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A New Multi-objective Model for Constrained
Optimisation

Tao Xu, Jun He, Changjing Shang and Weiqin Ying

Abstract Multi-objective optimization evolutionary algorithms have becoming a
promising approach for solving constrained optimization problems in the last decade.
Standard two-objective schemes aim at minimising the objective function and the
degrees of violating constraints (the degrees of violating each constraint or their
sum) simultaneously. This paper proposes a new multi-objective model for con-
strained optimization. The model keeps the standard objectives: the original objec-
tive function and the sum of the degrees of constraint violation. Besides them, other
helper objectives are constructed, which are inspired from MOEA/D or Tchebycheff
method for multi-objective optimization. The new helper objectives are weighted
sums of the normalized original objective function and normalized degrees of con-
straint violation. The normalization is a major improvement. Unlike our previous
model without the normalization, experimental results demonstrate that the new
model is completely superior to the standard model with two objectives. This con-
firms our expectation that adding more help objectives may improve the solution
quality significantly.

1 Introduction

Many constraint-handling techniques have been proposed in literature. The most
popular constraint-handling techniques include penalty function methods, the feasi-
bility rule, multi-objective optimization and repair methods. A detailed introduction
to this topic can be found in several comprehensive surveys [1, 2, 3].
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This paper focuses on multi-objective optimization methods, which are regarded
as one of the most promising ways for dealing with Constrained Optimization Prob-
lem (COPs) [4]. The technique is based on using multi-objective optimization evo-
lutionary algorithms (MOEAs) for solving single-objective optimization problems.
This idea can be traced back to 1990s [5] and it is also termed multi-objectivization
[6]. Multi-objective methods separate the objective function and the constraint vi-
olation degrees into different fitness functions. This is unlike penalty functions,
which combine them into a single fitness function. The main purpose of using multi-
objective optimization is to relax the requirement of setting or fine-tuning parame-
ters, as happens with penalty function methods.

There exist variant multi-objective methods for solving COPs. Following the tax-
onomy proposed in [7, 4], these methods are classified into three categories accord-
ing to the number of objectives and their construction.

1. Standard bi-objective methods: transform the original single-objective COP
into an unconstrained bi-objective optimization problem, where one objec-
tive is the original objective function and the other is a measure of con-
straint violations. A lot of work has been done in this category, such as
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

2. Standard multi-objective methods: transform the original single-objective COP
into an unconstrained multi-objective optimization problem (MOP), in which
the degree of each constraint violation in the COP is a separate objective in
addition to the original objective. The work in this category includes [18, 19,
20, 21, 22, 23, 24].

3. Generalized multi-objective methods: transform the original single-objective
COP into an unconstrained MOP, in which at least one objective in multi-
objective optimization is different from the original objective function and the
degree of constraint violations. This category includes the work such as [25, 26,
27, 28].

The multi-objective method in this paper belongs to the third category: gener-
alized multi-objective methods. Our multi-objective model keeps the standard ob-
jective functions: the original objective function and the total degree of constraint
violation. But besides them, a helper objective is added into the model. The ap-
proach is similar to weighted metric methods for multi-objective optimization. The
new helper objective is the weighted sum of a normalized original objective function
and normalized degrees of constraint violation. Our research question is to investi-
gate whether adding one more helper objective is better than those with the standard
model with two objectives?

This paper conducts an experimental study. In order to evaluate the performance
of our new model, it is compared with the standard model with two objectives using
a multi-objective differential evolution algorithm, called CMODE [29]. CMODE
has been proven to be efficient in solving MOPs from COPs. This paper is a further
development of our previous initial study [30]. Experimental results in [30] are not
good as those in [29] partially because only a simplified version of CMODE is
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implemented in [30] for solving MOPs. In this paper, a complete version of CMODE
is implemented which includes an infeasible solution replacement mechanism.

There are two new contributions in this paper. First, a normalization procedure is
applied to both the original objective function and the degree of constraint violation.
In this way, the original objective function and the degree of constrain violation play
an equal role. Secondly, the new helper objectives are constructed from weighted
sums of the original objective function and the degree of constraint violation, rather
than penalty functions used in [30]. The new design is simple and easy without
setting a penalty coefficient.

The rest of paper is organized as follows. Section 2 proposes a new multi-
objective model for COPs. Section 3 describes CMODE, a multi-objective differ-
ential evolution algorithm for COPs. Section 4 reports experiment results and com-
pares the performance of CMODE with different numbers of objectives. Section 5
concludes the paper.

