Related works

Given the specific focus of this paper, we shall only discuss the relevant literature that use
feature selection in the context of tackling the imbalanced class problem in high dimensional
settings.

One solution by Yin et. al. [8] is a variation of using Bayesian learning as a solution to
the imbalanced class problem. The approach proposed by Yin et. al. works on the assumption
that samples in the majority classes have a dominant influence on general feature selection
techniques. The first step is thus to decompose classes with large examples into smaller pseudo-
subclasses. Feature selection is then performed on the decomposed data, where the pseudo-
subclasses balance the skew across classes, thus neutralising the influence the majority class
examples have on feature selection algorithms. Their evaluation over synthetic data showed
better feature selection performance once the imbalanced data has been decomposed.

Alibeigi et. al. [14] proposed a different approach with an algorithm called Density-based
Feature Selection (DBFS). As the name suggests, features are ranked by their estimated prob-
ability density. This is done by exploring the contribution of each feature, taking into account
the features’ corresponding distributions over all classes and their correlations. This method
has been evaluated in the context of high dimensional but low sample data sets, and is shown to
be effective over well-known filter-based feature selection algorithms (e.g., Pearson Correlation
Coefficient, Signal to Noise Correlation Coefficient, Chi-square and Information Gain).

Chen and Wasikowski [17] also studied the small sample imbalanced data problem. Their
approach is encapsulated in an algorithm called FAST (Feature Assessment by Sliding Thresh-
olds), which is based on the area under the receiver operating characteristic (ROC) curves
generated from setting different decision boundaries for a single feature. The algorithm is in-
spired by the observation that most single feature classifiers set the decision boundary at the
mid-point between the mean of the two classes. By moving this decision boundary, different
numbers of true/false positives are obtained. In doing so, the algorithm will be able to measure
which decision boundary will provide the best area under the ROC curve and then select the one
that would yield the best predictive results. By computing this over all features, the algorithm
will be able to select the best mix of features.

Maldonado et. al. [9] also considered the problem of high-dimensional and imbalanced
data learning but in the context of binary classification. In this case, a family of algorithms
inspired by the backward feature selection strategy in Support Vector Machines (SVM) was
proposed. Different strategies of backward elimination of features were developed and used
with SVM and SMOTE fitted with different loss functions: (a) standard 0-1; (b) balanced loss;
and (c) predefined loss. The various algorithms were tested over six imbalanced microarray data
with their algorithms showing better predictive performance over well-known feature selection
algorithms (e.g. l0, l1 norm SVM, SVM Recursive Feature Elimination (SVM-RFE), Fisher +
SVM, etc.) – while also using fewer features).

Not all feature selection algorithms for high-dimensional data work on the basis of a single
ranking function or an inductive algorithm. Yang et. al. [20], for example, proposed to create
multiple balanced data sets using random under/over-sampling from the original imbalanced

3

Table 1: SYMON parameters and notation definition.

Parameters Definition Initialization type

HMS Harmony memory initialization

User defined

PARmin Minimum pitch adjustment rate
PARmax Maximum pitch adjustment rate
HMCR Harmony memory consideration rate

NI Number of iterations
r Ripple factor
d Desired subset size

t The number of current iteration

Problem-specific

Fs ∈ F Set of selected features
Fu ∈ F Set of unselected features
Fw Set of pair of weights and selected features
Fw
s Set of pair of weights and selected features

Fw
u Set of pair of weights and unselected features

w Set of weights if features
C Set of entire class labels

c ∈ C A given class label
F Set of entire features
Vr A random row selected from HM
Rc A randomly,generated number for comparisons with HMCR
Pf PAR value,generated using PAR() function for feature f

NHV Newly generated harmony vector
fi ∈ F ith selected features

data. Feature subsets are then evaluated over an ensemble of base classifiers that are trained
over the balanced data sets. This combination of ensemble wrapper-based feature selection and
multiple sampling in a unified framework is shown to perform better than other similar wrapper
algorithms that only use a single inductive algorithm. This approach helps to eliminate any
undesirable bias that a single inductive algorithm may have.

The prior studies showed the efficacy of their algorithms by comparing against the existing
wrapper feature selectors, where they mainly consider support vector machines for classifica-
tion. To test the efficacy, high-dimensional imbalanced microarray datasets have been used for
experimentation with different assessment measures such as G-Mean (GM), Area Under Curve
(AUC) and F-measure (F1), etc. However, the evaluation highlighted a few shortcomings.
Those algorithms that are filter-based produces sub-optimal results; others manipulated the
original data [20, 8], which is not desirable as discussed previously. For those feature selection
algorithms that include/exclude features based on their weights, an important but unanswered
question remains when dealing with high-dimensional imbalanced data: which feature should be
included in the final subset when there is more than one feature with the same weight?.

We believe we have addressed these issues in our proposed solution SYMON, which we shall
discuss and evaluate next against similar recent techniques [8, 9, 22] in Sections 3 and 4.

3. SYMON Algorithm

The proposed solution is made up of a number of components so for ease of exposition, we
shall discuss the individual components separately before presenting the algorithm that binds
these components together. To facilitate better understanding we have also summarised the
SYMON notations and parameters in Table 1.

4

3.1. Harmony Search

Harmony search belongs to the family of meta-heuristic algorithms, and has seen many
successful applications over the years [23, 24, 25, 26, 27, 28]. First proposed by Geem et. al.
[29], it mimics the music improvisation process by modelling it as an optimisation algorithm.
Readers interested in the details can refer to [29, 30, 31] but essentially there are five key steps
in Harmony Search.

Initialisation The first step is to initialise the dynamic parameters of the algorithm, including
harmony memory size (HMS), harmony memory consideration rate (HMCR), number of
iterations (NI) and Pitch Adjustment Rate (PAR). Depending on the way Harmony Search
is used, the parameter initialisation can be different: randomly, heuristically, or specified
by the user.

Improvisation Next, a new harmony vector (NHV) is created. Along with its own character-
istics, the NHV will also inherit some of the characteristics of the previously generated
vectors.

Evaluation Once a new NHV is created, the goodness of the generated solution will be eval-
uated. Depending on the application that uses Harmony Search, different evaluation
metrics will be used.

Replacement Once the newly created vector is evaluated it is compared to the existing vectors
in the harmony memory (HM). This new vector replaces the worst vector in the harmony
memory if it has a fitness that is better than the worst vector.

Stopping-criterion check Finally, at the conclusion of a single iteration in harmony search
(HS), the algorithm checks the stopping criterion. The criterion is met when the number
of iterations is reached or there is no further state of change (i.e. convergence) between
the current iteration and the previous iterations.

It should be clarified that there are a number of feature selection algorithms based on
Harmony Search [32, 33, 30, 31, 23, 21] but they are “general purpose” in the sense that they
are not designed specifically for high-dimensional imbalanced data sets. SYMON is designed
for this specific problem and is highlighted by its feature weighting component where it weights
features according to their dependency against the set of class labels. This dependency is
determined using Symmetrical Uncertainty.

