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Abstract 

South American glaciers, including those in Patagonia, presently contribute the largest amount of 

meltwater to sea level rise per unit glacier area in the world. Yet understanding of the mechanisms 

behind the associated glacier mass balance changes remains unquantified partly because models are 

hindered by a lack of knowledge of subglacial topography. This study applied a perfect-plasticity 

model along glacier centre-lines to derive a first-order estimate of ice thickness and then interpolated 

these thickness estimates across glacier areas. This produced the first complete coverage of 

distributed ice thickness, bed topography and volume for 617 glaciers between 41
o
S and 55

o
S and in 

24 major glacier regions. Maximum modelled ice thicknesses reach 1631 m ± 179 m in the South 

Patagonian Icefield (SPI), 1315 m ± 145 m in the North Patagonian Icefield (NPI) and 936 m ± 103 

m in Cordillera Darwin. The total modelled volume of ice is 1234.6 km
3
 ± 246.8 km

3
 for the NPI, 

4326.6 km
3
 ± 865.2 km

3
 for the SPI and 151.9 km

3
 ± 30.38 km

3
 for Cordillera Darwin. The total 

volume was modelled to be 5955 km
3
 ± 1191 km

3
, which equates to 5458.3 Gt ± 1091.6 Gt ice and 

to 15.08 mm ± 3.01 mm sea level equivalent (SLE). However, a total area of 655 km
2
 contains ice 

below sea level and there are 282 individual overdeepenings with a mean depth of 38 m and a total 

volume if filled with water to the brim of 102 km
3
. Adjusting the potential SLE for the ice volume 

below sea level and for the maximum potential storage of meltwater in these overdeepenings 

produces a maximum potential sea level rise (SLR) of 14.71 mm ± 2.94 mm. We provide a 

calculation of the present ice volume per major river catchment and we discuss likely changes to 

southern South America glaciers in the future. The ice thickness and subglacial topography modelled 

by this study will facilitate future studies of ice dynamics and glacier isostatic adjustment, and will 

be important for projecting water resources and glacier hazards. 

 

Keywords sea level equivalent; sea level rise; Patagonia; South America; subglacial topography; 

overdeepening; hypsometry 
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Highlights 

 New outlines and new centrelines for 617 glaciers between 41
o
S and 55

o
S 

 Ice thickness statistics and ice volume per glacier reported 

 Ice below sea level and within overdeepenings quantified 

 Ice volume per major hydrological catchment determined 

 

Introduction and rationale 

The southern South America glaciers and Patagonian Icefields (Figure 1) are sensitive to climate 

change due to their relatively low latitude location, low-elevation termini and rapid response times 

(Oerlemans and Fortuin, 1992). They are the largest temperate ice masses in the Southern 

Hemisphere outside Antarctica and are sustained by the large volume of orographic precipitation that 

falls over the Andes under the prevailing Westerly winds (Carrasco et al., 2002; Casassa et al., 

2002). Most of these ice masses are presently experiencing a negative mass balance, especially 

tidewater and lacustrine-terminating glaciers, but some glaciers, such as Pio XI, Moreno and 

Garibaldi, are presently displaying a positive mass balance (Schaefer et al., 2015). The general and 

dominant trend of ice mass loss is manifest in pronounced glacier recession (Davies and Glasser, 

2012) and the largest contribution to sea level rise per unit area in the world (Ivins et al., 2011; 

Mouginot and Rignot, 2015; Willis et al., 2012). Indeed this sea level contribution is ~ 10 % of that 

from all glaciers and ice caps worldwide (Rignot et al., 2003). Over the next two centuries, mass loss 

from these glaciers has implications for sea level rise (Braithwaite and Raper, 2002; Gardner et al., 

2013; Glasser et al., 2011; Levermann et al., 2013), for increased hazards from glacial lake outburst 

floods (Anacona et al., 2014; Dussaillant et al., 2009; Harrison et al., 2006; Loriaux and Casassa, 

2013), and for water resources. 

 

Recent analysis of southern South America glaciers has yielded data regarding glacier area, areal and 

volume change since the Little Ice Age (LIA) (Davies and Glasser, 2012; Glasser et al. 2011), ice 

surface velocity (Rivera et al., 2012; Jaber et al., 2013; Mouginot and Rignot, 2015), surface mass 

balance (Koppes et al., 2011; Mernild et al., 2015; Schaefer et al., 2015; Willis et al., 2011) and 

surface thinning and elevation changes (dh/dt) (Rivera et al., 2007; Willis et al., 2012). These 

analyses are largely reliant on satellite observations due to the inherent difficulties in accessing large 

parts of the ice surface (cf. Paul and Mölg, 2014). There are few in situ observations (the few 

examples include Gourlet et al., 2016; Rivera and Casassa, 2002, and they target only the NPI and 

SPI) and none that cover all glaciers at a catchment-scale across the NPI, SPI, Cordillera Darwin, 
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Grand Campo Nevado and outlying small glaciers and icefields. As a result, directly observed data 

on bed topography and ice thicknesses are sparse. Yet, these data are essential for calculations of ice 

volume, potential sea level contribution, and are a key input parameter in numerical modelling 

studies (Huybrechts, 2007), particularly when it is the smaller outlying glaciers and icefields with 

fast response times that will respond most rapidly to climate change (Meier, 2007; Raper and 

Braithwaite 2009). This study aims to provide the first complete regional calculation and assessment 

of distributed glacier ice thickness and catchment-scale ice volume of all southern South America 

glaciers (Figure 1).  