2 A New Multi-objective Model for Constrained Optimisation

2.1 A Standard Two-Objective Model

For the sake of illustration, we consider a minimization problem which is formulated
as follows:

min f (x), x = (x1, · · · ,xn) ∈ S, (1)

subject to
{

gi(x)≤ 0, i = 1, · · · ,q,
h j(x) = 0, j = 1, · · · ,r, (2)

where S is a bounded domain in Rn, given by

S = {x | Li ≤ xi ≤Ui, i = 1, · · · ,n}. (3)

Li is the lower boundary and Ui the upper boundary. gi(x) ≤ 0 is the ith inequality
constraint while h j(x) = 0 is the jth equality constraints. The feasible region Ω ⊆ S
is defined as:

{x ∈ S | gi(x)≤ 0, i = 1, · · · ,q; h j(x) = 0, j = 1, · · · ,r}.

If an inequality constraint meets gi(x) = 0 (where i = 1, · · · ,q) at any point x ⊆
Ω , we say it is active at x. All equality constraints h j(x) (where j = 1, · · · ,r) are
considered active at all points of Ω .

The above single-objective COP can be transferred into a two-objective opti-
mization problem without constraints. The first objective is to minimize the original
fitness function f (x) without considering constraints:
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min f (x). (4)

Notice that the optimal solution to the above minimization problem might be an
infeasible solution to the original COP (1). Therefore f (x) is only a helper fitness
function because minimizing it might not lead to the optimal feasible solution.

The second objective is to minimize the degree of constraint violation. For each
inequality constraint, define the degree of violating the constraint is

vg
i (x) = max{0,gi(x)}, i = 1, · · · ,q. (5)

For each equality constraint, define the degree of violating the constraint is

vh
j(x) = max{0, |h j(x)|−δ}, j = 1, · · · ,r. (6)

where δ is a tolerance allowed for the equality constraint. Then the second objective
is to minimize the sum of constraint violation degrees:

minv(x) = ∑
i

vg
i (x)+∑

j
vh

j(x). (7)

The above two objectives are widely used in the existing multi-objective methods
for constrained optimization [4].

2.2 A New Multi-Objective Model

Besides the above two fitness functions, we may construct more helper fitness func-
tions [30]. In this paper we consider the weighted sum of f (x) and v(x). The idea
is similar to Tchebycheff method for multi-objective optimization and decompose-
based MOEAs (MOEA/D) [31].

Given a population P = {x1, · · · ,xN}, let f̂ (x) be a normalized value of f (x):

f̂ (x) =
f (x)− fmin(P)

fmax(P)− fmin(P)
(8)

where fmin(P) and fmax(P) are the minimal and maximal values of f (x) in popula-
tion P respectively. In case the difference between the minimal and maximal values
is zero, set f̂ (x) = 1. The range of f̂ (x) is [0,1].

Let v̂(x) be a normalized value of v(x):

v̂(x) =
v(x)− vmin(P)

vmax(P)− vmin(P)
(9)

where vmin(P) and vmax(P) are the minimal and maximal values of v(x) in a popula-
tion P respectively. In case the difference between the minimal and maximal values
is zero, set v̂(x) = 1. The range of v̂(x) is [0,1].



A New Multi-objective Model for Constrained Optimisation 5

Similar to MOEA/D [31] and Tchebycheff method for multi-objective optimiza-
tion, we construct K+1 objectives as follows. Let K be a positive integer and choose
K +1 weights

wi =
i
K
, i = 0,1, · · · ,K.

Then K +1 helper fitness functions are constructed in the form

fi(x) = wi−1 f̂ (x)+(1−wi−1)v̂(x), i = 1, · · · ,K +1, (10)

In summary, the original constrained optimization problem is transferred into a
K +1-objective optimization problem:

min fi(x), i = 1, · · · ,K +1. (11)

If K = 1, it is equivalent to the standard model with two objectives. If K ≥ 2, the
model potentially may include many objectives inside. However, it sufficient to con-
sider the simplest case of K = 2, which is a three-objective optimization problem:

min


f1(x) = f (x),
f2(x) = v(x),
f3(x) = 1

2 f̂ (x)+ 1
2 v̂(x).

(12)

It is the combination of the standard two fitness functions and a helper objective
which is the average of f̂ and v̂. Our ultimate aim is to find an optimal feasible solu-
tion through finding the Pareto front. It is obvious that the optimal feasible solution
to the original COP (1) is on the Pareto front.