3.2. Symmetrical Uncertainty

Symmetrical Uncertainty is shown to be effective in feature selection for large scale data
sets [34, 35]. Based on entropy, it works by measuring the uncertainty of a random variable
x to another variable y as given by Equations 1 and 2. In these equations, P (xi) is the prior
probability for all values of x and P (xi|yi) is the posterior probability of x given y.

H(x) = −
∑

P (xi) log2(P (xi)) (1)

H(x|y) = −
∑
i

P (yi)
∑
j

P (xi|yi) log2(P (xi|yj)) (2)

and from Equations 1 and 2, we obtain the information gain shown in Equation 3, G reflects
the entropy loss of x once y is considered.

G(x|y) = H(x)−H(x|y) (3)

5

Algorithm 1: SYMON

Input : F, Set of all features
C, Set of all class labels
NI, number of iterations
HMS, harmony memory size
HMCR, harmony memory consideration rate
PARmax, maximum pitch adjustment rate
PARmin, minimum pitch adjustment rate

Output: HM , optimised solution vectors in harmony memory

1 w = CalculateSU(F, C);
2 Initialise();
3 for t← 1..NI do
4 for f ∈ F do
5 R← random number;
6 if Rf > HMCR then

7 Randomly select vector vr from HM;
8 NHV[f]← vr[f];
9 Rp ← random number;

10 Pf ← PAR(t) (Equation 6);
11 if Pf < Rp then

12 NHV[f]← NHV[f];

13 else
14 φ← random number;
15 if φ > 0.5 then
16 NHV[f]← 1;

17 else
18 NHV[f]← 0;

19 NHV = VectorTune(NHV, w, r, d);
20 if f(NHV) > f(v) then
21 HM = HM − {v} ∪ {NHV};

Since information gain G is a symmetrical measure for every pair of x, y, it is a natural
candidate to determine the correlation between the pair. However, to compare each combination
of x, y meaningfully, the values in Equation 3 have to be normalised (i.e., S ∈ [0, 1)) as in
Equation 4.

S(x, y) =
2G(x|y)

H(x) + H(y)
(4)

where S = 1 implies that x and y are fully correlated, while S = 0 means that x and y are
independent. In the context of SYMON, x is the current feature under consideration against y,
which is in fact the target class label. For readability, we use f in place of x for features, and c
in place of y for class labels from this point onwards. Thus, Equation 4 gives the symmetrical
uncertainty of a feature f against a single target class label c. That means we can measure the
weight of f over all class labels {c1, . . .} using Equation 5, where the symmetrical uncertainty
M(fi, c) will indicate the correlation strength of fi to c over all other class labels. If a feature
f is strongly correlated with a class ci, then the normalised weight of each feature calculated
through M(fi, c) will have the greatest value for all S(fj |c) ∀j, j 6= i.

M(fi, c) =
S(fi|c)∑
j S(fj |c)

(5)

6

Algorithm 2: CalculateSU()

Input : F, Set of all features
C, Set of all class labels

Output: w, Set of feature weights

1 for f ∈ |F| do
2 for c ∈ |C| do
3 Measure S(f |c);
4 Sum all the dependency values of f to class labels,

∑
f S(f |c);

5 w(f) = calculate the final weight of f using (5);

Algorithm 3: VectorTune()

Input : w, Set of feature weights
NHV, A feature vector
r, ripple factor
d, subset size

Output: Optimal feature subset vectors in harmony memory

1 Fw
s ← {fw

i , f
w
j , . . .} ⊂ NHV ;

2 Fw
u ← Fw − Fw

s ;
3

4 Fs ← {fi, fj , . . .} ⊂ NHV ;
5 Fu ← F − Fs;
6

7 if |Fs| = d then
8 ripple add(r, d, Fw

s , Fw
u);

9 ripple remove(r, d, Fw
s , Fw

u);

10 if |Fs| > d then
11 while |Fs| 6= d do
12 ripple remove(r, d, Fw

s , Fw
u);

13 if |Fs| < d then
14 while |Fs| 6= d do
15 ripple add(r, d, Fw

s , Fw
u);

16 output: tuned NHV;

3.3. Vector tuning operations

Vector tuning operations have been used in other works [36, 37] but they are based on a
goodness criterion (e.g. classification accuracy). In contrast, the operations in SYMON will
only pick features with the same weight and then include/exclude them in/from the final subset
with respect to their impact on the performance metric. This is done with the use of Equation
5, which will give the best mix of a set of features to predict a given target class. Then as a
refinement to fine tune the feature subset, the vector tuning operations adds or remove features
with the same weight until only the most significant features are retained in the subset. To
be able to do this, the vector tuning operations must be able to identify the most and least
significant features.

Definition 1. A feature is most significant if (i) its inclusion in the selected subset results in
the best performance metric when compared to other selected features and (ii) its exclusion from
the set significantly reduces the performance of the features when compared to the exclusion of
other features from the same subset.

Definition 2. A feature is least significant when its exclusion from the final subset does not

7

significantly reduce the performance of the selected set (in comparison to the exclusion of other
features in the same set).

The above definitions are incorporated into two operations: Ripple Add() and Ripple Rem().
These operations have two parameters: ripple factor (r) and desired subset size (d).

Ripple factor, (r) Determines the combination of features to consider and therefore has an
influence on the results.

Desired subset size, (d) Controls the search space by limiting the features to be considered.

These parameters can be adjusted to seek the best feature subsets for predicting the minority
class labels. All features in the data set (i.e. F) are divided into two subsets: Fs = {f1, . . . , fn}
being the currently selected features and Fu = F − Fs being the features currently not under
consideration. Ripple Add(r) will add r most significant features from Fu to Fs while removing
r−1 least significant features from Fs in each iteration of SYMON. Ripple Rem(r) will remove
the r least significant features in Fs while adding r− 1 most significant features from Fu to Fs.
The process of adding/removing features starts from selected/unselected features with the same
weight. If adding and removing features with the same weight does not satisfy the subset size
criteria then the rest of the features will be considered in order to be included and/or excluded.
Depending on the current size of the selected features |Fs| and the required subset size d, there
are three possible scenarios:

• The required size is equal to the number of selected features – Fs is changed by applying
Ripple Rem(r) and Ripple Add(r);

• The required subset size is more than the number of selected features – Fs is increased by
applying Ripple Add(r); and lastly

• The required subset size is less than the number of selected features – Fs is decreased by
applying Ripple Rem(r).

As with the above rules, either operation will only add one feature into the subset at any
time regardless of the value of r. A large r however will have a greater impact as the mix of
features face more adjustments. For example, Ripple Rem(3) will remove the 3 least significant
features from Fs and then add the 2 most significant features from Fu to Fs. Ripple Rem(2)

on the other hand will only remove the 2 least significant features from Fs and add a single
significant feature from Fu back into Fs.