 

Southern South America: ice fields and volcanoes 

Our study area extends along the axis of the Andean mountain chain from Isla Hoste at 55 °S to 

Parque Nacional Vicente Perez Rosales at 41°S (Figure 1). The highest peaks nearly reach 4000 

m.asl and the terrain is generally steep. The area is characterised by a highly maritime climate with a 

pronounced east-west precipitation gradient (cf. Figure 1), influenced by the westerly airflow over 

the Andes (Aravena and Luckman, 2009; Garreaud et al., 2009). The steep orographically-driven 

precipitation gradient produces precipitation on the western side of the Andes that is 100 % to 300 % 

higher than on the eastern side. At 49 °S the precipitation totals are 7220 mm.yr
-1

 east of the Andes, 

and 209 mm.yr
-1

 at Lago Argentino on the western side. Firn cores on the NPI confirm the east-west 

gradient in accumulation (Rasmussen et al., 2007).  

  

In Northern and Central Patagonia, precipitation has steadily decreased since around the 1960s 

(Aravena and Luckman, 2009). Garreaud et al. (2013) found a 300 mm to 800 mm per decade 

decrease in precipitation in north-central Patagonia, and a 200 mm to 300 mm per decade increase 

south of 50 °S, which may account for generally positive glacier mass balances south of 50
o
S 

(Shaefer et al., 2015), decreasing rates of glacier recession south of 50 °S after 2001 and faster rates 

of recession north of 50 °S (cf. Davies and Glasser, 2012). There is also evidence of widespread air 

temperature warming in Patagonia (Garreaud et al., 2013). Warming of the upper atmosphere (850 

hPa; ca. 1400 m.asl) has been ~0.5 °C from 1960 to 1999, both in winter and summer and this 

warming has caused a decreased in the amount of precipitation falling as snow and increased 

ablation, exacerbating glacier recession (Rasmussen et al., 2007). 

 

Some of these changes in precipitation have been related to variations in the strength of the 

prevailing Southern Hemisphere Westerlies, with stronger westerlies augmenting local precipitation. 

Stronger westerlies will also result in a decreased amplitude of the local air temperature annual cycle, 
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while weaker westerlies result in a colder winter and warmer summer, increasing temperature 

seasonality (Garreaud et al., 2013). The core of the Southern Hemisphere Westerlies is currently 50 

to 55°S, but through the Holocene latitudinal variations in these winds periodically brought increased 

precipitation to the area, driving glacier advance and recession (Boex et al., 2013; Lamy et al., 2010; 

Moreno et al., 2012) but with a pronounced east-west shift (Ackert et al., 2008). 

 

 

Figure 1. Southern South America with the 24 major glacier regions of this study displayed in 

unique colours. 
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The study area (Figure 1) includes 617 glaciers (mapped by Davies and Glasser, 2012; data available 

from the GLIMS database: http://nsidc.org/glims/). These glaciers are found predominantly within 

four key icefields: the North Patagonian Icefield (NPI), the South Patagonian Icefield (SPI), Gran 

Campo Nevado (Schneider et al., 2007) and Cordillera Darwin (Bown et al. 2014), but also on 

numerous outlying mountains and volcanoes (Rivera and Bown, 2013) (Figure 1).  

 

In 2011, the total glacierised area of the study region was 22,717.5 km
2
, with the SPI covering 

13,218 km
2
, the NPI covering 3,976 km

2
, Cordillera Darwin covering 1832.7 km

2
 and Gran Campo 

Nevado covering 236.9 km
2
 (Davies and Glasser, 2012). The large western outlet glaciers of the SPI 

mostly extend down to sea level and calve into fjords, whilst those on the eastern slide largely 

terminate in large proglacial lakes (Warren and Sugden, 1993; Rasmussen et al., 2007). The NPI 

glaciers have mean elevations of 1000 m to 1500 m, with one glacier (San Rafael) terminating in a 

tidal lagoon, whilst the rest are lacustrine- or terrestrial-terminating glaciers. The ELA of outlet 

glaciers of the NPI ranges from ~700 m.asl on the west and 1200 m.asl on the east (Kerr and Sugden, 

1994; Barcaza et al., 2009). Snowline mapping in the SPI suggested that ELAs ranged from ~800 m 

to 1400 m.asl (De Angelis, 2014).  

 

Previous ice-thickness measurements in southern South America 

Although the total ice area of the Patagonian Icefields is well constrained, the total ice volume is 

poorly known. Most studies have focused on surface elevation change (dh/dt) using digital elevation 

model (DEM) differencing, and from this have calculated glacier thinning and volume change 

(Rignot et al., 2003; Willis et al., 2011). Alternatively, researchers have applied volume-area scaling 

methods to estimate total ice volume (Grinsted, 2013), but this provides no data on bed topography 

and has been criticised for being applied inconsistently or too simplistically (Bahr et al., 2014) and 

because volume estimates are very sensitive to the scalar applied (Radic et al., 2008).   