It must be mentioned that the above normalization is our new contribution, which
is not used in MOEA/D [31]. Our experiments show that it plays an extremely im-
portant role in improving the performance. Without the normalization, the value of
f sometimes is much larger than v and then it always dominates v. With the normal-
ization, f and v play an equal role.

3 Multi-objective Differential Evolution for Constrained
Optimisation

3.1 MOEAs

Many MOEAs have been proposed for solving MOPs. They can be classified into
two categories: one aims to evolve the non-domination set and eventually to reach
Pareto optimal set, such as the non-dominate sorting genetic algorithm [32] and
strength Pareto evolutionary algorithm [33]. Another category focuses on solving a
series of scalar optimization problems, such as the vector evaluated genetic algo-
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rithm [34] and MOEAs based on decomposition [31]. The algorithm below gives a
general description for the MOEAs based on the dominance relation.

1: initialize a set of solutions;
2: evaluate the values of fi, i = 1, · · · ,K +1 for each solution;
3: select non-dominated solutions and construct an initial population P0;
4: for t = 0,1,2 · · · , · · · do
5: generate a children population Ct from the parent population Pt ;
6: evaluate the values of fi, i = 1, · · · ,K +1 for each solution;
7: select non-dominated solutions in Pt ∪Ct and obtain the next generation pop-

ulation Pt+1.
8: end for

3.2 Constrained Multi-objective Differential Evolution

A MOEA based on differential evolution (DE), called CMODE [29], is chosen to
solve the above MOP (11). Different from normal MOEAs, CMODE is specially
designed for solving constrained optimization problems. Hence it is expected that
CMODE is efficient in solving the MOP (11). CMODE [29] originally is applied to
solving a bi-objective optimization problem which consists of only two functions: f1
and f2. However, it is easy to extend the existing CMODE to MOPs. The algorithm
is described as follows.
Require: µ: population size;

λ : the number of individuals involved in DE operations
FESmax: the maximum number of fitness evaluations

1: randomly generate an initial population P0 with population size µ;
2: evaluate the values of f and v for each individual in the initial population, and

then calculate the value of fi where i = 1, · · · ,m;
3: set FES = µ; // FES denotes the number of fitness evaluations;
4: set A = /0; //A an archive to store the infeasible individual with the lowest degree

of constraint violation;
5: for t = 1, · · · ,FESmax do
6: choose λ individuals (denoted by Q) from population Pt ;
7: let P′ = Pt \Q;
8: for each individual in set Q, an offspring is generated by using DE muta-

tion and crossover operations as explained in Section 3.3. Then λ children
(denoted by C) are generated from Q;

9: evaluate the values of f and v for each individual in C and then obtain the
value of fi where i = 1, · · · ,m;

10: set FES = FES+λ ;
11: identify all nondominated individuals in C (denoted by R);
12: for each individual x in R do
13: find all individual(s) in Q dominated by x;
14: randomly replace one of these dominated individuals by x;
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15: end for
16: let Pt+1 = P′∪Q;
17: if no feasible solution exists in R then
18: identify the infeasible solution x in R with the lowest degree of constraint

violation and add x to A;
19: end if
20: if mod (t,k) = 0 then
21: execute the infeasible solution replacement mechanism and set A = /0;
22: end if
23: end for
24: return the best found solution

The algorithm is explained step-by-step in the following. At the beginning, an
initial population P0 is chosen at random, where all initial vectors are chosen ran-
domly from [Li,Ui]

n.
At each generation, parent population Pt is split into two groups: one group with

λ parent individuals that are used for DE operations (set Q) and the other group (set
P′) with µ−λ individuals that are not involved in DE operations. DE operations are
applied to λ selected children (set Q) and then generate λ children (set C).

Selection is based on the dominance relation. First nondominated individuals (set
R) are identified from children population C. Then these individual(s) will replace
the dominated individuals in Q (if exists). As a result, population set Q is updated.
Merge population set Q with those parent individuals that are involved in DE op-
eration (set P′) together and form the next parent population Pt+1. The procedure
repeats until reaching the maximum number of evaluations. The output is the best
found solution by DE.

The infeasible solution replacement mechanism is that, provided that a children
population is composed of only infeasible individuals, the “best” child, who has the
lowest degree of constraint violation, is stored into an archive. After a fixed interval
of generations, some randomly selected infeasible individuals in the archive will
replace the same number of randomly selected individuals in the parent population.

