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In the present paper, we review the current state-of-the-art in asymptotic modeling of
articular contact. Particular attention has been given to the knee joint contact mechanics
with a special emphasis on implications drawn from the asymptotic models, including
average characteristics for articular cartilage layer. By listing a number of complicating
effects such as transverse anisotropy, non-homogeneity, variable thickness, nonlinear
deformations, shear loading, and bone deformation, which may be accounted for by
asymptotic modeling, some unsolved problems and directions for future research are
also discussed.

Keywords: articular contact, knee joint, articular cartilage, asymptotic model, thin layer, biphasic theory, defor-
mation, damage

1. INTRODUCTION

Articular cartilage is a non-vascular soft tissue, which covers the ends of bones and thereby prevents
damage in their contact. In the knee joint, a half of body weight is transferred through the articular
contact in a quiet standing position, and the level of loading increases progressively in walking,
running, and jumping. Experimental investigations (van den Bogert et al., 1999) have shown that
joint contact forces of up to 300% body weight can occur even during normal walking, and may
rise to 550% during the push-off phase of running, whereas various skiing activities produce a joint
contact force ranging from 400%bodyweight (long turns and flat slope) to 900% bodyweight during
short turns on a steep slope.

The mechanical aspects of articular contact, such as the contact pressure pattern [e.g., which is
changed due to some gait disorders (Rosneck et al., 2007)], the maximum level of loading, or the
type of loading [e.g., impact (Herzog and Federico, 2006; Kessler et al., 2006; Garcia et al., 2008)]
are closely related to he development and progression of osteoarthritis (Maly et al., 2008). On the
other hand, the analytical modeling of articular contact is necessary in formulating equations for the
reaction forces generated in joints during multibody simulations of human and animal movements
(Delp and Loan, 2000; Machado et al., 2011).

With a tremendous progress in development of computer simulation tools, the early analytical
models of articular contact (Eberhardt et al., 1990; Blankevoort et al., 1991; Eberhard et al., 1999;
Bei and Fregly, 2004) were succeeded by FE models (Wu et al., 1997; Caruntu and Hefzy, 2004;
Wilson et al., 2005a; Galbusera et al., 2014) that have been steadily improved in accuracy and realistic
presentation of the contacting parts (Caruntu and Hefzy, 2004) as well as their complexity has been
increased by accounting for many factors such as microstructure (Bursać et al., 2000), meniscus
(Peña et al., 2006), fluid exudation (Carter et al., 2004), which are usually neglected in analytical
studies.
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Asymptotic modeling is a mathematical modeling approach
aimed to simplify a given mathematical model by considering the
so-called limit situation with respect to a certain dimensionless
parameter. As a result of asymptotic modeling, we obtain an
asymptotic model, which bears the main features of the origi-
nal mathematical model essential for the chosen limit situation
(Argatov, 2012a).

2. ASYMPTOTIC MODELING OF
ARTICULAR CONTACT

2.1. Asymptotic Model for Deformation of
Articular Cartilage
It is well known (Poole et al., 2001) that articular cartilage mainly
consists of extracellular matrix and interstitial fluid. Namely, this
biphasic nature of cartilage was reflected in the mathematical
model for its deformation response developed by Mow et al.
(1980). In order to describe the deformation response of articular
cartilage layer under an external load, a number ofmodeling issues
should be fixed (including, the geometry of cartilage layer, the
method of its loading, and the boundary conditions imposed at
the layer surfaces).

Figure 1A shows a biphasic layer bonded to an impermeable
rigid base and loaded by an axisymmetric distributed normal
load, which, for the sake of simplicity, does not change in time.
Evidently, the problem contains a dimensionless parameter of
geometrical nature ε= h/a, where h is the layer thickness and a
is the radius of the loaded area. Under the assumption that ε≪ 1,
it becomes possible to look for the solution in the limit situation
as ε→ 0 in the form of a series with respect to the parameter ε by
applying the corresponding perturbation technique. In this way,
an asymptotic solution of the axisymmetric deformation problem
for an isotropic biphasic layer was obtained by Ateshian et al.
(1994).

It should be emphasized that articular cartilage can be regarded
as a time-dependent material. So that its response to a suddenly
applied normal pressure exhibits two limit situations in time:
namely, the short-time response and the long-time (equilibrium)
response, and it is interesting to observe (Ateshian et al., 1994;
Barry and Holmes, 2001) that the instantaneous response of a
biphasic tissue corresponds to that of an incompressible elastic
material, whereas in the long-time regime (in the equilibrium
state), the biphasic layer responds as a compressible material.