 

Glasser et al. (2011) estimated change in ice volume from the Little Ice Age (LIA) to present day by 

inferring palaeo-ice thicknesses from trimlines, moraines and other geomorphological data and by 

assuming a convex cross-valley ice surface profile at the LIA maximum. The change in ice volume 

was calculated by differencing shapefiles of LIA glacier extent and glacier extent in 2002. However, 

a lack of data on bed topography underneath present-day glaciers prevented the determination of 

present-day ice volume.  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Manuscript submitted to Global and Planetary Change 

 

6 
 

There are just fourteen spot measurements of ice thickness in South America (Gärtner-Roer et al., 

2014). Distributed bed elevation and hence ice thickness data are available for some parts of the 

Southern Patagonia Icefield, as derived using a radio-echo sounding system (Rivera and Casassa, 

2002). A gravity traverse in the 1980s suggested that there was up to 1.5 km of ice on the NPI 

(Casassa, 1987). Radar sounders have had little success, due to high absorption and scattering of 

radar in temperate ice. Ground radars have been limited to ice thicknesses of ~700 m to 750 m of ice 

(Raymond et al., 2005). Seismic measurements have indicated that Glaciar Moreno has a maximum 

depth of 720 m (Rott et al., 1998). More recently, helicopter-borne gravity observations have 

provided observations of ice thickness and bed topography across 49 % of the NPI and across 30 % 

of the SPI but have excluded all glaciers outlying from the icefields (Gourlet et al., 2016). This 

dataset is further limited in coverage because adverse weather during these helicopter surveys 

prevented the survey of Glaciar San Quíntin on the NPI and Glaciar Greve on the SPI. 

 

Data sources and methods 

DEM 

We obtained an Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital 

Elevation Model Version 2 (ASTER GDEM V2) mosaic from http://asterweb.jpl.nasa.gov/gdem.asp. 

ASTER GDEM V2 has a 30 m (1 arc-second) grid of elevation postings, with accuracies of 20 m for 

vertical data and 30 m for horizontal data at 95% confidence level. 

 

Glacier outlines 

Glacier drainage basins (Figure 2A) were obtained from Davies and Glasser (2012).  They were 

mapped from orthorectified (level 1G) Landsat Enhanced Thematic Mapper Plus (ETM+) images 

from the year 2010-2011, which were pre-registered to the Universal Transverse Mercator (UTM) 

World Geodetic System 1984 ellipsoidal elevation (WGS84), zone 18S projection. These images 

have a spatial resolution of 30 m and a geopositional accuracy of ± 50 m (Davies and Glasser, 2012).  

 

The drainage basins were edited to include nunataks and this new dataset we refer to herein as 

‘glacier outlines’. Nunataks, or areas of ice-free terrain, were identified in this study using Landsat 8 

Operational Land Imager (OLI) scenes and a mask derived from the Normalised Difference Snow 

Index (NDSI = (Green – SWIR)/(Green + SWIR)). OLI scenes were selected to have been acquired 

during summer months (December-March) to minimise cloud, snow and shadow. Threshold values 

of the NDSI varied between 0.4 and 0.5, except for images covering Cordillera Darwin where 

persistent cloud-cover limited the available data to a single scene. In this case a value of 0.25 was 
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used to avoid the inclusion of deep shadow. Some minor manual editing of the automatically-derived 

nunataks was required to remove isolated pixels and pixel groups representing surface debris most 

commonly medial moraine, and some supraglacial lakes and some clouds. Despite this editing, and 

because we relied on a single Landsat scene per region, there is a chance that some nunataks were 

not include, and a chance that some erroneous nunataks persist. 

 

Glacier centrelines 

The identification of glacier ice-surface flow trajectories requires fully distributed velocity fields. 

These data are available for some of the outlet glaciers of the NPI and SPI (Jaber et al., 2014; 

Mouginot and Rignot, 2015), but are lacking for Cordillera Darwin, Gran Campo Nevado, and the 

numerous smaller outlet glaciers and icefields. The lack of a complete velocity dataset makes 

regional scale applications of automatic flowline generation unachievable (Kienholz et al. 2014).  

 

Whilst manual digitization of centrelines is a subjective process and is time consuming in 

comparison to automatic extraction methods such as those using GIS hydrology tools (e.g. Schiefer 

et al., 2008; Machguth and Huss 2014), cost-distance analysis (e.g. Kienholz et al. 2014) and 

geometric analysis (e.g. Le Bris and Paul 2013), manual digitization is expert-driven. Unfortunately, 

our attempts to use these automatic centreline calculation methods on southern South America 

glaciers lead us to suggest that these automated techniques are also susceptible to edge cases and 

frequently fail to operate in glaciers with a complex or unusual form. Furthermore, all the 

aforementioned examples of automatic centreline extraction have been reported only in terms of 

method development and are not with freely-available code and not with full testing on a regional 

scale.  

