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Previous models of a single erosion impact, for rigid axisymmetric indenter defined by
shape function z = B1−λrλ, have shown that a critical shape parameter λ∗ = 5.5 exists
which determines the behaviour of the threshold fracture energy. However repeated
investigations into this parameter have found no physical explanation for its value.
Again utilizing the notion of incubation time prior to fracture, this paper attempts to
provide a physical explanation of this phenomena by introducing a supersonic stage into
the model. The final scheme allows for the effect of waves along the indenters contact
area to be taken into account. The effect of this physical characteristic of the impact
on the threshold fracture energy and critical shape parameter λ∗ are investigated and
discussed.

Keywords: Erosion; Fracture; Incubation time; Supersonic; Blunt impact; Elastic
half-space;

1. Introduction

Erosion impacts are a widely studied phenomena, the understanding of which has
yielded valuable insights into the physical mechanisms at play, which has in turn
allowed for the improvement of technologies which either rely on preventing erosion
based damage or utilizing the resulting energies. The study of erosion induced frac-
ture, particularly for small indenter sizes, has however often been seen as at best
a secondary concern, despite certain technologies being notably susceptible (e.g.
parametric resonance screens [1]). Additionally, conventional models often only ex-
amine prescribed indenter shapes, potentially meaning that important effects may
be overlooked.
The need for differing models for small sized indenters became apparent during

experimental research examining erosion fracture, through studies into the threshold
velocities of impacting particles [2, 3]. These investigations revealed an interesting
phenomenon, namely that values of the threshold velocity for particles with a rela-
tively large radius are approximately the same, whereas reducing the radius leads
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to a significant increase in the threshold velocities. It was concluded that, as the
impact duration primarily depends on the particle size, the set of threshold velocity
values have to be divided into two branches: one static, for large-size particles, and
the other dynamic, for small-sized indenters. However the conventional approach
when studying the strength problem only permits one to calculate values of the
threshold velocities by applying the critical stress criterion, and as such can only
explain the static branch [4].
A more effective analytical model, capable of explaining the nature of origin for

both the static and dynamic branches, was developed in [5]. The initial model pro-
vided the solution of the contact problem for a spherical particle impacting an elastic
half-space, with the approach later being generalized for particles of different shapes
[6, 7]. These approaches looked at the problem of erosion induced fracture from an
energy costs point of view. In particular they examined the threshold fracture en-
ergy, which is the kinetic energy required to induce erosion based fracture. This was
made possible by utilizing an incubation time based fracture criterion to estimate
the parameters of the tensile stress pulses which characterize erosion fracture.
As these models developed however, it soon became clear that there was an un-

explained phenomena at play. In [6], which utilized the Hertz solutions for erosion
impact, it was observed that there existed a minimum threshold fracture energy in
the case of a spherical, but not cylindrical, indenter. The subsequent investigation
[7], which utilized the Shtaerman-Kilchevsky theory of quasi-static blunt impact for
an indenter whose arbitrary shape function: z = B1−λrλ describes a set of smooth
paraboloids, observed that there existed a critical shape parameter λ∗ = 5.5, with
indenters characterized by λ < λ∗ having a unique minimum threshold fracture en-
ergy, while no such minimum existed when λ > λ∗. However neither paper was able
to provide a physical explanation for this critical value. A later paper attempted
to unearth clues by improving on the accuracy of the previous approach, achieved
by examining fixed spacial points for which the stress function was maximized [8],
however this was similarly unsuccessful in explaining the value of the critical shape
parameter.
While these previous models successfully incorporated various dynamic aspects

into the modeling, notable dynamic effects where ignored. For example, the exis-
tence of a supersonic stage, where the speed of the contact zone boundary exceeds
the elastic wave propagation velocity in the condensed matter, was shown in [9, 10].
Borodich adduced the proof of this statement for the convex contact surfaces based
on geometrical principles in [11]. It is noteworthy that only the quasi-static ap-
proaches of Hertz and Shtaerman for the contact problem were used during the
previous analysis.
In this paper we attempt to show that the mystery surrounding this parameter was