3.4. SYMON

In this section we discuss SYMON in Algorithm 1, with Algorithms 2 and 3 detailing the
two components discussed earlier: Symmetrical Uncertainty and Vector tuning operations.

The first step of SYMON (Algorithm 1, line 1) is to rank all the features using Symmetrical
Uncertainty (Algorithm 2) before HS is initialised. This initialisation is carried out using random
binary values (line 2). Also in this stage, the fitness for each vector is calculated. The fitness
assessment is introduced in Section 4. Then, the main steps of HS will be performed (lines
3 – 21). To produce a new harmony vector (NHV) during the improvisation steps, a random
number Rc is generated (line 4).

If the random number Rc is higher than HMCR (line 6), then the current component will
be selected with respect to the harmony memory, in the sense that a vector vr will be selected
randomly and the value of the corresponding component will be copied (lines 6 – 8). Otherwise,
the component c is randomly assigned a binary 0 or 1 as shown (lines 14 – 18). The Pitch
Adjustment Rate (PAR), as shown in Equation 6, only affects components that are filled with

8

respect to HM (lines 10 – 12). Here, PARmin and PARmax are the lower and upper bounds of
the PAR respectively, and t is the current iteration number.

PAR(t) =
t

NI
× (PARmax − PARmin) (6)

Once the NHV is created, it will be passed to the vector tuning operations (line 19) to
measure the weight of features according to Equation 5 and evaluate the value M for each
selected feature. Then the fitness (denoted f() in Algorithm 1) of this NHV is evaluated (lines
20 – 21), where the vector will replace the worst vector of HM provided that the fitness of the
newly generated harmony vector is better than worst fitness of HM. The fitness function can
be classification accuracy, kappa statistics, G-Mean or any statistical measure such as Wilcoxon
[8, 9, 23, 36, 38].

As discussed, Algorithm 2 measures the dependency between every feature and the class
label. Hence, its output is the set of feature weights, w. This set of weights is used in Algorithm 3
to fine tune the set of features. The first step of Algorithm 3 is to create the initial feature
subsets (lines 1 – 2). The selected features with the same weight are placed into Fs and the
remaining unselected features with the same weight in to Fu. In lines 7 – 15, the algorithm
alters the NHV by vector optimisation operations with respect to r and d. The two operators
determine the feature(s) to remove or add by evaluating the feature combination in Fs and Fu

at each iteration using the weights in w.
A mentioned previously, if adding and removing features with equal weights does not satisfy

the required subset size (d) condition then the process continues to add and remove features
with varying weights. The output of the vector tuning will be passed to the evaluation metric
to assess its goodness. The related experiments are discussed in the next section.

4. Experimental results

The evaluation here will use a number of measures (classifier metrics, statistics and ex-
ecution time) and different high-dimensional imbalanced datasets (microarray and imagery)
for comparison against benchmark algorithms. For meaningful comparison, we draw upon the
evaluation methods reported in similar works replicating the experiments using SVM as the
underlying classifier and measuring the classifier performance using Area Under Curve (AUC),
G-Mean (GM) and the Wilcoxon signed-rank sum. The results are promising and answer the
following questions.

• What are the best empirical settings to ensure SYMON’s optimal performance? SYMON’s
performance can be affected by the free parameters, so fine-tuning these parameters is
crucial to ensuring the optimal performance of SYMON. Thus, we discuss how this near
optimality can be achieved in Section 4.2.

• How comparable is SYMON’s performance to existing state-of-the-art feature selection
algorithms designed for high dimensional imbalanced class problems? This is clearly the
key question that motivates the evaluation, hence we compared SYMON against similar
works [22][8][9] as discussed earlier in Sections 4.3.1 and 4.3.2. The related comparisons are
made with SVM-RFE [22], SVM-BFE [9] and Hellinger based feature selection algorithm
[8].

• How effective is the performance of SYMON in comparison to SMOTE as one of the well-
established baseline algorithms? This question investigates the performance of SYMON
and compares against SMOTE [10, 11]. To answer this question in Section 4.3.1 we
integrate filter-based ranking algorithms of ReliefF (RLF)4 and Principal Component

4we executed RLF with k = 10 for kNN

9

Table 2: Data sets and their characteristics used in this paper for evaluation.

Datasets Number of Samples Number of features Class (minority/majority)

Colon (COL) 62 2000 28/72

SRBCT 83 2308 13/87

Olivetti Faces (FACE) 400 4096 31/69

Central Nervous (CNS) 50 7129 25/75

DLBCL 59 7129 40/60

LEUKMIA (LEU) 38 7129 29/71

Cardio (CAR) 174 9182 15/85

Lung (LUG) 181 12534 17/83

Breast Cancer (BC) 78 24481 43/57

Analysis (PCA) with SMOTE. The variations are called SMOTE-RLF and SMOTE-PCA.

• How robust is SYMON when presented with data sets possessing different levels of im-
balance? Flowing from the first key question, SYMON’s performance should be stable
across a variety of data sets. We evaluate SYMON with different levels of class imbalance
for different data sets and then compare the results against other works. The results are
reported in Section 4.3.4.

4.1. Data sets

We selected eight large-scale DNA microarray data sets and one imagery dataset called
Olivetti Faces. The various data characteristics are shown in Table 2. These data sets are
either multi-class or binary class. In the multi-class data sets, our set up involves selecting the
least frequent class label as the minority and the rest as the majority. The ratio of this minority
to majority class labels is shown in Table 2 as Class (minority/majority).

To meaningfully test for true performance, we want to use samples that were not used in
model creation, so instead of a leave-one out cross-validation procedure we will use the hold-out
strategy instead. In this case, we divide each data set into three disjoint sets: training, testing
and validation in proportion of 50%, 30% and 20%, respectively. This ratio is the hold-out
condition and in the case of multi-class data sets this means that when selecting a minority
class we also have to ensure that the hold-out condition is met.

4.2. Parameter tuning

SYMON belongs to the family of meta-heuristic algorithms because of its underlying use of
harmony search, thus the calibration of its parameters is important in order to achieve optimal
results. To determine the optimal values for the free parameters, we conducted the following
empirical studies to acquire the settings for PARmin, PARmax, HMS and HMCR. We have done
this for three scenarios as shown in Table 3 using the LEU dataset. This dataset (LEU) showed
more sensitivity in comparison to other datasets, i.e. significant changes in performance are
seen for slight changes in the parameter settings. The reported results are averaged over 10
iterations.

Experiment I was carried out to determine the optimal values for PARmin and PARmax.
The interval [0; 1] is divided into two halves with identical lengths in which PARmin values can
select values from the lower half (i.e., [0.05; 0.45]), while PARmax values are selected from the
upper half of the interval (i.e., [0.55; 0.95]). As the results in Figure 1 show, it is better to set
PAR values to higher boundaries of their intervals to achieve better results. Accordingly, in our
experiments we set PARmin and PARmax values to 0.45 and 0.9, respectively.