 

In this study, centrelines were manually digitized from the centre of a glacier terminus, propagating 

up-glacier approximately midway between and parallel to the lateral margins of any glacier ablation 

tongue, and thence towards any prominent saddles or cols on cirque headwalls or on ice divides 

(Figure 2A). In the same manner centrelines were created for each major glacier tributary (Figure 

2A) to produce a total of 1,995 centrelines. To permit comparisons between this and past studies, and 

noting that our model mostly depends on ice surface slope, we did not make edits in the few cases 

where our glacier outlines or our glacier centrelines did not exactly match those from ice surface 

velocity analyses (Mouginot and Rignot, 2015). 
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Calculating ice thickness at points along the centreline 

Ice thickness h of mountain glaciers can be estimated from a glacier surface slope 𝛼 using a perfect 

plasticity approach by: 

 

ℎ =  
𝜏𝑏

𝑓𝑝𝑔 𝑡𝑎𝑛 𝛼
        (1) 

 

where 𝜏𝑏, is basal shear stress and a shape factor f is required to account for valley sides supporting 

part of the weight of the glacier. In this study we used the ArcGIS tool developed by James and 

Carrivick (2016), which extended existing perfect plasticity models from application along single 

centrelines to fully 3D coverage, accommodated calculations on glaciers with complex geometry and 

automated this approach for application to multiple glaciers or whole glacier regions. Since that 

model is published (James and Carrivick, 2016) we simply cover the most salient points herein.  

 

We calculated h at points spaced 50 m apart on all centrelines where that spacing was selected 

considering the 30 m resolution of the ice surface model and the spatial coverage of this study. 

Whilst f has been incorporated as a constant (usually 0.8 according to Nye 1965: e.g. Linsbauer, Paul 

and Haeberli 2012), Li et al. (2012) developed a more physically realistic method to dynamically 

adjust f depending on the local width of a glacier. In detail, Li et al. (2012) estimated ice thickness 

perpendicular to the ice surface but in this study we are dealing with GIS-analysed glacier geometry 

so to consider ‘vertical’ ice thickness, h, i.e. that perpendicular to a horizontal x-axis we re-write the 

Li et al. (2012) equation as: 

     

     ℎ =
0.9 𝑤(

𝜏𝐵
𝑝𝑔 𝑡𝑎𝑛 𝛼

)

0.9 𝑤−(
𝜏𝐵

𝑝𝑔 𝑡𝑎𝑛 𝛼
)
                             (2)  

 

where 𝑤 is half the glacier width at the specified point on a centreline. 

 

Where nunataks are present, or where tributaries converge, Li et al. (2012) cautioned that this type of 

width calculation may be inaccurate. We therefore implemented an automatic check for erroneous 

values by: (i) checking if the perpendicular ‘width’ line intersected another centreline and (ii) cross 

checking if the resulting f value (Eq. 1) is realistic (> 0.445, equal to a half width to centreline 

thickness ratio of 1: Nye 1965). At points where either of these conditions were met, h was 

calculated using Eq. 1, with f set to that of the average of all points on the same tributary.  
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Interpolating distributed ice thickness and bed topography 

Distributed ice thickness was interpolated from the centreline points across each glacier using the 

ANUDEM 5.3 interpolation routine, which is an iterative finite difference technique designed for the 

creation of hydrologically correct DEMs (Hutchinson 1989). ANUDEM generates preferably 

concave shaped landforms, thus mimicking the typical parabolic shape of (idealised) glacier beds 

(Linsbauer et al. 2009). It is commonly applied to estimating bed topography of both mountain 

valley glaciers (Farinotti et al., 2009; Li et al., 2012; Linsbauer et al., 2012; Fischer and Kuhn 2013) 

and ice sheets, such as within the Antarctica Bedmap2 dataset (Fretwell et al. 2013). In this study we 

forced the interpolation of ice thickness to zero at glacier outlines that were not in contact with 

another outline. Interpolations of ice thickness through ice divides was achieved simply by 

‘dissolving’ (i.e. removing) those parts of glacier outlines that were in contact with each other. 

 

Once thickness h for each grid cell in each glacier had been interpolated, total volume V was 

calculated:  

 

𝑉 = ∑(𝑐2ℎ)       (3) 

where c is the cellsize, which was 100 m.  

 

James and Carrivick (2016) compared modelled (individual) glacier volume to that derived from 

field measurements of alpine glaciers around the world, and found worst-case 26.5 % underestimates 

and 16.6 % overestimates.  For comparison errors for volume scaling approaches range from 30 % 

for large samples to 40 % when considering smaller (~ 200) samples (Farinotti and Huss 2013). Part 

of the model error in this study comes from the perfect-plasticity assumption, and part comes from 

the spatial interpolation from centreline thicknesses to glacier-wide thickness. Where James and 

Carrivick (2016) were able to compare centreline modelled thickness with thickness from field radar 

measurements on alpine glaciers around the world they found differences < 11 %. They also found 

that larger glaciers were least sensitive in terms of modelled volume to model parameters, which are 

described and explained in the next sub-section. Across southern South America 73 % of all glaciers 

are > 3 km
2
 and > 96 % are of a mountain glacier type being underlain by high-relief subglacial bed 

topography that controls ice flow, so this an ideal study site in which to apply this model. In this 

study our uncertainty is spatially-variable and we therefore report modelled ice thickness with a 

mean uncertainty of ± 11 % and glacier volume with a mean uncertainty of ± 20 % but note that 
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these uncertainties will rise in the worst cases which are where there are large floating glacier 

terminii. 