due to a failure of previous approaches to take into account the dynamic properties
of the elastic medium. Towards this end, we will examine the threshold fracture
energy, as well as the critical shape parameter λ∗, in more detail by incorporating
supersonic modeling of the initial stages of the impact. We consider the supersonic
stage in a similar way to that applied by Argatov for a spherical indenter in [12].
Utilizing the general solution proposed by Borodich [11] we create a model for which
the maximal impact stress and threshold fracture energy are more sensitive to the
physical characteristics of the impact. This will notably ensure that the impact
characteristics take account of the wave velocity within the impacted medium. The
choice of Borodich’s solution is stipulated by the fact that it describes only the
supersonic stage and is based on the common principles which have historically

2



May 20, 2016 Philosophical Magazine Erosion˙dip9˙FinalwTemp

been used by other researchers [9, 10, 13–15]. It should be also noted that both
theories neglect the effect of friction at the contact interface, which does play a role,
especially for oblique impacts [16]. This simplifying assumption is often made in the
literature [17] in the case of normal impact incidence, and as this paper is primarily
aiming to examine the viability and effects of such an approach only the simplest
form of each regime will be examined.
The paper is organized as follows. Sect. 2 sees the construction of the model for

a single erosion impact during the various regimes. In Sect. 2.1 Borodich’s solution
for the supersonic stage is stated, and the resulting set of equations determining the
initial moments of the impact are formulated. Following this in Sect. 2.2 the relevant
equations from the previous model by Argatov et al are given, with some being
rederived to account for the new initial conditions when entering the subsonic stage.
Finally in Sect. 2.3 any discontinuities between the two approaches are eliminated.
The numerical results are detailed in Sect. 3. We briefly introduce the incubation
time based fracture criterion in Sect. 3.1, before formulating the initial algorithm
and calculating the threshold fracture energy for various λ in Sect. 3.2, with some
details being relegated to Appendix. A. This is followed by an examination and
discussion of the critical shape parameter in Sect. 3.3. Finally the important results
are collated and discussed in Sect. 4.

2. Construction of approximate solution for the penetration process

2.1. Supersonic stage. Borodich’s solution

The general solution of the contact problem during the supersonic stage was pre-
sented by Borodich [11], and allows one to obtain the temporal dependencies of
both the contact force and the penetration depth. General formulas for an arbi-
trary convex shaped indenter were presented, with specific shapes in the form of a
cone, elliptic paraboloid and a pyramid being evaluated. We use the results from
[11] to find the mechanical parameters of the process in the supersonic regime for a
axisymmetric blunt indenter, defined by the shape function:

z = B1−λrλ, (1)

where λ > 1 and B is a constant having dimension [length]. Then the value S(w)
of contact area is related to the penetration depth w as:

S(w) = πB2− 2

λw
2

λ . (2)

In an accordance with Borodich solution, the time dependence for the penetration
depth w can be implicitly calculated as follows:

t(W ) =

∫ W

0

dw

V0 − ρcπ
mµB

3−µwµ
,

µ =
λ+ 2

λ
, 1 < µ < 3,

(3)

where V0 and m are initial velocity and mass of the projectile respectively, ρ is
elastic media density and c is the velocity of the longitudinal waves. Some simple
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algebraic transformations of (3) yield:

t(W ) =
ws

V0

∫ W

ws

0

dξ

1− ξµ
,

ws = B

(
µmV0

πρc
B−3

) 1

µ

(4)

Thus we know the function F (y, µ), which implicitly describes the relationship
between the penetration depth w and the time t

F (y, µ) =

∫ y

0

dξ

1− ξµ
, 0 < y < 1 (5)

It should be noted that F (y, µ) is a monotonic increasing function over 0 < y < 1
for every 1 < µ < 3, and its value increases from zero to infinity. It is however
possible to determine the inverse function, F−1, which allows us to obtain the
particular solution for a considered projectile shape.
As a result, the supersonic indentation of a blunt indenter into the elastic half-

plane is defined by the following relationship (5):

wd(t) = wsF
−1

(
V0

ws
t

)
, (6)

while the other problem parameters: the indenter velocity, Vd(t), and total force,
Pd(t), are given by the following relations:

Vd(t) = ẇd(t)

Pd(t) = πρcVd(t)B
2

(
wd(t)

B

)µ−1 (7)

The end of the supersonic stage, denoted t∗, is that moment in time when the
outward velocity of the contact area becomes equal to velocity of the longitudinal
waves c. The value of t∗ can be calculated as the solution to the equation

ȧ(t∗) = c, (8)

where the longitudinal wave speed is that of a one-dimensional solid, namely:

c =

√
E

ρ

equation (8) can be written in the form:

ȧ(t∗) =
1

λ
(wd(t∗))

1

λ
−1B

λ−1

λ V0

(
1−

(
wd(t∗)

ws

)µ)
(9)

Thus, one can now evaluate the time t∗ and calculate boundary values of the pen-
etration depth w∗ = wd(t∗), contact radius, a∗ = ad(t∗), and the projectile velocity
V∗ = Vd(t∗).
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Moreover, one can observe that t∗ → 0 as ρ → 0.
Unfortunately there are no exact solutions for the stress distribution during the

supersonic stage, only the normal stresses for the central point r = 0 of projectile

2.2. Subsonic stage. Shtaerman-Kilchevsky theory

During the subsonic stage (t > t∗) we utilize the Shtaerman-Kilchevsky theory,
which has previously been applied to the case of quasi-static blunt impact by Ar-
gatov, Mishuris, Petrov [7]. The relationship between the contact force Pqs(t) and
penetration depth wqs(t) can be written as:

Pqs(t) = k1w
λ+1

λ
qs (10)

where

k1 =
E

1− ν2
B

λ−1

λ
2

2

λλ
λ−1

λ

λ+ 1
Γ

(
λ

2

)− 2

λ

Γ(λ)
1

λ (11)

here E and ν are the Young modulus and Poisson ratio for the elastic media, Γ(x)
is a Gamma function. The equation of motion for a projectile with mass m can be
written as follows:

m
d2wqs

dt2
= −k1w

β
qs,

β =
λ+ 1

λ

(12)

The solution obtained for the supersonic stage gives following initial conditions [7]:

wqs(t∗) = w∗,
dwqs

dt
|t=t∗ = V∗ (13)

Multiplying both sides of equation (12) by dw
dt before integrating, we obtain:

m

2
(V 2

qs − V∗
2) = − k1

β + 1
(wβ+1

qs − w∗
β+1) (14)

The maximum penetration depth w0 can be calculated by substituting Vqs = 0 into
equation (14)

w0 =

(
(β + 1)mV∗

2

2k1
+ w∗

β+1

) 1

β+1

(15)

A second integration of (14) gives us the the temporal dependence of the penetration
depth wqs(t) during the subsonic stage

∫ t

t∗

dt = t− t∗ = ∆t = w0

√
m(β + 1)

2k1w0
β+1

U
(wqs

w0
, β

)
(16)
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where

U(
wqs

w0
, β) =

∫ wqs

w0

w∗
w0

dh√
1− hβ+1

(17)

Thus, the estimated time, tqs, when the penetration reaches its maximum value w0

is as follows ∫ t0

t∗

dt = t0 − t∗ = tqs = w0

(
m(β + 1)

2k1w0
β+1

) 1

2

U(1, β) (18)

where t0 is time duration of the load stage. Using (15) this can transformed into:

t0 = t∗ +
w0

V∗

√
1− 2k1w

β+1
∗

(β + 1)mV 2
∗ + 2k1w

β+1
∗

U (1, β) (19)

Since damping occurs, due to the quasi static nature of the formulation, the duration
of the unload stage t∗∗−t0 exaggerates the value t0. For this reason we have to solve
the equation (12) one more time with the new initial conditions:

wqs(t0) = w0,
dwqs

dt

∣∣
t=t0

= 0 (20)

The first integration give us the projectile velocity in the reverse direction:

dwqs

dt
= −

√
2k1w0

β+1

(β + 1)m
·

√
1−

(
wqs

w0

)β+1

. (21)