The axisymmetric asymptotic model by Ateshian et al. (1994)
and Wu et al. (1996) was generalized for non-axisymmetric load-
ing configurations (Argatov and Mishuris, 2011a) and extended

to the cases of a transversely isotropic biphasic/viscoelastic layer
(Argatov and Mishuris, 2011c, 2015b) and of a thin biphasic
poroviscoelastic layer (Argatov and Mishuris, 2015c).

In particular, the first-order asymptotic solution for the normal
displacements, w0(t, y), of the surface points of a bonded thin
biphasic layer is obtained in the form

w0(t, y) = − h3

3G′ ∆yp(t, y) − hk1

t∫
0

∆yp(τ, y) dτ. (1)

Here, p(t, y) is a distributed surface load, which depends on the
time variable t and the Cartesian coordinates y= (y1, y2) on the
layer surface, ∆y = ∂2/∂y21 + ∂2/∂y22 is the Laplace differential
operator,G′ is the out-of-plane shear modulus of the solid matrix,
k1 is the transverse (in-plane) permeability.

2.2. Contact Problem Formulation
In order to formulate the articular contact problem, it is first
necessary to list the key mechanical quantities that play a major
role in the contact phenomena. First of all, this is the pair of the
contact force, F(t), and the contact approach, δ0(t), both being
functions of time. The contact force F represents the total of
external load, which is transferred through the joint, while δ0
represents the corresponding so-called generalized displacement
and has a meaning of the normal displacement between the
bones (whose deformation is usually neglected). Second, this is
the pair of the contact pressure, p, and the layer deformations
represented by the surface normal displacements, w(1)

0 and w(2)
0 .

The latter quantities can be regarded as internal variables (there
is no way of non-invasive measuring the contact pressures in an
intact joint).

Further, another important aspect of contact interactions
between the cartilage layers is determined by the geometry of
the layers, which, in turn, determines the gap function, φ(y1, y2)
(see Figure 1B). The case of subchondral bones shaped as elliptic
paraboloids [a commonly assumed geometry in the Hertzian the-
ory of elastic contact (Johnson, 1985)] can be regarded as themain
approximation for the tibiofemoral contact in the weight-bearing
region [in particular, it covers the case of spherical bones assumed
by Ateshian et al. (1994) and Wu et al. (1996)] and was introduced
by Koo and Andriacchi (2007).

Thus, taking into account the contact condition of non-
penetration inside the contact area, ω, that is

w(1)
0 (t, y) + w(2)

0 (t, y) = δ0(t) − φ(y), y ∈ ω(t), (2)

A B

FIGURE 1 | (A) Model problem for the deformation of articular cartilage layer [after Ateshian et al. (1994)]; (B) schematics of the initial contact geometry between two
cartilage layers bonded to subchondral bones.
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and equation (1), which relates w(n)
0 (t, y), n= 1, 2, to the contact

pressure p(t, y), we arrive at the equation

∆yp(t, y) + χ

t∫
0

∆yp(τ, y) dτ = m(φ(y) − δ0(t)), (3)

where the coefficients χ and m are given by

χ = 3

(
G′

1k
(1)
1

h2
1

+
G′

2k
(2)
1

h2
2

)
, m = 3

(
h3
1

G′
1

+
h3
2

G′
2

)−1

.

Of course, the approximate (asymptotic) mathematical model
[equation (3)] is restricted to the short-time contact period,
thereby may be oversimplifying many aspects of articular contact
(some of them will be discussed later), including the assumption
of direct contact between the cartilage layers without taking into
account the influence ofmeniscus or interstitial fluid [see, e.g., the
discussion given by Ateshian et al. (1994)].

2.3. Effect of Boundary Conditions
First of all, we emphasize that the contact area ω is not known in
advance and depends on the value of the contact force

F(t) =
∫∫
ω(t)

p(t, y) dy. (4)

In order to be able to solve equation (3) uniquely, it is necessary
to formulate two boundary conditions on the contour Γ(t) of
the domain ω(t). One condition is obvious and follows from the
continuity of the contact pressure, which is absent outside the
contact area, i.e.,

p(t, y) = 0, y ∈ Γ(t), (5)
Concerning another boundary condition

∂p
∂n (t, y) = 0, y ∈ Γ(t), (6)

where ∂/∂n is the normal derivative, in the literature, there was a
discussion (Hlaváček, 1999; Wu and Herzog, 2000; Argatov et al.,
2016a).