10

Table 3: Scenarios for various parameter settings.

Experiments Test variable Fixed variable

Experiment I
PARs:

(PARmin, PARmax)
HMS = 5, HMCR = 0.5

Experiment II HMCR HMS = 5, PARs values from Experiment I

Experiment III HMS PARs and HMCR values from Experiments I and II

0.516
0.45

0.518

0.4

0.52

0.522

0.950.35

G
M

0.9

0.524

0.3
0.85

0.526

PARmin Values

0.25 0.8

0.528

PARmax Values

0.2 0.75

0.53

0.70.15
0.650.1 0.6

0.05 0.55

Figure 1: Finding proper values for PARmin and PARmax

In Experiment II, we wanted to find the most suitable values of HMCR ∈ {0.05, 0.1, . . . , 0.95}.
HMCR determines the consideration rate of the algorithm on the harmony memory in future
improvisation steps. As shown in Figure 4.2, setting HMCR to 0.75, ensures the algorithm
performs at its best.

Experiment III empirically determines the optimal harmony memory size. Since the per-
formance of random harmony search is directly correlated with the harmony memory size, it is
important to get this setting right. A harmony memory size that is too small prevents the al-
gorithm from reaching optimal parts of the solution space. On the other hand, a large harmony
memory size will lead to an unnecessarily long execution time. As shown in Figure 3, setting
the harmony memory size (HMS) to 35 yields the best performance.

Finally, the parameter settings of SYMON is as follows: HMS = 35, HMCR = 0.75, PARmin

= 0.45, PARmax = 0.9, d ∈ {F/5, 2F/5, 3F/5, 4F/5}, r ∈ {1, 2, 3, 4} and NI = 200. Also pa-
rameter setting of competitor algorithms are as follows: in the Hellinger based feature selection
algorithm (in this paper called, D-HELL) [8] k = 5, NI = 200, in SVM-RFE [22], SVM-BFE [9]
the only required parameter for setting is the number of top features to select, which is equal
to value of d in SYMON.

As was shown in the latter paragraphs of Section 2, the recent state-of-the-art algorithms
consider SVM as their underlying classifier. An investigation was undertaken to determine
whether this is indeed a good choice, but the results are omitted here for brevity. We compared
SVM with different classifiers: rule induction, k -nearest-neighbor (kNN), Bayesian, decision
trees and artificial neural networks (ANN). It was discovered that ANN and SVM have the best
results, probably due to their better handling of noisy data. However, SVM exhibits better
runtime performance (i.e. it is faster). Therefore it was determined that SVM is the most
suitable.

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HMCR values

0.526

0.5265

0.527

0.5275

0.528

0.5285

0.529

0.5295

0.53

0.5305

0.531

G
M

Figure 2: HMCR value fine tuning with respect to Experiment II introduced in Table 3.

0 10 20 30 40 50 60 70 80 90 100

HMS values

0.5275

0.528

0.5285

0.529

0.5295

0.53

0.5305

0.531

G
M

Figure 3: HMS value fine tuning with respect to Experiment III introduced in Table 3.

12

4.3. Discussion of results

We report three evaluations to determine if SYMON’s performance is comparable to existing
approaches. As with the related works, we have done so using classifier metrics (Section 4.3.1).
We then compare how robust SYMON and its counterparts are in the presence of unseen data
using the Wilcoxon signed-rank sum (Section 4.3.2). One of the characteristics of a feature
selection algorithm that distinguishes it from other similar works is its power in dealing with
different levels of imbalancement; this is investigated in Section 4.3.4. In these evaluations,
SYMON proved to perform on-par or better than current solutions. Given these promising
results, in Section 4.3.3 we further confirm that SYMON is feasible in practice by evaluating
its runtime performance.

4.3.1. Classifier metrics

We start by considering how much improvement in classifier performance SYMON delivers.
Our evaluation uses the same measures: AUC and G-Mean, as reported in [22, 9, 8]. We also
use the same experimental setup, selecting SVM as the classifier, specifically SVM-RFE [22],
SVM-BFE [9], D-HELL [8], and SMOTE-integrated algorithms of SMOTE-RLF and SMOTE-
PCA. We implemented these algorithms with SYMON using Matlab and tested them using
similar reported experimental conditions.

The results are summarised in Table 4. While classification accuracy has been a popular and
traditional way to measure the performance of feature selection algorithms [1], He and Garcia
[12] noted that it is not a suitable reflection of classification performance for imbalanced data
sets. For example, if a given data set includes 5% of the target class instances and 95% of
majority examples, a naive approach of classifying every instance to the majority class would
provide an accuracy of 95%; a strong performance by the traditional classification accuracy
measure. If the misclassification cost [9, 12] for the 5% target class is significant (and usually
this is the case with imbalanced data sets), then such a performance (despite a 95% classification
accuracy) is not acceptable. In light of this, the G-Mean is used instead to better reflect the
misclassification costs (as seen in [8, 9]) and is given by Equation 7:

G-Mean =

√
TP

TP + FN
× TN

TN + FP
(7)

where TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives. The higher value of GM indicates better performance.

We see SYMON performing very well across the four data sets: COL, FACE, DLBCL and
LEU in the sense that its G-Mean values are the best in all settings compared to the rest. In
the other data sets: CAR, LUG and BC, SYMON is either on-par or better across the various
test settings. In the case of BC (d = F/5), while the G-Mean score is the same, SYMON uses
smaller feature subsets than D-HELL to achieve this same score. This lower number of features
has practical implications in terms of model interpretation. Finally, in the SRBCT data set,
the performance of SYMON is similar to the other three under evaluation.

The other measure used is the Area Under Curve (AUC), which considers the area under
the Receiver Operating Characteristic (ROC) curve [7, 20, 17, 8]. The ROC illustrates the
trade-off between positive detection rates and false alarm rates. Consequently, the AUC is a
measure of a classifier’s discriminative strength between these two rates without considering
misclassification costs or class prior probabilities. Using the AUC we can compare how much
improvement SYMON and its counterpart deliver to the classifiers across different subset sizes.

As noted in Table 4, all algorithms were fine-tuned to the different values of desired subset
size (d). Consequently, the same was done for SYMON and across its four ripple factor values
(r). These results are shown in Table 5 in the form of x(y), where x and y are the AUC value
and the proportion of features that the AUC was gained, respectively. SYMON displays similar
performance across three data sets: LEU, SRBCT and LUG, with the values of 0.875, 1 and

13

Table 4: Comparisons of Filter-based ranking, state-of-the-arts and SYMON using test data in terms of GM.
Higher GM means better performance.