 

To estimate sea level equivalent ice volume was converted to a mass via an estimate of ice density. 

We used a single theoretical value for ice of 916.7 kg.m
-3

 and assigned this globally to the whole 

study area. We acknowledge that this does not consider snow or firn, which in some parts of 

southern South America where snow accumulation is very high could be volumetrically significant. 

For example, Schwikowski et al, 2013 drilled on Pio XI glacier and found ~ 50 m of snow/ firn (with 

densities < 800 kg.m
-3

) and a similar ~ 50 m thickness of snow / firn was found on Tyndall glacier 

(Godoi et al., 2002). However, (i) these snow / firn depths account for ~ 10 % of the mean glacier 

thickness (as will be presented below) and (ii) we have no way of spatially-interpolating them either 

per glacier or for the whole of southern South America. 

 

Parameterisation 

The model employed in this study uses an ice surface DEM and glacier outlines to automatically 

derive glacier specific values of basal shear stress 𝜏𝑏, slope averaging distance αd, “effective width” 

slope threshold αlim, and minimum slope threshold α0, as explained below. 

 

𝜏𝑏 is variable between individual glaciers due to basal water pressure, ice viscosity and subglacial 

sediment deformation, for example (Cuffey and Patterson, 2010). For ice thickness estimations such 

as those within in this study, 𝜏𝑏does not have to be varied longitudinally for an individual glacier as a 

constant value can reproduce accurate thickness estimates along the length of a centreline (Li et al. 

2012). Whilst 𝜏𝑏 can be “constrained reasonably from just a few ice-thickness measurements” (Li et 

al. 2012 p.7), in southern South America > 85 % of all glaciers do not have any ice thickness 

measurements, thus requiring 𝜏𝑏 to be estimated. Previous studies have used an empirical 

relationship between altitudinal extent and 𝜏𝑏that was developed by Haeberli and Hoelzle (1995) but 

the relationship is weak (r
2
 = 0.44) and Linsbauer et al. (2012) reckoned an uncertainty of up to ± 45 

% using this method. Therefore in this study we employ a relationship established by Driedger and 

Kennard (1986a), using area and slope in an elevation band approach: 

 

𝜏𝑏 = 2.7 · 104 ∑ (
𝐴𝑖

cos 𝛼𝑖
)

𝑛

𝑖=1

0.106

                              (4) 
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where the elevation band area (Ai) is in m
2
 and 𝜏𝑏 is in Pa. This method was tested by Driedger and 

Kennard (1986b) as part of a volume estimation study, and they found a standard deviation of error 

of 5 % when comparing modelled with measured volumes. We calculated 𝐴𝑖 and cos 𝛼𝑖 over 200 m 

ice-surface elevation bands to produce glacier specific average 𝜏𝑏 values that were consequently 

applied to each centreline point. 

 

Reliable ice thickness h, estimates required analysis of the centreline gradient over an appropriate 

slope distance αd. If αd is too short small scale variations in the surface topography are produced in 

the estimated bed profile. Conversely, if αd is too long, variations in the surface topography may be 

smoothed or omitted. Therefore αd should be several times the local ice thickness (Paterson 1994). In 

this study we automatically set αd to be 10 times the average ice thickness ℎ̅, with ℎ̅ derived from a 

volume area scaling approach (Radić and Hock 2010): 

 

ℎ̅ =
0.2055𝐴1.375

𝐴
                                                               (5) 

where A is glacier area. This αd also usefully served to virtually eliminate the effects of some small 

areas of ‘noise’ in the ice surface DEM, which is an unfortunate artefact inherent in the GDEM 

product especially over areas of low-angle ice and snow. 

 

Using Eq. 2, h will tend to infinity as surface slope tends to zero, meaning h may be overestimated in 

regions of flatter ice surface (Li et al. 2012; Farinotti et al. 2009). In this study a ‘minimum slope 

threshold’ α0 of 1.7
o
 was used to re-assign any lower slope values to that minimum value. We note 

that Farinotti et al. (2009) used 5
o
 and Li et al. (2012) used 4

o
, but since 40 % of the ice surface in 

southern South America is 4 or less this was too high a value for application to the glaciers of 

southern South America. Additionally, the ‘low slope’ parts of ice surfaces are generally situated 

within the trunks of the major outlet glaciers (and not to the ‘plateau’ itself which commonly has 

clearly discernible drainage basin divides marked by either a change in curvature between adjacent 

steep > 45
 o
 slopes or by nunataks). Only 0.5 % of the ice surface in this study is < 1.7

o
. 
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Figure 2. Examples from the southern part of the SPI (uppermost larger panels) and from the 

Cordillera Darwin region (lowermost smaller panels) of the Digital Elevation Model (DEM), glacier 

outlines and glacier centrelines (A), which together enabled modelling of distributed ice thickness 

(B) and thus bed topography (hillshaded in these images) (C). Only major glaciers are named in 

panel A for clarity. Both sets of panels have the same spatial scale and the same legends. 