Apart from the fact that themathematicalmodel [equations (3),
(5), and (6)] incorporates the model for instantaneous response,
it was shown (Argatov and Mishuris, 2015b) that the boundary
conditions [equations (5) and (6)] are asymptotically exact for thin
incompressible elastic layer in unilateral contact. At the same time,
the question of imposing refined boundary conditions [like those
introduced by Hlaváček (1999) in the axisymmetric case] is still
open and requires the study of the corresponding boundary layer
problem for a 2D biphasic strip.

On the other hand, when formulating the contact problem, a
refined contact condition [instead of equation (2)] can be used, as
shown by Mishuris and Argatov (2009) and Argatov and Mishuris
(2010) in the axisymmetric case. The refined condition takes into
account the tangential displacements, which undergo the contact-
ing points during the contact deformation, thereby increasing the
complexity of the contact problem in the non-axisymmetric case
(Rogosin et al., 2016) and introducing a certain correction into the
solution (namely, the relation between the contact force and the
contact approach turns out to be most susceptible to the effect of
tangential displacements).

2.4. Some Implications Drawn from the
Asymptotic Models
Simple as it is, the asymptotic model [equations (3)–(6)], as
applied in the axisymmetric case byWu et al. (2000), sheds light on
the influence of the degenerative changes in the articular cartilage
mechanical properties on the contact pressure distribution. In
particular, it is known (Korhonen et al., 2002) that the articu-
lar cartilage superficial zone, which is characterized by tangen-
tially oriented collagen fibrils, is important for the deformation
response of the articular cartilage layer. The effect of superficial
zone was recently modeled (Argatov and Mishuris, 2016) by an
extensible membrane coating attached to the surface of a thin
bonded incompressible elastic layer, and it was shown that the
reinforcing effect reduces the out-of-plane shear compliance of the
elastic layer up to a maximum of four times (in the limit situation
of an inextensible membrane).

When the asymptotic model for deformation of a thin biphasic
layer [equation (1)] was generalized for a transversely isotropic
layer (Argatov and Mishuris, 2015b), it highlighted the roles
played by the transverse shear modulus G′ and the in-plane
permeability k1. Recall that, while the shear modulus, G, for an
isotropic material is related to its Young’s modulus, E, and Pois-
son’s ratio, v, via the formula G=E/[2(1+ v)], in the case of a
transversely isotopic material G′ represents a material property
independent from those measured in the confined and uncon-
fined compression tests.

2.5. Average Characteristics for Articular
Cartilage Layer
It is known that articular cartilage layers are inhomogeneous,
anisotropic, non-uniform, and non-flat (Schinagl et al., 1997;
Mow and Guo, 2002). At the same time, equations (1) and (3)
operate with constant characteristics h, G′, k1, R1 and R2. The
question of the model sensitivity with respect to the parameter
variations was studied in a number of papers (Anderson et al.,
2010; Argatov and Mishuris, 2011b; Argatov, 2013a). In partic-
ular, in the case of a thin transversely isotropic and transversely
homogeneous (TITH) elastic layer, the average transverse shear
modulus, Ḡ′, is given by the following formula (Argatov and
Mishuris, 2015b):

Ḡ′ =

 3
h3

h∫
0

z2dz
G′(z)

−1

.

At the same time, the average thickness and curvature radii of
the gap function depend on the extend of the contact area, over
which the averaging is performed (Argatov, 2012a).

2.6. Contact Force Modeling for Multibody
Simulations
There is a vast literature on modeling of reaction contact forces
generated in joints (Silva et al., 1997; Flores et al., 2011; Machado
et al., 2011; Monteiro et al., 2011). A majority of the employed
models represent variations of the following model introduced by
Hunt and Crossley, 1975:

F = bkxnẋ + kxn. (7)
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Here, n is a real constant, k is a stiffness coefficient, and b is a
damping parameter.

A peculiarity of the force–displacement relation [equation (7)]
is that the value of the force F returns to zero, when the dis-
placement value x does the same. In biomechanical applications,
equation (7) was used in a number of papers (Silva et al., 1997;
Guess et al., 2010; Machado et al., 2010).

At the same time, the contact force model, which is based
on the asymptotic model [equations (3)–(6)], shows a residual
deformation, when the contact force vanishes. The same phe-
nomenon is seen in viscoelastic models even for such simple as
Maxwell and Kelvin–Voigtmodels (Argatov, 2013b; Argatov et al.,
2016b).