Datasets d
SYMON Filter based ranking State-of-the-arts

r = 1 r = 2 r = 3 r = 4 SMOTE-RLF SMOTE-PCA SVM-RFE SVM-BFE D-HELL

COL
(F = 2000)

F/5 0.674 0.674 0.674 0.674 0.603 0.585 0.6 0.56 0.67
2F/5 0.715 0.715 0.715 0.715 0.603 0.63 0.6 0.6 0.6
3F/5 0.674 0.674 0.715 0.715 0.603 0.63 0.56 0.56 0.64
4F/5 0.715 0.715 0.715 0.715 0.674 0.684 0.56 0.6 0.6

SRBCT
(F = 2308)

F/5 1 1 1 1 1 1 1 1 1
2F/5 1 1 1 1 1 1 1 1 1
3F/5 1 1 1 1 1 1 1 1 1
4F/5 1 1 1 1 1 1 1 1 1

FACE
(F = 4096)

F/5 0.982 0.982 0.982 0.982 0.962 0.91 0.982 0.887 0.975
2F/5 0.991 0.991 0.991 0.991 0.988 0.963 0.982 0.935 0.988
3F/5 0.982 0.982 0.982 0.982 0.982 0.988 0.988 0.963 0.982
4F/5 0.982 0.982 0.982 0.982 0.982 0.982 0.988 0.982 0.982

CNS
(F = 7129)

F/5 0.79 0.79 0.79 0.79 0.577 0.624 0.745 0.745 0.707
2F/5 0.79 0.79 0.79 0.79 0.667 0.745 0.745 0.697 0.745
3F/5 0.79 0.79 0.79 0.79 0.745 0.745 0.745 0.745 0.745
4F/5 0.79 0.79 0.79 0.79 0.745 0.745 0.745 0.745 0.745

DLBCL
(F = 7129)

F/5 0.296 0.296 0.296 0.316 0.274 0.387 0.25 0.25 0.223
2F/5 0.296 0.296 0.296 0.316 0.274 0.547 0.273 0.25 0.25
3F/5 0.316 0.316 0.418 0.418 0.274 0.296 0.273 0.25 0.25
4F/5 0.296 0.296 0.296 0.316 0.274 0.274 0.273 0.273 0.274

LEU
(F = 7129)

F/5 1 1 1 1 0.7 0.7 0.316 0.316 0.5
2F/5 1 1 1 1 0.7 0.7 0.316 0.316 0.836
3F/5 1 1 1 1 0.7 0.7 0.316 0.316 0.447
4F/5 1 1 1 1 0.86 0.86 0.316 0.316 0.316

CAR
(F = 9182)

F/5 0.935 0.935 1 1 0.935 0.935 0.935 1 1
2F/5 0.935 0.935 1 1 0.935 0.935 0.935 1 0.935
3F/5 0.935 0.935 0.935 0.935 0.935 0.935 0.935 1 0.935
4F/5 0.935 0.935 0.935 0.935 0.935 0.935 0.935 1 0.935

LUG
(F = 12533)

F/5 1 1 1 1 0.968 0.968 0.973 1 1
2F/5 1 1 1 1 0.968 0.968 0.973 1 1
3F/5 1 1 1 1 0.968 0.968 0.973 1 1
4F/5 1 1 1 1 0.968 0.968 0.973 1 1

BC
(F = 24481)

F/5 0.626 0.626 0.664 0.664 0.524 0.524 0.56 0.664 0.626
2F/5 0.626 0.626 0.664 0.664 0.585 0.524 0.626 0.58 0.626
3F/5 0.626 0.626 0.664 0.664 0.524 0.524 0.626 0.52 0.664
4F/5 0.626 0.626 0.664 0.664 0.626 0.524 0.626 0.52 0.626

14

Table 5: AUC evaluation using various data sets and different feature subset sizes for the four different algorithms
including SYMON. F/5 means 20% of the total features in F and 2F/5 means 40% of the totals features in F ,
and so on.

Datasets SYMON
Filter based ranking State-of-the-arts

SMOTE-RLF SMOTE-PCA SVM-RFE SVM-BFE D-HELL

COL
(F = 2000)

0.72 (0.8) 0.616 (0.2) 0.676 (0.8) 0.613 (0.2) 0.67 (0.4) 0.738 (0.4)

SRBCT
(F = 2308)

1 (0.2) 1(0.2) 1(0.2) 1(0.2) 1(0.2) 1(0.2)

FACE
(F = 4096)

0.988 (0.2) 0.988 (0.4) 0.988 (0.6) 0.988 (0.6) 0.988 (0.8) 0.988 (0.4)

CNS
(F = 7129)

0.652 (0.2) 0.75 (0.6) 0.75 (0.4) 0.46 (0.6) 0.652 (0.4) 0.652 (0.6)

DLBCL
(F = 7129)

0.787(0.2) 0.637 (0.2) 0.637 (0.8) 0.687 (0.2) 0.687 (0.2) 0.687 (0.6)

LEU
(F = 7129)

0.875(0.2) 0.875(0.2) 0.875(0.2) 0.875(0.2) 0.875(0.2) 0.875(0.2)

CAR
(F = 9182)

1(0.2) 0.937 (0.2) 0.937 (0.2) 0.937(0.2) 1(0.2) 1(0.2)

LUG
(F = 12533)

0.968 (0.2) 0.968 (0.2) 0.968 (0.2) 0.968 (0.2) 0.968 (0.2) 0.968 (0.2)

BC
(F = 24481)

0.792(0.2) 0.652 (0.8) 0.593 (0.2) 0.75(0.2) 0.291(0.4) 0.75(0.4)

0.968, respectively. With the other data sets, SYMON is superior compared to the related
works. This superiority is seen in both the subset size and AUC in the DLBCL and BC data
sets, and in the subset size in the FACE, CNS and CAR data sets. The reasons for SYMON’s
performance can be attributed to the way it selects and weights features.

Underpinning SYMON’s feature selection strategy is a meta-heuristic optimisation algorithm
capable of finding the near-optimal part of the solution space. We opted for near-optimality as
it is often hard and at times impossible to locate the optimal solution [38, 39]. Nevertheless,
this is sufficient to deliver SYMON a subset of features that is better than the compared works.
In their case, features are weighed and ranked with the top-k features picked as the final subset.
This one-off “weigh and rank” strategy fails to consider the relationship between features that
only SMYON’s meta-heuristic optimisation algorithm will uncover.

Furthermore, the ranking of features often does not discriminate between two or more fea-
tures having the same weight. Yet this is important as features with the same weight can have
different levels of dependency to a target class label. In the case of the minority class, hav-
ing the most discriminative feature subset will deliver the strongest predictive outcome. While
SYMON’s meta-heuristic search inherently takes the feature-class correlation into account, com-
parable algorithms fall short in the follow ways:

• SVM-RFE [22] uses a recursive feature elimination technique, where the SVM classifier
performance is used to determine the weight of a feature. Once all features are evaluated,
the top-k features are selected as the subset, i.e. ignoring the case when multiple features
in the top-k set have the same weight.