Thus, the value of t∗∗ can be determine from the following expression:

t∗∗ − t0 = w0

√
(β + 1)m

2k1w0
β+1

∫ 1

0

dh√
1− hβ+1

(22)

Note that t∗∗ − t0 > t0. Indeed, the latter is equivalent to

w0

√
(β + 1)m

2k1w0
β+1

∫ w∗
w0

0

dh√
1− hβ+1

> t∗,

2.3. Coupling of the solutions for supersonic and subsonic stages

Because of the peculiarities of the dynamic solution by Borodrich and quasi-static
solution by Shtaerman, the function which describes the temporal dependence of the
contact area radius will be discontinuous at the time t∗. This is due to the fact that
the supersonic and subsonic stages have different physical principles determining the
relationship between penetration depth and contact area, and the penetration depth
w(t) is continuous in this model (by design). In order to avoid this irregularity, let us

6
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introduce the smooth function χ(x), which continuously matches the two solutions
within the interval [0.95t∗, 1.05t∗]

χ(t) =

{
1, 0 < t < 0.95t∗
0, 1.05t∗ < t

. (23)

Also, we employ this function χ(x) to sew the contact force P (t), the equation of
which also has a discontinuity at the point t∗.

a(t) = ad(t)χ(t) + aqs(t)
(
χ(t)− 1

)
, 0 < t < t∗∗

P (t) = Pd(t)χ(t) + Pqs(t)
(
χ(t)− 1

)
, 0 < t < t∗∗.

(24)

Additionally the mean contact area, which allows us to calculate the stress field
under the projectile, is defined as p0 = P/(πa2) and can be approximated in a
similar way:

p0(t) =
Pd(t)

πa2d(t)
χ(t) +

Pqs(t)

πa2qs(t)

(
χ(t)− 1

)
, 0 < t < t∗∗. (25)

Since Borodich’s solution does not contain any information about the surface
stresses, we enrich the quasi-static solution by extrapolating the corresponding re-
sults into the supersonic stage. Thus, the distribution of the contact pressure be-
neath an indenter with the considered shape is given by

σz(r, t) ≡ p(r, t) =
λ+ 1

2
p0(t)

∫ √
1−r20

0

(
r20 + ξ2

)λ−2

2 dξ. (26)

where r0 = r0(r, t) = r/a(t) is the dimensionless radial coordinate. Similarly the
radial stress will be approximated by

σr(r, t) =


−p(r0) +

1− 2ν

r02

∫ r0

0
ηp(η)dη, r0 ≤ 1,

1− 2ν

r02

∫ 1

0
ηp(η)dη, r0 > 1.

(27)

The maximum radial stresses are achieved at the edge of the contact area, where
r0 = 1

σr(1, t) = (1− 2ν)

∫ 1

0
ηp(η)dη =

(1− 2ν)P

2πa2
. (28)

As a result, at any time during the penetration process, the approximated solution
to the problem will be given by the formulas (25),(26),(28). Note that all of these
representations are exact near the ends of the time interval. Indeed, for very small
times, Borodich’s formulas give the exact solution for the supersonic regime, while
the Shtaerman solution precisely describes the projectile behavior during the quasi-
static stage.

7
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3. Estimation of the energy costs for the fracture initiation

3.1. Incubation time fracture criterion

The previous analysis [7] allows us to produce a lower bound on the fracture pulse
of the tensile stresses. Additionally, in [8], it was shown that instead considering the
stress pulses for fixed points on the material surface doesn’t qualitatively alter the
final behavior of the threshold energy in relation to the impact duration. Hence, in
the present paper, we employ the lower estimate of the fracture pulses with a view
to avoiding additional computational difficulties.
The threshold amplitudes of pulses caused by particle impacts are evaluated using

an incubation time approach, which can be effectively applied to explain a number
of general dynamic fracture effects caused both by high strain rate and short pulse
loading [5, 18, 19]. The corresponding fracture criterion, employed to determine
the threshold pulse parameters, is referred to as the incubation time based fracture
criterion. In its simplest form, for a brittle fracture, this criterion can be written as
follows:

1

τ

∫ t

t−τ
σ(t́)dt́ ≤ σc, (29)

where σc is the static strength of the material and τ is the incubation time of the
fracture. This criterion has been successfully used to model a multitude of fracture
problems, and has proved itself to be a quite simple and effective method of fracture
prediction. It permits us to determine the necessary conditions required for fracture
over a wide range of impacts.