However, it is known (Selyutina et al., 2015) that in the case
of cyclic dynamic loading of a viscoelastic solid, the steady-state
response will be analogous to that of the Hunt–Crossley model
[equation (7)]. Therefore, by considering a steady-state response
of the asymptotic model, we have established a link between the
two models and expressed the coefficients k and b in equation (7)
in terms of the biphasic layer parameters.

2.7. Damage and Fracture Criteria
It goes without saying that the damage and fracture phenom-
ena in articular cartilage, which occur under loads exceeding
the physical level (Aspden et al., 2002), are too complicated
(Peña, 2011) to be captured by such simple analytical models as
equations (3)–(6).

However, the simple analysis turns out to be very useful for
identifying (Argatov and Mishuris, 2015a,d) the modeling frame-
work of the laboratory impact tests (Jeffrey et al., 1995; Varga
et al., 2007). Indeed, though the damage and fracture processes
are multiscale, they are governed by the level of external loading
during the impact event, whose evolution can be monitored at the
macros-scale. In particular, by inspecting the coefficient of resti-
tution, one can estimate the share of the impact energy dissipated
or spent on the damage accumulation and surface fissuring or
formation of small cracks.

3. UNSOLVED PROBLEMS AND
DIRECTIONS FOR FUTURE RESEARCH

3.1. Nonlinearity
Articular cartilage is a soft tissue and may undergo (moderately)
large deformations without damage (Quinn et al., 2001; Morel
and Quinn, 2004). However, the asymptotic model [equations
(3)–(6)] was developed in the framework of the linear biphasic
theory, and thus, its extension to the case of deformations, which
cannot be regarded as small, will be very useful. Here, it is worth
mentioning the known dependency of the cartilage permeabil-
ity on the volumetric strain (Mow et al., 1980), which also was
not accounted for by the linear asymptotic models, while this
effect dumps the deformation very quickly and, thereby, making
the fitting of experiments by asymptotic models quite difficult.
It seems, furthermore, that Soltz and Ateshian (2000) obtain
excellent results both in tension and compression by adopting a
conewise linear elasticity (Curnier et al., 1995).

3.2. Compound Asymptotic Model for
Merging the Short- and Long-Time
Responses
Recall that the asymptotic model [equations (3)–(6)] was devel-
oped to capture the short-time asymptotics (Ateshian et al., 1994),
and it leads to unrealistic predictions as t→∞ (in particular,
the contact approach is unbounded). On the other hand, the
equilibrium response of the biphasic layer can be modeled by that
of a compressible elastic layer. Thus, there are two asymptotic
models, which could be merged into the so-called compound
asymptotic model.

3.3. Triphasic Model
As a generalization of the biphasic theory for articular cartilage
(Mow et al., 1980), the so-called triphasic theory, which combines
the biphasic theory with the physico-chemical theory for ionic
and polyionic solutions, has been developed by Lai et al. (1991).
There is an undoubted interest in formulating the deformation
problem for a thin triphasic layer and constructing its first-order
asymptotic solution.

3.4. Meniscus
From a geometrical point of view, articular cartilage can be mod-
eled as a layer (of variable thickness). A meniscus has a more
complicated geometry (Peña et al., 2006), and, to the best of the
authors’ knowledge, there is a lack of a simple analytical (approx-
imate or asymptotic) model for the deformation response of
menisci. Consequently, a generalization of the asymptotic model
[equations (3)–(6)], which incorporates the meniscus deforma-
tion, will be useful, since the menisci transfer a significant pro-
portion of the load across the knee joint (Fahmy et al., 1983).

3.5. Migrating Contact
During the cycle of loading–unloading in walking or running,
the contact area between the articular cartilage layers changes
and moves (Iseki and Tomatsu, 1976). Therefore, the so-called
problemofmigrating contact can be formulated (Chen et al., 2009;
Argatov, 2012b). In the framework of the asymptoticmodel [equa-
tions (3)–(6)], such a problemwas considered and an approximate
solutionwas given for the steady-state regime.However, the corre-
sponding problem of migrating contact for a viscoelastic/biphasic
layer bonded to a rigid sphere periodically moving with rotation
over the surface of another viscoelastic/biphasic layer bonded to
a rigid flat base has not been investigated, yet even in the small
thickness approximation.