 

 

In this study we specified an ‘effective width slope threshold’ αlim of 30
o
, so as to consider that where 

glaciers are thin valley walls contribute negligible support and thus in this situation should not be 

included in Eqn 2. This threshold of 30
o
 represents h values of 27 m and 37 m as parameterised for 

the European Alps (130 kPa) and for the New Zealand Alps (180 kPa), respectively (Hoelzle et al. 

2007) and is the optimal value found during analysis by Li et al. (2012). These h values are also 
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consistent with Driedger and Kennard (1986a) who found a threshold ℎ̅ ~36 m where glaciers obtain 

a critical shear stress and contributed to ice deformation.   

 

ELA estimation 

Glacier equilibrium line altitudes delineate a theoretical boundary between zones of net accumulation 

and net ablation over multiple years. The inter-annual ELA fluctuates primarily due to changes in 

weather and can be approximated by the end-of-summer snowline (EOSS). Across Patagonia 

snowlines for 2002 to 2004 have only been measured via remote sensing for a few tens of SPI 

glaciers by De Angelis et al. (2014) and for the period 1979 to 2003 for a few tens of NPI glaciers by 

Bacaza et al. (2009). ELAs have also been modelled across southern South America via spatial 

interpolation of continuous automatic weather station data from 1960 to 1990 by Condom et al. 

(2007). 

 

To extend analysis of ELAs across the whole of southern South America in this study, and mindful 

of the lack of knowledge of mass balance gradients (c.f. Raper and Braithwaite, 2009), we used the 

median elevation (Hmed) of glaciers as the most simple proxy for ELA, which was first proposed by 

Hess (1893) and has been widely used since (e.g. Carrivick and Brewer, 2004; Braithwaite and 

Raper, 2010; Davies and Glasser, 2012). We used Hmed as a proxy for ELA because we found 

correlations between the published values of EOSS for both the NPI (r
2
 = 0.72: Figure 3A) and for 

the SPI (r
2
 = 0.6: Figure 3B). The correlation of Hmed between the modelled ELA 1960 to 1990 of 

Condom et al. (2007) is less strong (r
2
 = 0.4: Figure 3C) and has a spatial pattern of increasing 

discrepancy southwards (SI_A). We interpret this poorer correlation of Hmed with modelled ELA to 

suggest that glacier geometry has responded significantly to climate change during the 20 years 

between 1990 and our glacier outline inventory of 2010-2011 and thus that the modelled ELA of 

Condom et al. (2007) is not a good representation of the contemporary ELA. 
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Figure 3. Comparison of ELAs estimated from end-of-summer snowlines with median glacier 

elevation (Hmed) for the NPI (A) and SPI (B). Note different that the snowlines for the NPI and for 

the SPI were measured over different time periods and by Barcaza et al. (2009) and by De Angelis et 

al. (2014), respectively. Comparison of the long-term ELA as modelled via spatial interpolation of 

climate data 1960 to 1990 by Condom et al. (2007) with Hmed of glaciers in the 2010-2011 glacier 

inventory (C).  

 

 

Spatial and statistical analysis 

Zonal statistics per glacier, per major glacial region and per major river catchment were extracted 

from ice-surface elevation, ice thickness, subglacial bed topography and ELA trend grids in ArcGIS. 

Bed elevations below sea level were automatically extracted via a binary reclassification of bed 

topography [> 0 m.asl = 0, < 0 m.asl = 1], conversion of the ‘1’ values in this grid to polygons, and 

then zonal analysis of bed topography per polygon zone. Overdeepenings were automatically 

extracted from bed topography by ‘filling sinks’ in the bed topography and analysed in the same 

manner as for bed elevations. Major rivers and major lakes in southern South America were 

manually digitised in a GIS using Landsat images. River catchments that intersected glacier outlines 

were extracted from HydroSHEDS (Lehner et al., 2006), which is derived from elevation data of the 

Shuttle Radar Topography Mission (SRTM) at 90 m resolution.  

 

Results 
Souther n Andes 19,089 32,521 6,674  507 205 16.6  1.3  

 

 

 

Overall, the 617 glaciers considered in this study cover an area of 22,121.9 km
2
 with a mean 

thickness of 264 m and comprising a total volume of 5955 km
3
 ± 1191 km

3
. Using an ice density of 

916.7 kg.m
-3

, this volume equates to 5458.3 Gt ± 1091.6 Gt ice and to 15.08 mm ± 3.01 mm sea 

level equivalent (SLE). 
 