3.2. Estimation of the energy costs for the fracture initiation

3.2.1. Description of the algorithm

The algorithm used to calculate the threshold fracture energy for a fixed value of λ
utilizes the fact that the stress function at the fracture front is a positively valued
function, which monotonically increases with increasing v0. As such we define the
following function:

Υ (v0) =
1

τσc
max

t∈[0,t∗∗]

(∫ t

t−τ
σ(t́)dt́

)
− 1 (30)

which has the property that:

Υ(v0)


> 0, v0 = v∗0 + δ

≡ 0, v0 = v∗0
< 0, v0 = v∗0 − δ

(31)

For any arbitrary δ > 0. As such a simple iterative procedure can be utilized in
order to obtain v∗0 to a desired level of accuracy.

A second concern is to ensue consistency of results between this paper and the
previous investigation [7]. In order to achieve this the constants B and m will have

8
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to be chosen in such a way as to coincide as ρ → 0. This is completed in the first
step of the algorithm, and as such the first step could be discarded when carrying
out a more general investigation.

With this in place, the algorithm is defined as follows:

(1) Choose an arbitrary tp, which will approximate t0. From this calculate the
constants B and m using equations (50) and (57) in [7]. Additionally compute
an initial expected value of the initial velocity required for fracture initiation,
vp, using equation (56) in the aforementioned paper.

Note: While the value tp → t0 as ρ → 0, the two will not be related in
this formulation. It is simply an arbitrary starting point chosen to ensure the
results are consistent with previous investigations, and is discarded after this
step.

(2) Using the value vp create an initial interval in which v∗0, the initial ve-
locity required for fracture initiation, is expected to occur (e.g. vδ =
[vp − δ, vp, vp + δ]).

(3) Compute the system of equations given in Sect. 2 for each value of vδ, and
obtain the time dependent stress function.

(4) Compute the function Υ (v0) from (30) for each value of vδ. Use its properties
(31) to obtain a refined interval vδ containing v∗0.

(5) Iterate steps 2-4 until a desired level of accuracy is reached. The threshold
fracture energy ϵ0 is then calculated from the obtained v∗0.

3.2.2. Results for fixed λ

The material constants used in calculations are those for gabbro-diabase [20], which
is the same as used in previous investigations of this phenomena [7, 8]. The values
are as follows: E = 6.2 × 109 N/m2, ν = 0.26, σc = 44.04 × 106 N/m2, τ = 44 µs,
while the density of the indenter is given by: ρ1 = 2400 kg/m3. Results are displayed
in Fig. 1, for λ = {2, 3, 4, 5}.
It is clear from these results that the threshold fracture energy decreases as the

material density ρ increases, however the effect is only apparent for impacts with
short durations. This makes intuitive sense, given that v0 decreases monotonically
as the impact duration is increased, and as such the supersonic stage will play a far
greater role in rapid impacts.
Additionally, it is immediately apparent from the results in Fig. 1 that the critical

shape parameter λ∗ will decrease when eroding a more dense material. Furthermore,
given that the threshold fracture energy seems to tend to zero for all λ in these
graphs, it is safe to assume that the critical shape parameter will have λ∗ → 1
rapidly as the material density is increased.