3.6. Curved Layer Model
In particular, for the hip joint, the case of spherical geometry of the
articular cartilage layer is very important. The corresponding con-
tact was studied in the thin layer approximation (Argatov, 2011).
Also, an approximate analysis of the deformation problem for a
hemispherical biphasic layer was attempted recently by Quinonez
et al. (2011). Note that, in the case of a curved compressible elastic
layer, the first-order asymptotic theory was developed by Mal’kov
(1998). However, the generalization of the asymptotic model
[equation (1)] for a thin biphasic layer bonded to a rigid base
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shaped as an elliptic paraboloid is absent, and, correspondingly,
the generalization of the asymptotic model [equations (3)–(6)],
which takes into account the effect of the cartilage layer curvature
is still missing. On the other hand, there is one more interesting
outlook in this specific topic. What happens when there are two
contact areas, which may interact? Looking at MR images of the
ankle joint (Li et al., 2008), it seems quite a common situation that
two contact areas merge under in vivo loading conditions.

3.7. Bone Deformation
The asymptotic model [equations (3)–(6)] neglects the deforma-
tion of the subchondral bones. However, for the case of intensive
loading of the joint, the deformation of the bones may contribute
to the contact pressure pattern. This effect was not analytically
studied yet, though in the FE simulations usually (Anderson et al.,
2010; Duarte et al., 2015) the bones are assumed to be compli-
ant with relatively large elastic modulus compared to the elastic
modulus of the articular cartilage layers. Here, it should be noted
that under the dynamic loading (Laasanen et al., 2003; Park et al.,
2004), the so-called dynamic elastic modulus of cartilage is much
higher than that measured under quasi-static conditions.

3.8. Synovial Fluid Effect
The asymptotic model [equations (3)–(6)] assumes direct contact
between the two cartilage layers, which can occur after some time
when the synovial fluid is squeezed out of the contact region
(Ateshian et al., 1994). The problem of squeezing of the synovial
fluidwas studied in a number of papers (Hou et al., 1992; Ruggiero
et al., 2011; Yousfi et al., 2013). Of considerable practical interest is
a generalization of the asymptotic model [equations (3)–(6)] that
accounts for the synovial fluid effect in non-axisymmetric con-
figuration. One concern is about the exudation of the interstitial
fluid out from under the cartilage layers contact area (Caligaris
and Ateshian, 2008). How important is the effect of the migrat-
ing boundaries on the fluid pressurization, and what boundary
conditions should be imposed with respect to the contact pressure
distribution?

3.9. Damage Accumulation and
Impact-Induced Fissuring
The deformation problem for a biphasic layer (Figure 1A) was
considered under quasi-static loading (Ateshian et al., 1994) and
though neglecting the inertia effect, it can be applied to study
the contact between cartilage layers under dynamic loading (Wu
et al., 1998; Quinn et al., 2001) and impact loading (Jeffrey et al.,
1995; Ewers et al., 2001) under normal physiological conditions
(Aspden et al., 2002). As a first approximation, it was suggested
(Argatov and Mishuris, 2015a) that the asymptotic model [equa-
tions (3)–(6)] can predict the deformation of articular cartilage
and the damage accumulation process until the fracture moment.
Of course, the further development of mathematical models for
impact-induced fissuring (Atkinson et al., 1998; Kafka, 2002)
will require a more sophisticated mathematical modeling frame-
work [see, e.g., Peña (2011) and Mengoni and Ponthot (2015)].
Nevertheless, this simplemodel reveals the keymodel parameters,
which should be reported in the experimental studies in order to
facilitate the comparison between different experiments.

3.10. Shear Loading
The asymptotic model [equations (3)–(6)] considers the case of
unilateral normal frictionless contact and is based on the asymp-
totic solution [equation (1)] of the deformation problem for a
biphasic layer loaded by a normal distributed load. Due to a
very small coefficient of friction for articular cartilage layers in
contact via a film of synovial fluid, the tangential stresses are
usually neglected in evaluation of the stress–strain state of the joint
in physiologically normal conditions (Ateshian, 2009). However,
under severe loading, e.g., in traumatic situations in sport, the
cartilage layers can transform a significant shear loading (Carter
and Wong, 1988). Therefore, the problem of tangential loading of
a thin biphasic layer requires a special attention.

3.11. Non-Homogeneity
As it is known (Poole et al., 2001), articular cartilage is a non-
homogeneous tissue with properties primarily varying with depth
(Schinagl et al., 1997). Recently, the problem of normal loading
of a thin biphasic layer was studied by (Vitucci et al., 2016)
for a special case of exponential type of non-homogeneity. The
obtained asymptotic solution can be used for generalizing the
asymptotic model of uniateral contact [equations (3)–(6)] for this
case (Vitucci and Mishuris, 2016).