 

There is a wide range in Hmed of glaciers within each major glacier region (Table 1), reflecting the 

strong precipitation and temperature gradients in the area and the controls of these upon glacier 

surface energy balance and glacier mass balance. The difference in mean Hmed value between each 

major glacier region (Table 1) is crudely associated with latitude with lower mean Hmed occurring 

farther south. A table of glacier geometry, ice thickness and volume attributes, per glacier, is 

included in supplementary information (SI_Table1).  
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Major 
glacier 
region 

Mean ice 
thickness 

 
(m) 

Max. ice 
thickness 

 
 (m) 

Volume  
 
 

(km3) 

Sea level 
equivalent 
(including 
ice mass 

below sea 
level) 

 
 

(mm) 

Maximum 
potential 
sea level 

rise 
(excluding 
ice mass 

below sea 
level) (mm) 

Minimum  
Hmed  

 
(m.asl) 

Mean 
Hmed  

 
(m.asl) 

Maximum 
Hmed  

 
(m.asl) 

Gran Campo 
Nevado 

79 639 19.7 0.05 0.05 537 841 1230 

Cordon La 
Parva 

33 379 2.6 0.01 0.01 1227 1547 1845 

Northern 
Patagonian 

Icefield 
305 1315 1234.6 3.13 3.10 904 1417 1809 

Cerro 
Hudson 

131 759 28.5 0.07 0.07 1259 1436 1594 

Cerro 
Erasmo 

107 871 14.9 0.04 0.04 1204 1429 1569 

El Volcan 44 361 14.8 0.04 0.03 992 1529 1792 

Cordillera 
Lago 

General 
Carrera 

39 696 5.0 0.01 0.01 1490 1720 2299 

Monte San 
Lorenzo 

57 739 8.1 0.02 0.02 1340 1901 2131 

Southern 
Patagonian 

Icefield 
331 1649 4326.6 10.96 10.62 638 1242 2097 

Sierra de 
Sangra 

67 449 17.8 0.05 0.05 1416 1595 2026 

Cordillera 
Darwin 

82 936 151.9 0.38 0.37 602 950 1659 

El Condor 50 552 3.8 0.01 0.01 1327 1435 1542 

Isla Hoste 93 651 20.0 0.05 0.08 536 755 851 

Monte 
Sarmiento 

69 474 12.5 0.03 0.04 691 869 1141 

Cerro Paine 
Grande 

72 491 5.4 0.01 0.01 1056 1292 1537 

Tierra del 
Fuego 

63 379 9.9 0.03 0.02 664 770 814 

Estrecho de 
Magallanes 

222 845 39.9 0.10 0.10 404 724 976 

Riesco Island 48 548 5.1 0.01 0.01 746 876 1071 

Torres del 
Paine 

28 178 0.7 0.00 0.00 543 1015 1353 

Monte 
Burney 

28 143 0.4 0.00 0.00 688 939 1123 

Parque 
Nacionale 
Corcovado 

41 380 11.3 0.03 0.02 1259 1536 1820 

Parque 
Nacional 
Queulat 

72 639 14.9 0.04 0.04 1391 1481 1547 

Parque 
Nacional 
Vicente 
Perez 

Rosales 

40 143 2.6 0.01 0.01 1896 2152 2617 

Hornopiren 44 278 4.1 0.01 0.01 1301 1620 1793 

 

Table 1. Glacier attributes per major region. Hmed is included as a proxy for ELA. In general ice 

thickness has an uncertainty of ± 11 % and volume has an uncertainty of ± 20 %. 
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The NPI and SPI have mean modelled ice thickness of 305 m ± 33.5 m and 331 m ± 36.4 m, 

respectively, and we find that four other major glacier regions, namely Cerro Hudson, Cerro Erasmo 

and Estrecho de Magallanes have mean modelled ice thicknesses > 100 m (Table 1). Maximum 

modelled ice thicknesses reaches 1315 m ± 144.6 m for the NPI and 1649 m  ± 181.4 m for the SPI 

(Table 1). The total modelled volume of ice per major region is 4326.6 km
3
 ± 865.3 km

3
 for the SPI, 

1234.6 km
3
 ± 246.9 km

3
 for the NPI and 151.9 km

3
 ± 30.4 km

3
 for Cordillera Darwin (Table 1). All 

other major glacier regions each contain a total of < 40 km
3
 glacier ice (Table 1).  

 

Our modelled ice thickness distribution, which is freely available as a downloadable ArcGIS-format 

100 m grid raster via supplementary information, and a part of which is depicted in Figure 2B, can be 

compared with that derived from gravity measurements by Gourlet et al. (2016) on the NPI and on 

the northern part of the SPI. Our modelled subglacial bed topography has greater relief and 

complexity than that derived by Gourlet et al (2014) from airborne gravity surveys (Figure 4). 

Quantitatively, the mean ‘measured-modelled’ difference is 196 m, or ~ 18 % of ice thickness) along 

the transects presented by Gourlet et al. (Figure 4), but it must be noted that unfortunately their 

gravity survey lines do not correspond spatially to our centrelines. In more detail, their ice thickness 

on these transects is an interpolation between their gravity lines, (ii) they acknowledged error in 

narrow valleys and away from survey lines of > 100 m, and (iii) our ice thickness along these 

transects is an interpolation of that calculated along the centreline(s).  

 

Profiles of bed topography along our centrelines are relatively bumpy in comparison to the estimated 

bed topography between them and a glacier margin where the interpolation produces a very smooth 

surface. This is a demonstration that our model has uncertainty in the centreline ice thickness 

calculation, and then more uncertainty in the spatial interpolation of ice thickness. In general 

therefore we suppose that our model reflects the general features and the orders of magnitude of ice 

thicknesses in a region, especially with relatively small glaciers, but the complex subglacial 

topography of the main icefields remains relatively crudely estimated. 
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Figure 4: Comparison of our modelled bed topography along transects presented by Gourlet et al. 