• SVM-BFE [9] was introduced by Maldonado et.al. [9] with two different loss functions:
(i) 0-1 loss and (ii) balanced-loss. The latter is preferred as the former assumes equal cost
in the error between the binary classes. Like SVM-RFE, SVM-BFE weights each feature
based on the contribution towards improving the SVM classifier performance. Similarly
it ignores the case when multiple features in the top-k set have the same weight.

15

Table 6: Wilcoxon comparisons using test data.

2nd Algorithm

1st Algorithm

SVM-RFE SVM-BFE D-HELL SMOTE-RLF SMOTE-PCA
SYMON(r=1) 4.8828e-04 (1) 4.8828e-04 (1) 9.7656e-04 (1) 7.56E-06 (1) 0.00030732 (1)
SYMON(r=2) 4.8828e-04 (1) 4.8828e-04 (1) 9.7656e-04 (1) 7.56E-06 (1) 0.00030732 (1)
SYMON(r=3) 4.8828e-04 (1) 4.8828e-04 (1) 9.7656e-04 (1) 2.31612E-06 (1) 1.41532E-04 (1)
SYMON(r=4) 4.8828e-04 (1) 4.8828e-04 (1) 9.7656e-04 (1) 2.31612E-06 (1) 1.02778E-04 (1)

Table 7: Wilcoxon comparisons using train data.

2nd Algorithm

1st Algorithm

SVM-RFE SVM-BFE D-HELL SMOTE-RLF SMOTE-PCA
SYMON(r=1) 2.5893e-05 (1) 0.0011 (1) 0.0013 (1) 0.1222 (0) 0.3032 (0)
SYMON(r=2) 2.5893e-05 (1) 0.0011 (1) 0.0013 (1) 0.1222 (0) 0.3032 (0)
SYMON(r=3) 3.4283e-06 (1) 1.7946e-04 (1) 5.8884e-05 (1) 0.1222 (0) 0.3032 (0)
SYMON(r=4) 1(0) 0.9722 (0) 0.0012 (1) 0.1222 (0) 0.3032 (0)

• D-HELL [8] weights features with respect to class labels in the same spirit as SYMON.
However, D-HELL changes the underlying data characteristics while SYMON avoids
changing the underlying structure. With D-HELL, the frequent class labels are further
decomposed into sub-class labels resulting in a new data set. This decomposition is based
on a clustering algorithm. Therefore, the accuracy of the decomposed class labels and the
new dataset depends on how accurately the clustering algorithm can group similar data
together.

• SMOTE [10, 11] generates artificial samples for minority class labels to (roughly) balance
all the class labels. Then it is integrated with RLF and PCA to weight the features
and select the top-k features. This algorithm first assigns weights to features without
considering their correlation to class label(s). Also, equally-weighted features is a problem
for this algorithm.

4.3.2. Statistical analysis

Clearly, the practical utility of SYMON lies in its performance for unseen data. To evaluate
this, we conducted the Wilcoxon signed-rank test which, according to [40], is a more sensible
measure than a t-test as it assumes commensurability of differences, but only qualitatively. In
other words, it is desirable to note the differences but the absolute magnitude quantifying these
differences is not considered. The test is also considered to be ’safer’ as it does not assume
normal distributions and outliers have less impact on the final result.

The purpose of the Wilcoxon signed-rank test is to show if the results from the two algorithms
are independent (i.e. rejecting the null hypothesis). The test results are shown in Tables 6 and 7
in the form of p(h), where p refers to the test value and h indicates if the null hypothesis should
be rejected (i.e., h = 1). As seen in Table 6 (which is the evaluation against unseen data), the
results produced by SYMON versus the other comparable algorithms have been confirmed to
be significant.

4.3.3. Execution time

To evaluate SYMON’s execution time compared to recent works, we measure the runtime
of the two key stages of each algorithm: feature weighting and feature selection. The total
execution time, feature weighing time and feature selection time for SYMON, D-HELL, SVM-
RFE, and SVM-BFE are shown in Table 8. We can see that the feature weighting performance

16

of SYMON is extremely competitive but where it fails is in the feature selection stage. The
extended runtime comes as no surprise because SYMON’s feature selection step uses Harmony
Search, which treats feature selection as an optimisation problem. Additionally, SYMON con-
siders all available features thus, the execution time grows exponentially as the number of
features grow.

Although SYMON produces a better subset of features for predicting minority classes, the
high runtime would impede its uptake. This is because SYMON considers the different combina-
tion of features available (especially among features with similar weights) while other algorithms
simply pick the top-k features as the final solution. So on the one hand, we have SYMON that
searches for the best combination of features to give the best contrast to a minority class; and
on the other, we have a straightforward ordering of all features by their weight and then, picking
the top-k features. A balance between the two is desirable.

An observation about the weights is that our Symmetrical Uncertainty measure (M) already
encodes the correlation strength of the feature to a class label. Therefore, we do not have to
consider all features available. At the same time, we know that the top-k features will not yield
the best results as confirmed in our experiments. Therefore, the required and ideal number of
features to be considered is somewhere between k+1 and |F |. This led us to investigate a range
of subset sizes that SYMON should consider at the selection stage.

In other words, given d the required subset size, we constrain SYMON to operate on d+ dz
features (instead of exploring all |F | features), where dz << |F | − d is an addition number
of attributes to consider at the feature selection stage. As d + dz << |F | the search space
is substantially smaller. Since we are using the top-(d + dz) features, we are working with
features that have a high correlation level to the minority class label. Taking this approach, we
re-conducted our experiments with different numbers of features (Figures 4 and 5). Taking a
subset size of d = 0.2F , we evaluated this variation of SYMON by considering dz values of 1%,
5% and 10% of F . The runtime is significantly reduced as shown in Table 8.

While the runtime remains higher than the benchmark D-HELL, we believe it is now within
a range (minutes rather than many hours) that is acceptable. This is especially the case if the
most accurate predictive outcome on the minority class is sought, e.g., in critical applications
like medical diagnosis or fraud detection. We refer to this variation as SYMONk, k = d + dz.
With this reduced execution time, SYMONk’s AUC and GM performance remain comparable to
the original SYMON and more importantly, it is also comparable or outperforms the benchmark
D-HELL algorithm. The results on the AUC and GM measures are shown in Figures 4 and 5
for SYMONk over a range of values for dz and compared to SYMON and D-HELL.

4.3.4. Robustness to class imbalance

Lastly, we are interested in evaluating the imbalance rate, rimb in SYMON and the other
algorithms. The imbalance rate, given by Equation 8, is a ratio of the number of samples in
the majority class to the number of samples in the minority class. It gives an indication of how
robust an algorithm is to the imbalancement of a data set.