3.3. Critical shape parameter λ∗ for various material densities

3.3.1. Obtaining the critical shape parameter

In previous investigations [7, 8] it was shown that there existed a critical shape
parameter, λ∗, with values λ < λ∗ exhibiting a unique non-zero threshold fracture
energy (the initial energy required for fracture initiation), while no such minimum
existed for λ > λ∗. These studies however assumed a zero-valued density of the

9
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Figure 1. Values of the threshold fracture energy ϵ0, for various fixed impacted material densities ρ, when
(a) λ = 2 (b) λ = 3 (c) λ = 4 (d) λ = 5. Here ρ1 = 2400 kg/m3 is the density of the indenter.

impacted medium, and could give no physical explanation for the obtained value
λ∗ = 5.5. Here we will attempt to expand on this work, by examining whether the
critical shape parameter varies with the density of the impacted material, and as
such a physical explanation of the phenomena can be postulated.

The method of obtaining the critical shape parameter λ∗ relies on noting the
behaviour of the threshold fracture energy for very small impact durations t∗∗. As
demonstrated in Fig. 2, when λ < λ∗, the derivative of the threshold fracture energy
ϵ0 will be negative, while this derivative will be positive for λ > λ∗ and zero for the
critical shape parameter. As such the algorithm is designed to obtain the sign of this
derivative near the origin for a range of λ, before using the results to iteratively work
towards the desired critical shape parameter. A full explanation of the algorithm is
given below.

(1) Choose a value of the impacted material density ρ. Alongside this an initial
overestimate λp = [λ1, . . . , λn] for the potential range of λ∗ is taken.

(2) Then, for each λ ∈ λp:

10
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Figure 2. Behaviour of the threshold fracture energy ϵ0 for small t∗∗, shown here for ρ = 0.

• Arbitrary initial points 0 < t1p < t2p are taken1. These approximate t0 as
in the previous algorithm, and must be sufficiently small to predict the
behaviour of the derivative of ϵ0 as t∗∗ → 0.

• The threshold fracture energy, ϵ0, is obtained, for each value of tp ={
t1p, t

2
p

}
, using the algorithm outlined in Sect. 3.2.1, to a required level of

accuracy.
• The derivative of ϵ0, with respect to t∗∗, is approximated between t1p and

t2p.
(3) With the value of the derivative obtained for each λ ∈ λp, a new interval in

which λ∗ exists for the given ρ is obtained.
(4) A new λp is defined using the obtained interval for λ∗, and steps 2-3 are

repeated until a desired level of accuracy is reached.

This algorithm allows one to obtain the value of λ∗ for a given material density
ρ, and as such by repeating the we can begin to study the relationship between the
impacted material density and the threshold fracture energy. In practice we have
found that it is often simpler to instead begin with a value λ, and then iterate to
discover the density ρ∗ for which it is the critical shape parameter.

3.3.2. Results for various impacted material densities

Numerical simulations were conducted using the same values for the impact param-
eters as in Sect. 3.2.2, with the addition of taking tp = {2, 2.5}× 10−6 seconds. The
results obtained are shown in Fig. 3.
It is clear from this that the critical shape parameter λ∗ decreases when impacting

materials with higher densities. There is however a clear divergence from previous
results which must be expanded upon, which isn’t made obvious in the above figure.

1Here the values t1p, t
2
p must be small enough to accurately model the asymptotic behaviour, but also not

so small as to require infeasible velocities. See Appendix A for a more thorough examination of this choice.
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Figure 3. Numerically obtained lower bound of the critical shape parameter λ∗ for various impacted ma-
terial densities ρ. Here ρ1 = 2400 kg/m3 is the density of the indenter material.

In previous investigations, it has been the case that taking λ = λ∗ will yield a
non-unique minimum energy required for fracture. However this will not always be
the case under the revised scheme. In order to explain this further, we define the
following:

ρ∗ (λ) = {ρ : λ∗(ρ) = λ}

An example of the threshold fracture energy, evaluated taking ρ = ρ∗ when λ = 3
is given in Fig. 4.
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Figure 4. Value of the threshold fracture energy ϵ0, evaluated when λ = 3 for ρ = 0 (blue line), ρ = ρ∗

(black crosses) and ρ = ρ∗ × 1± 0.05 (green crosses, red circles). It is clear that a unique minimum occurs

for both ρ ≤ ρ∗, however we will have ϵ0 → 0 for ρ > ρ∗.