3.3 Differential Evolution

The mutation and crossover operators used in CMODE comes from DE. DE is ar-
guably one of the most powerful stochastic real-parameter optimization algorithms
in current use [35]. There exist several variants of DE. The original DE algo-
rithm [36] is utilized in this paper. A population Pt is represented by µ n-dimensional
vectors:

Pt = {x1,t , · · · ,xµ,t}, (13)
xi,t = (xi,1,t ,xi,2,t , · · · ,xi,n,t), i = 1,2, · · · ,µ, (14)



8 Tao Xu, Jun He, Changjing Shang and Weiqin Ying

where t represents the generation counter. Population size µ does not change during
the minimization process. The initial vectors are chosen randomly from [Li,Ui]

n.
The formula below shows how to generate an initial individual x = (x1, · · · ,xn) at
random:

xi = Li +(Ui−Li)× rand, i = 1, · · · ,n, (15)

where rand is the random number [0,1].
Three operations are used in the DE [36]: mutation, crossover and selection,

which are described as follows.

• Mutation: for each target xi,t where i = 1, · · · ,n, a mutant vector

vi,t = (vi,1,t ,vi,2,t , · · · ,vi,n,t)

is generated by
vi,t = xr1,t +F · (xr2,t −xr3,t) (16)

where random indexes r1,r2,r3 ∈ {1, · · · ,µ} are mutually different integers.
They are also chosen to be different from the running index i. F is a real and
constant factor from [0,2] which controls the amplification of the differential
variation (xr2,t − xr3,t). In case vi,t is out of the interval [Li,Ui], the mutation
operation is repeated until vi,t falls in [Li,Ui].

• Crossover: in order to increase population diversity, crossover is also used in DE.
The trial vector ui,t is generated by mixing the target vector xi,t with the mutant
vector vi,t . Trial vector ui,t = (ui,1,t ,ui,2,t , · · · ,ui,n,t) is constructed as follows:

ui, j,t =

{
vi, j,t , if rand j(1,0)≤Cr or j = jrand ,

xi, j,t , otherwise,
j = 1, · · · ,n, (17)

where rand j(0,1) is a uniform random number from [0,1]. Index jrand is ran-
domly chosen from {1, · · · ,n}. Cr ∈ [0,1] denotes the crossover constant which
has to be determined by the user. In addition, the condition “ j = jrand” is used to
ensure the trial vector ui,t gets at least one parameter from vector vi,t .

• Selection: a greedy criterion is used to decide which offspring generated by mu-
tation and crossover should be selected to population Pt+1. Trail vector ui,t is
compared to target vector xi,t , then the better one will be reserved to the next
generation.

4 Experiments and Results

4.1 Experimental Settings

Experiments are used to compare the performance of CMODE on the standard
model with two objective and our new model with three objectives. The two-
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objective optimization problem is

min
{

f1(x) = f (x),
f2(x) = v(x), (18)

This problem is the same as that in [29]. CMODE in the experiments of [29] is
implemented using MATLAB language. We take experimental results (see Table 2
and Table 3) directly taken from [29].

The three-objective optimization problem is given as follows

min


f1(x) = f (x),
f2(x) = v(x),
f3(x) = 1

2 f̂ (x)+ 1
2 v̂(x).

(19)

CMODE for three-objective optimization is is implemented using C++ language
in our experiments. The C++ program of our work can be found in [40]. But the
parameter setting of CMODE is the same as that in [29].

Thirteen benchmark functions were employed as the instances to perform exper-
iments. These benchmarks have been used to test the performance of MOEAs for
constrained optimization in [37] and are a part of benchmark collections in IEEE
CEC 2006 special session on constrained real-parameter optimization [38]. Their
detailed information is provided in Table 1, where n is the number of decision vari-
ables, LI stands for the number of linear inequalities constraints, NE the number of
nonlinear equality constraints, NI nonlinear inequalities constraints. ρ denotes the
ratio between the sizes of the entire search space and feasible search space and a is
the number of active constraints at the optimal solution.