SMOTE - regardless of how the dataset is imbalanced - generates some artificial samples to
make the dataset (roughly) balanced. The other compared algorithms, and also SYMON, do
not make changes to the original dataset. Hence, the imbalance rate of the experimental dataset
has an effect on the performance of the algorithms. Therefore we exclude SMOTE variations
from imbalance experiments.

Over a range of imbalance rates, we compare the GM and AUC scores of SYMON and
the other algorithms. The results are given in Figures 6 and 7. As SYMON relies on meta-
heuristics to find the most optimal solution possible, we see that the results are strongly in
favour of SYMON especially when its fine-tuning operations subsequently consider combinations
of highly correlated features to the class labels to ensure that the best results are achieved in
each case.

17

Table 8: Execution time of SYMON and similar algorithms across data sets with different numbers of dimensions:
2K means 2,000 features and all algorithms are to identify a 20% feature subset that gives the best classifier
performance on the minority classes. Total execution time is in seconds.

Execution time Algorithms
Datasets

2K(COL) 4K(FACE) 7K(DLBCL) 9K(CAR) 12K(LUG) 24K(BC)

Feature weighting
execution time

SVM-RFE 2 6 7 10 16 28
SVM-BFE 80 1112 358 1668 25066 48569
D-HELL 2 4 7 10 12 21
SYMON 2 4 7 10 14 22

SMOTE-RLF 3.95 134.9 11.613 103.02 193.85 89.860
SMOTE-PCA 1.512 81.89 11.033 25.3 56.736 1099.4

Feature selection
execution time

SVM-RFE 0.6 0.61 0.58 0.6 0.67 0.68
SVM-BFE 0.64 0.64 0.52 0.6 0.7 0.73
D-HELL 0.51 0.6 0.57 0.55 0.57 0.58
SYMON 287 1008 2615 4127 2615 31783

SYMONdd+1% 77 271 264 342 683 1536
SYMONdd+5% 80 276 285 415 707 2096
SYMONd+10% 81 440 347 420 732 3635
SMOTE-RLF 1.095 2.037 0.165 2.28 2.21 2.46
SMOTE-PCA 1.243 2.376 0.272 2.435 2.73 34.75

Total execution time

SVM-RFE 2.6 6.61 7.58 10.6 16.67 28.68
SVM-BFE 80.64 1112.64 358.52 1668.6 25066.7 48569.73
D-HELL 2.51 4.6 7.57 10.55 12.57 21.58
SYMON 289 1012 2622 4134 17023 31805

SYMONdd+1% 79 275 271 352 697 1558
SYMONd+5% 82 280 292 425 721 2118
SYMONd+10% 83 444 354 430 746 3657
SMOTE-RLF 5.045 136.937 11.778 105.3 196.05 92.32
SMOTE-PCA 2.755 84.268 11.305 27.735 59.466 1134.15

2K(COL) 4K(FACE) 7K(DLBCL) 9K(CAR) 12(LUG) 24(BC)

Datasets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
M

SYMON
SYMON(d+1%)
SYMON(d+5%)
SYMON(d+10%)
D-HELL

Figure 4: Evaluation of SYMONd+dz on two GM classifier metric across various data sets. Note that SYMON
and SYMONk performances shown here are indicative as a different NI (iterations) and HMS (Harmony memory
size) setting will produce a different feature subset, thus affecting GM scores but a higher NI and HMS for the
same dz setting will always give a higher GM score.

18

2K(COL) 4K(FACE) 7K(DLBCL) 9K(CAR) 12K(LUG) 24(BC)

Datasets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

SYMON
SYMON(d+1%)
SYMON(d+5%)
SYMON(d+10%)
D-HELL

Figure 5: Evaluation of SYMONd+dz on the AUC classifier metric across various data sets. Note that SYMON
and SYMONk performances shown here are indicative as a different NI (iterations) and HMS (Harmony memory
size) setting will produce a different feature subset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imbalancement threshold

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C SYMON SVM-RFE SVM-BFE D-HELL

Figure 6: Robustness of various algorithms to different rates of imbalancement based on AUC.

(rimb) =
#ofSamplesminority

#ofSamplesmajority
(8)

5. Conclusion and future works

In this paper we introduced SYMON as a new feature selection algorithm for high di-
mensional imbalanced class datasets. Similar to other related works, SYMON is a two stage
algorithm, The first stage, feature weighting, measures the features’ weights (or importance).
In the second stage, known as feature selection, the top-k features are selected based on their
weights. What distinguishes SYMON from similar works are (i) its capability in measuring the
feature weight with respect to the dependency to class label(s) and (ii) dealing with the situa-
tion where different features have the same weight (or importance). SYMON was empirically
compared against the state-of-the-art and baseline algorithms and the results showed compara-
ble or better performance (in terms of GM and AUC) over different high dimensional datasets.

19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imbalancement threshold

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
M

SYMON SVM-RFE SVM-BFE D-HELL

Figure 7: Robustness of various algorithms to different rates of imbalancement based on G-Mean (GM).

This performance can be attributed to its use of symmetrical uncertainty to weight features and
the vector tuning operations embedded in the feature selection stage.

On the limitations, SYMON has two that we will address for the future work. The first
limitation is its high computational time. Even though we experimentally showed that SYMON
can be improved in terms of execution time, by focusing on a proportion of the most significant
features, a better solution is to explore a faster harmony search core to improve its runtime.
The other limitation is to confine feature selection to a desired subset size (d). At the moment,
the vector tuning operations are highly dependent on (d) and the ripple factor (r). Instead, a
more flexible d will allow more optimal parts of the solution space to be discovered. This could
be another avenue to improve SYMON’s runtime performance.

References

[1] Victoria López, Alberto Fernández, Salvador Garćıa, Vasile Palade, and Francisco Herrera.
An insight into classification with imbalanced data: Empirical results and current trends
on using data intrinsic characteristics. Information Sciences, 250:113–141, 2013.

[2] Löıc Cerf, Dominique Gay, Nazha Selmaoui-Folcher, Bruno Crémilleux, and Jean-François
Boulicaut. Parameter-free classification in multi-class imbalanced data sets. Data & Knowl-
edge Engineering, 87:109–129, 2013.

[3] Jason Van Hulse and Taghi Khoshgoftaar. Knowledge discovery from imbalanced and noisy
data. Data & Knowledge Engineering, 68(12):1513–1542, 2009.

[4] K Topouzelis, V Karathanassi, P Pavlakis, and D Rokos. Detection and discrimination
between oil spills and look-alike phenomena through neural networks. ISPRS Journal of
Photogrammetry and Remote Sensing, 62(4):264–270, 2007.

[5] Basant Subba, Santosh Biswas, and Sushanta Karmakar. Intrusion detection in mobile
ad-hoc networks: Bayesian game formulation. Engineering Science and Technology, an
International Journal, 2015.