It is clear from this that the minimum energy required for fracture is not unique,
however as any increase in the impacted material density results in having ϵ0 → 0 as
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t∗∗ → 0 it is the highest value of λ for which a minimum threshold fracture energy
exists. As a result, while this value of λ∗ still maintains its most important quality,
that of defining the point when a change in case between having a unique threshold
fracture energy and none existing occurs, it is of a weaker form than described in
previous papers.

4. Discussion and Conclusions

An approach for calculating the threshold fracture energy during erosion impacts
with supersonic stages has been derived, and algorithms for obtaining numerical
results have been implemented.
The results indicate that the critical shape parameter, λ∗, above which no min-

imum energy for fracture initiation exists, decreases rapidly as the density of the
impacted material increases. This provides evidence to support the proposal that
the critical value of the shape parameter λ∗ = 5.5 only emerged in previous mod-
eling due to the fact that the models were only based on the quasi-static approach
to contact problem. These results resolve the unanswered questions from previous
investigation into this phenomena, showing the dynamic nature of this parameter,
and that the value of λ∗ depends on the supersonic stage duration determined by
the geometry of the contact surfaces and the density of media.
It should be noted that there are possible variations to the approach suggested

in this paper, namely as a result of the hypotheses used when gluing together the
dynamic and static stages of the contact problem. However there is every reason to
believe that they are not meaningful and that the main result would be the same.
Also the provided reasoning shows that considering the case of a spherical shaped
indenter is more convenient and is naturally supported when constructing such
models. The smooth shape of the contact surfaces allows one to avoid irregularities
in the solution and unnatural behavior of the process characteristics.
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Appendix A. Appropriate time intervals

In Sect. 3.3.1 we evaluate the system over some small time interval tp =
{
t1p, t

2
p

}
,

using the results in order to approximate the behaviour of the threshold fracture
energy as t → 0. It is clear however that the choice of tp will influence the final
result, and as such we use this appendix to provide further information about how
this interval is chosen.

The first problem we examine is that, in the limit, we have that v0 → ∞ as t → 0.
As a result taking points in time too close to zero may lead to results with little
applicability to real world situations. In order to investigate further we define:

T∗∗(λ) =
{
max (t∗∗) : v0(λ, t∗∗) ≥ 3× 108

}
(A1)

which, in other words, provides the smallest impact duration for which the initial
velocity is less than the speed of light. This function can be easily obtained by
iterative methods, the results of which are shown in Fig. A1.
It is obvious that we must take t1p > T∗∗(λ) when conducting any serious

investigation, however even taking t1p close to T∗∗(λ) will clearly still produce
results which rely on infeasible physical characteristics. It is similarly apparent
that, as this papers approach relies on the existence of an initial supersonic stage,
the initial velocity of the indenter must be sufficiently large for this stage to
exist. These constraints place bounds on the values of t1,2p which can be used, but
won’t provide an exact interval over which the most representative results may be
obtained.

A secondary, although not insignificant, problem facing such an investigation
is that of ensuring accurate numerical results. This is particularly apparent for
small impact durations, where the extreme values taken by the functions, with
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Figure A1. The function (A1) over a range of λ. This curve provides the minimum time duration over
which results have any real-world applicability.

the some tending to infinity while others tend to zero, inevitably resulting in a
loss of accuracy, particularly during the supersonic stage. This provides not just
an additional reason for accepting a lower bound on the value of t1p, but also an

additional constraint which should be applied to t2p. Namely, in order to ensure
that inaccuracies in the numerical results don’t adversely effect our estimation of
the gradient, we must have that the interval tp is sufficiently large to ensure a
significant difference in the values of the threshold fracture energy at either end of
the interval. This will decrease the tightness of the lower bound obtained on the
value of λ∗, but must be done to ensure reliable results.

Combining the above with the results of numerical experiments it was found that,
when maintaining t1p as a constant rather than as a function of λ, the best balance
between accuracy and ensuring physically meaningful results was obtained when
taking t1p ≈ 2× 10−6, t2p ≈ 2.5× 10−6 seconds.
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