Table 1 Summary of 13 Benchmark Functions

Fcn n Type of f ρ LI NE NI a f (x∗)
g01 13 quadratic 0.0003% 9 0 0 6 -15.0000000000
g02 20 nonlinear 99.9965% 1 0 1 1 -0.8036191041
g03 10 nonlinear 0.0000% 0 1 0 1 -1.0005001000
g04 5 quadratic 29.9356% 0 0 6 2 -30665.5386717833
g05 4 nonlinear 0.0000% 2 3 0 3 5126.4967140071
g06 2 nonlinear 0.0064% 0 0 2 2 -6961.8138755802
g07 10 quadratic 0.0003% 3 0 5 6 24.3062090682
g08 2 nonlinear 0.8640% 0 0 2 0 -0.0958250414
g09 7 nonlinear 0.5256% 0 0 4 2 680.6300573744
g10 8 linear 0.0005% 3 0 3 3 7049.2480205287
g11 2 quadratic 0.0000% 0 1 0 1 0.7499000000
g12 3 quadratic 0.0197% 0 0 93 0 -1.0000000000
g13 5 nonlinear 0.0000% 0 3 0 3 0.0539415140

CMODE contains several parameters which are the population size µ , the scaling
factor F in mutation, the crossover control parameter Cr. Usually, F is set within
[0,1] and mostly from 0.5 to 0.9; Cr is also chosen from [0,1] and higher values
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can produce better results in most cases. In our experiments, F is randomly chosen
between 0.5 and 0.6, Cr is randomly chosen from 0.9 to 0.95. Set λ = 5, and k=22.
The population size µ = 180. The tolerance value δ for the equality constraints was
set to 0.0001. The maximum number of fitness evaluations FESmax is set to two
values: 5 ·104 and FESmax = 5 ·105. As suggested in [38], 25 independent runs are
set for each benchmark function.

4.2 Experimental Results

Table 2 and Table 3, taken from [29], shows the result of function error values
achieved by CMODE with two helper functions f1, f2 on thirteen benchmark func-
tions. Table 4 and Table 5 is our result of function error values achieved by CMODE
using three helper functions f1, f2, f3 on thirteen benchmark functions. Within 5 ·104

and 5 · 105 fitness evaluations, CMODE can produce very close to or even better
than “known” optimal solutions by three helper functions f1, f2, f3. The results ob-
tained by CMODE with three helper functions f1, f2, f3 within 5 · 104 are much
more outstanding than which obtained by CMODE with two helper functions f1, f2
among all 13 benchmark functions apart from g10 and g13. Analogously, the results
achieved by CMODE with three helper functions f1, f2, f3 within 5 · 105 are much
better in g03-10 and g13 whereas only worse in g02. Therefore CMODE using
f1, f2, f3 achieves remarkably better performance than that using f1, f2.

Table 2 Function Error Values Achieved by CMODE with two fitness functions f1 and f2 When
FES = 5×104, FES = 5×105 for Test Functions g01-g13

FES
5×104

Best Median Worst Mean Std
g01 3.3935E-02 7.0387E-02 1.6472E-01 7.8005E-02 3.2951E-02
g02 1.6609E-01 2.0310E-01 2.6952E-01 2.0225E-01 2.7097E-02
g03 1.4327E-03 7.1021E-03 1.9600E-02 7.2294E-03 4.2851E-03
g04 1.4489E-03 1.3733E-02 4.4097E-02 1.7592E-02 1.1460E-02
g05 1.7750E-08 1.4309E-07 5.2276E-07 1.6482E-07 1.1939E-07
g06 2.1464E-08 2.4520E-07 1.4298E-06 4.4921E-07 4.2333E-07
g07 1.3917E-01 2.4984E-01 3.4206E-01 2.3893E-01 5.3937E-02
g08 8.1968E-11 1.1650E-08 2.8863E-07 3.4410E-08 6.3509E-08
g09 7.7915E-04 1.7339E-03 7.3459E-03 2.4239E-03 1.5793E-03
g10 1.7843E+01 2.9539E+01 5.1087E+01 3.0954E+01 7.1813E+00
g11 1.1792E-10 1.6769E-09 9.0309E-09 1.7298E-09 1.7427E-09
g12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g13 8.3118E-09 3.8234E-08 1.8106E-07 6.0691E-08 5.5890E-08

In summary, our experimental results confirm that the performance of CMODE
with three helper functions is better than that of that with only two helper functions
in most benchmark functions.