3.12. Whole Joint Analytical Model
It is a very difficult problem to create a system of analytical models
(let us say, sub-models), which account for the major mechanical
aspects of articular contact in the knee joint, e.g., including the
deformation of patella, menisci, and ligaments (Maquet, 1976).
The aim of such asymptotic mathematical modeling is to pre-
dict (at least by the order of magnitude) the contact forces and
the deformation factors in the joint for a range of physiological
displacements of the bones.

3.13. Fibril-Reinforced Material Models
By accounting for the microstructure of articular cartilage, in the
literature, a number of advanced material models for describ-
ing the deformation of cartilage have been presented (Korhonen
et al., 2003; Wilson et al., 2005b; Freutel et al., 2014). Since the
use of these models for analytical solution is confronted with
considerable mathematical difficulties, it makes sense to solve
the model deformation problem (Figure 1A) for a relatively thin
fibril-reinforced layer by FE methods and highlighting the differ-
ences with the basic homogeneous case first studied byArmstrong
(1986) and Ateshian et al. (1994) using an analytical technique.

3.14. FEM-Based Surrogate Models
It goes without saying that the articular cartilage contact problem
with realistic geometry and that takes into account the effects
(discussed above) represents a challenge for a real-time computer
simulations of the knee joint dynamics in real activities such as
the gait cycle (Pérez-González et al., 2008). In special cases, e.g.,
under the assumption of cyclic dynamic loading during walking
when the contact loading configuration is repeated, the result
of certain blocks of the computational algorithm can be fitted
with computationally cheap surrogate contact analytical models.
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Such an approach, introduced by Lin et al. (2010), is called
surrogate modeling. It is foreseen that the asymptotic models can
be used for developing surrogate models for impact loading.

3.15. Contact of Articular Cartilage with
Implants
The asymptotic model [equations (3)–(6)] covers the case of uni-
lateral frictionless contact between the cartilage layers, and it was
applied to study the difference in the contact pressure patterns in
the normal and pathological (early stage of osteoarthritis) situ-
ations (Wu et al., 2000). In a marginal pathological situation, a
part of the diseased cartilage can be replaced by an artificial tissue
(Hung et al., 2003; Mano and Reis, 2007) or even with a metallic
implant (Manda and Eriksson, 2012). The corresponding contact
problems did not receive much attention so far (Hale et al., 1993;
Owen and Wayne, 2011; Manda and Eriksson, 2014).

3.16. Multiscale Structural Modeling of
Articular Cartilage
The asymptotic model [equations (3)–(6)] can be regarded as a
“rude” model, since it operates with average constant parameters
and does not reflect the actual microstructure of articular car-
tilage, which represents an important factor in the pathogenesis
of osteoarthritis (Buckwalter et al., 2013). From the point of
view of multiscale modeling, this asymptotic model represents a
macro-level, and to our knowledge, no link has been established
with micro-level modeling framework. A certain progress in this
direction was made by Federico et al. (2005) who constructed the
TITH model by employing the homogenization scheme devel-
oped for fiber-reinforced elastic composite materials. The next
step can be made by utilizing the recent theoretical development
for poroelasticmaterials (Hellmich et al., 2009;Ortega et al., 2010).

4. CONCLUSION

The asymptotic models presented and discussed above are gen-
erally nowadays regarded as oversimplified mathematical models.

By all means, the articular contact mechanics should not be con-
fronted by asymptotic modeling alone. At the same time, asymp-
totic models can be successfully used to facilitate FEM analysis. It
is to emphasize that each asymptotic model yields an approximate
solution to a problem under consideration, whose accuracy and
robustness can be evaluated when the exact solution (analytical
or numerical) is available [see, e.g., the examples of refined con-
tact problem and its asymptotic model studied by Mishuris and
Argatov (2009)]. One benefit of using simplified (with a limited
number of parameters) models, which by construction preserve
essential features of the contact system captured by more complex
mathematical models, is that they can be employed for uncer-
tainty quantification, when detailed mechanical and geometrical
aspects of the system are not fully known. Simple as they are, such
models provide a robust theoretical framework for the prelimi-
nary analysis of the experimental data as well as for controlling
computer simulations produced on the basis of more complicated
mathematical models.
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