[6] Dúılio ANS Silva, Leandro C Souza, and Gustavo HMB Motta. An instance selection
method for large datasets based on markov geometric diffusion. Data & Knowledge Engi-
neering, 101:24–41, 2016.

20

[7] Jason Van Hulse, Taghi M Khoshgoftaar, Amri Napolitano, and Randall Wald. Fea-
ture selection with high-dimensional imbalanced data. In Data Mining Workshops, 2009.
ICDMW’09. IEEE International Conference on, pages 507–514. IEEE, 2009.

[8] Liuzhi Yin, Yong Ge, Keli Xiao, Xuehua Wang, and Xiaojun Quan. Feature selection for
high-dimensional imbalanced data. Neurocomputing, 105:3–11, 2013.

[9] Sebastián Maldonado, Richard Weber, and Fazel Famili. Feature selection for high-
dimensional class-imbalanced data sets using support vector machines. Information Sci-
ences, 286:228–246, 2014.

[10] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: special issue on
learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1):1–6, 2004.

[11] T Deepa and M Punithavalli. An e-smote technique for feature selection in high-dimensional
imbalanced dataset. In Electronics Computer Technology (ICECT), 2011 3rd International
Conference on, volume 2, pages 322–324. IEEE, 2011.

[12] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge and Data
Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[13] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive
boosting for classification of imbalanced data. Pattern Recognition, 40(12):3358–3378, 2007.

[14] Mina Alibeigi, Sattar Hashemi, and Ali Hamzeh. Dbfs: An effective density based feature
selection scheme for small sample size and high dimensional imbalanced data sets. Data &
Knowledge Engineering, 81:67–103, 2012.

[15] Dudyala Anil Kumar and V Ravi. Predicting credit card customer churn in banks using
data mining. International Journal of Data Analysis Techniques and Strategies, 1(1):4–28,
2008.

[16] Nguyen Tho Thong et al. Intuitionistic fuzzy recommender systems: An effective tool for
medical diagnosis. Knowledge-Based Systems, 74:133–150, 2015.

[17] Xue-wen Chen and Michael Wasikowski. Fast: a roc-based feature selection metric for
small samples and imbalanced data classification problems. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
124–132. ACM, 2008.

[18] Youwei Wang, Yuanning Liu, Lizhou Feng, and Xiaodong Zhu. Novel feature selection
method based on harmony search for email classification. Knowledge-Based Systems,
73:311–323, 2015.

[19] Irena Koprinska, Mashud Rana, and Vassilios G Agelidis. Correlation and instance based
feature selection for electricity load forecasting. Knowledge-Based Systems, 82:29–40, 2015.

[20] Pengyi Yang, Wei Liu, Bing B Zhou, Sanjay Chawla, and Albert Y Zomaya. Ensemble-
based wrapper methods for feature selection and class imbalance learning. In Advances in
Knowledge Discovery and Data Mining, pages 544–555. Springer, 2013.

[21] Ren Diao and Qiang Shen. Feature selection with harmony search. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(6):1509–1523, 2012.

[22] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine learning, 46(1-3):389–422,
2002.

21

[23] Rana Forsati, Alireza Moayedikia, and Bahareh Safarkhani. Heuristic approach to solve
feature selection problem. In Digital Information and Communication Technology and Its
Applications, pages 707–717. Springer, 2011.

[24] Rana Forsati, MohammadReza Meybodi, Mehrdad Mahdavi, and Azadeh Ghari Neiat.
Hybridization of k-means and harmony search methods for web page clustering. In Pro-
ceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology-Volume 01, pages 329–335. IEEE Computer Society, 2008.

[25] Rana Forsati, Mehrdad Mahdavi, Mehrnoush Shamsfard, and Mohammad Reza Meybodi.
Efficient stochastic algorithms for document clustering. Information Sciences, 220:269–291,
2013.

[26] Mohsen Mirkhani, Rana Forsati, Alireza Mohammad Shahri, and Alireza Moayedikia. A
novel efficient algorithm for mobile robot localization. Robotics and Autonomous Systems,
61(9):920–931, 2013.

[27] Rana Forsati, Alireza Moayedikia, and Mehrnoush Shamsfard. An effective web page
recommender using binary data clustering. Information Retrieval Journal, 18:167–214,
2015.

[28] Yin-Fu Huang, Sheng-Min Lin, Huan-Yu Wu, and Yu-Siou Li. Music genre classification
based on local feature selection using a self-adaptive harmony search algorithm. Data &
Knowledge Engineering, 92:60–76, 2014.

[29] Zong Woo Geem. Novel derivative of harmony search algorithm for discrete design variables.
Applied mathematics and computation, 199(1):223–230, 2008.

[30] M Mahdavi, Mohammad Fesanghary, and E Damangir. An improved harmony search
algorithm for solving optimization problems. Applied mathematics and computation,
188(2):1567–1579, 2007.

[31] Mahamed GH Omran and Mehrdad Mahdavi. Global-best harmony search. Applied Math-
ematics and Computation, 198(2):643–656, 2008.

[32] Messaouda Nekkaa and Dalila Boughaci. Hybrid harmony search combined with stochastic
local search for feature selection. Neural Processing Letters, pages 1–22, 2015.

[33] Ling Zheng, Ren Diao, and Qiang Shen. Self-adjusting harmony search-based feature
selection. Soft Computing, 19(6):1567–1579, 2014.

[34] S Senthamarai Kannan and N Ramaraj. A novel hybrid feature selection via symmetrical
uncertainty ranking based local memetic search algorithm. Knowledge-Based Systems,
23(6):580–585, 2010.

[35] Roberto Ruiz, José C Riquelme, Jesús S Aguilar-Ruiz, and Miguel Garćıa-Torres. Fast
feature selection aimed at high-dimensional data via hybrid-sequential-ranked searches.
Expert Systems with Applications, 39(12):11094–11102, 2012.

[36] Rana Forsati, Alireza Moayedikia, Richard Jensen, Mehrnoush Shamsfard, and Moham-
mad Reza Meybodi. Enriched ant colony optimization and its application in feature selec-
tion. Neurocomputing, 142:354–371, 2014.

[37] Il-Seok Oh, Jin-Seon Lee, and Byung-Ro Moon. Hybrid genetic algorithms for feature
selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(11):1424–
1437, 2004.

22

[38] Alireza Moayedikia, Richard Jensen, Uffe Kock Wiil, and Rana Forsati. Weighted bee
colony algorithm for discrete optimization problems with application to feature selection.
Engineering Applications of Artificial Intelligence, 44:153–167, 2015.

[39] Mina Husseinzadeh Kashan, Nasim Nahavandi, and Ali Husseinzadeh Kashan. Disabc:
A new artificial bee colony algorithm for binary optimization. Applied Soft Computing,
12(1):342–352, 2012.

[40] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine Learning Research, 7:1–30, 2006.

23