A New Multi-objective Model for Constrained Optimisation 11

Table 3 Function Error Values Achieved by CMODE with two fitness functions f1 and f2 When
FES = 5×104, FES = 5×105 for Test Functions g01-g13

FES
5×105

Best Median Worst Mean Std
g01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g02 4.1726E-09 1.1372E-08 1.1836E-07 2.0387E-08 2.4195E-08
g03 2.3964E-10 1.1073E-09 2.5794E-09 1.1665E-09 5.2903E-10
g04 7.6398E-11 7.6398E-11 7.6398E-11 7.6398E-11 2.6382E-26
g05 1.8190E-12 1.8190E-12 1.8190E-12 1.8190E-12 1.2366E-27
g06 3.3651E-11 3.3651E-11 3.3651E-11 3.3651E-11 1.3191E-26
g07 7.9783E-11 7.9793E-11 7.9811E-11 7.9793E-11 7.6527E-15
g08 8.1964E-11 8.1964E-11 8.1964E-11 6.3596E-18 0.0000E+00
g09 9.8225E-11 9.8225E-11 9.8111E-11 9.8198E-11 4.9554E-14
g10 6.2755E-11 6.2755E-11 6.3664E-11 6.2827E-11 2.5182E-13
g11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g13 4.1897E-11 4.1897E-11 4.1897E-11 3.6230E-15 0.0000E+00

Table 4 Function Error Values Achieved by CMODE with three fitness functions f1, f2 and f3
When FES = 5×104 for Test Functions g01-g13

FES
5×104

Best Median Worst Mean Std
g01 1.2837E-04 1.0211E-03 1.5566E-03 8.4569E-04 6.0161E-04
g02 9.0046E-03 1.9675E-02 9.0575E-02 3.8730E-02 2.9003E-02
g03 9.0574E-06 1.5975E-05 6.0624E-05 2.205E-05 1.526E-05
g04 3.3203E-06 1.5458E-05 5.7923E-05 2.5182E-05 2.0877E-05
g05 5.1929E-08 6.5710E-08 2.4226E-07 1.1910E-07 6.8873E-08
g06 -1.6371E-11 -4.5475E-12 9.5497E-11 3.1541E-11 4.5013E-11
g07 4.0450E-03 1.0116E-02 3.3372E-02 1.4698E-02 9.7322E-03
g08 2.7756E-17 5.5511E-17 1.7581E-12 2.8138E-13 6.4448E-13
g09 6.8854E-06 1.1737E-04 6.8578E-04 2.4306E-04 2.4293E-04
g10 1.3143E+01 3.8723E+01 7.9194E+01 3.8438E+01 2.2326E+01
g11 4.2189E-15 4.8739E-14 3.3029E-13 8.7055E-14 1.1019E-13
g12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g13 1.3433E-09 6.8162E-09 3.6096E-07 3.5494E-08 9.6116E-08

5 Conclusions

This paper proposes a new multi-objective model for solving constrained optimiza-
tion problems. Besides the standard model with two objectives: to minimize the
original objective function and the sum of degrees of constraint violation, other
helper fitness functions are constructed from weighted sums of the normalized orig-
inal objective and the normalized degree of constraint violation.

The new model is compareed with the standard model using the same CMODE
for solving MOPs. Experimental results show that CMODE with three fitness func-
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Table 5 Function Error Values Achieved by CMODE with three fitness functions f1, f2 and f3
When FES = 5×105 for Test Functions g01-g13

FES
5×105

Best Median Worst Mean Std
g01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g02 1.4301E-08 2.5307E-02 6.9972E-02 2.5188E-02 1.8275E-02
g03 4.4936E-13 3.5689E-12 2.3674E-11 5.2828E-12 5.0102E-12
g04 -7.2760E-12 -7.2760E-12 -7.2760E-12 -7.2760E-12 0.0000E+00
g05 -1.8190E-12 -1.8190E-12 -1.8190E-12 -1.8190E-12 0.0000E+00
g06 -1.6371E-11 -1.6371E-11 -1.6371E-11 -1.6371E-11 0.0000E+00
g07 -1.4566E-13 8.6366E-12 7.3598E-09 7.4716E-10 1.8301E-09
g08 2.7756E-17 2.7756E-17 2.7756E-17 2.7756E-17 0.0000E+00
g09 -1.1369E-13 -1.1369E-13 -1.1369E-13 -1.1369E-13 0.0000E+00
g10 -5.4570E-12 -3.6380E-12 5.0022E-11 -6.1846E-13 1.2234E-11
g11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
g13 -1.9429E-16 -1.9429E-16 -1.9429E-16 -1.9429E-16 0.0000E+00

tions obtains remarkable better performance than that with the standard two fitness
functions [29] on most benchmark functions (12/13). This confirms our expecta-
tion that adding more helper functions may significantly improve the performance
of MOEAs for COPs. The new model is extremely encouraging since our method
is able to compete with other leading methods [37, 13, 39, 29]. Our next step is to
test it on more benchmarks functions and to make a full size comparison with other
leading methods.

Acknowledgement This work was partially supported by EPSRC under Grant
No. EP/I009809/1.
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