(2016) who derived ice thickness from airborne gravity measurements. The position of these 

transects is depicted in our Fig. SI_B. 

 

 

Nevertheless, our modelled bed topography identifies mountain ridges submerged beneath the ice, 

major troughs submerged beneath the ice, major overdeepenings and substantial areas with ice below 

sea level (Figure 2C). This character of the southern South America subglacial topography has been 

noted before by Gourlet et al. (2016) for parts of the NPI and SPI but here we are able to produce a 

bed topography map with complete coverage across the whole area occupied by the Patagonian 

Icefields. The total area with ice beneath sea level is modelled to be contained with 73 zones 
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encompassing a total area of 655 km
2
, with a mean elevation of -34 m ± 4 m and with a total volume 

of 91.5 km
3
 ± 18.3 km

3
. The five largest of these subglacial areas below sea level are each > 40 km

2
 

and each > 4 km
3
 and are beneath San Quintin and San Rafael on NPI, and beneath Jorge Montt, 

Occidental and Pio XI glaciers on the SPI. Other major glacier regions with bed elevations below 

zero are Gran Campo Nevado (total < 0.001 km
3
), Cordillera Darwin (total 0.4 km

3
), and Torres del 

Paine (total 0.05 km
3
). 

 

The total area of glacier ice within subglacial enclosed topographic basins, or overdeepenings, which 

are prime locations for meltwater retention and thus which affect ice dynamics (Cook and Swift, 

2012) and represent possible (future) lakes, is modelled to be 1200 km
2
. In total 282 individual 

overdeepenings are identified, with a mean depth of 38 m ± 4 m and a total volume (i.e. as if filled 

with water to the brim) of 101.7 km
3
 ± 20 km

3
. The five largest overdeepenings in terms of area and 

volume are all on the SPI on Jorge Montt, Occidental, O’Higgins, Viedma and Guilardi glaciers. 

These five overdeepenings each have a volume > 9 km
3
. Other major regions with overdeepenings 

are the NPI (total 9.75 km
3
), Gran Camp Nevado (0.065 km

3
), Cerro Erasmo (0.18 km

3
), Cerro 

Hudson (0.23 km
3
), Cordillera Darwin (5. 46 km

3
), El Condor (0.02 km

3
) and Estrecho de 

Magallanes (0.085 km
2
). 

 

The maximum modelled depth of a single overdeepening is slightly > 400 m but the mean modelled 

depth of all overdeepenings is just 6.5 m. Overdeepenings with some part of their modelled depth > 

300 m are restricted to Steffen and San Rafael on the NPI and these are 12 km
2
 and 22 km

2
 in area, 

respectively, although several other (areally) larger though shallower overdeepenings occur in both 

glaciers and beneath other NPI glaciers. On the SPI Jorge Montt, O’Higgins, Pio XI, Viedma, 

Guilardi and Tyndall glaciers all have overdepeenings with some part of their modelled depths > 300 

m. 

 

To consider potential future sea level rise (SLR) rather than total sea level equivalent (SLE), the 

volume of ice below sea level and potential lakes must be considered (c.f. Haeberli and Linsbauer, 

2013). We calculate the SLR of southern South America glaciers per major region (Table 1) and to a 

total of 14.71 mm ± 2.94 mm, which is 2.5 % less than the SLE. Ice below sea level accounted for 74 

% of this difference between SLE and SLR, and ice within overdeepenings, i.e. potential future 

lakes, accounted for 26 %.  
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Figure 5. Ice surface (black line) and bed (red line) hypsometry for all 24 major glacier regions in 

southern South America. Note x-axis is different for Southern Patagonian Icefield, Northern 

Patagonian Icefield and Cordillera Darwin. Grey horizontal bar represents range of ELAs as 

estimated from Hmed of each glacier.  
 

 

The spatial variation in the difference between SLE and SLR across southern South America (Table 

1) is especially interesting because each region and indeed each individual glacier has a different 

climatic sensitivity / rates of recession (Davies and Glasser 2012; Gourlet et al. 2016). In a graphical 

manner the sensitivity to present climate and the consequences of possible future climatic changes 

(c.f. Raper and Braithwaite, 2009) on the glaciers of southern South America can be crudely 
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assessed. Glacier ice surface and subglacial bed elevation hypsometry is plotted per major region in 

Figure 5, together with the range of Hmed values for all glaciers in that region as a proxy for ELA. 

Most pertinently, these graphs indicate that large amounts of ice in the NPI, SPI, and to a lesser 

extent in Gran Campo Nevado, Cerro Hudson, Cordillera Darwin, Isla Hoste and Estrecho de 

Magallanes regions already lies well below Hmed and thus depend for survival on replenishment via 

ice flux from glacier accumulation areas. However, the glaciated area situated attitudinally above the 

range of Hmed per major region is proportionally high ( > 20 % of all ice in the region) only for 

Gran Campo Nevado, Monte San Lorenzo, El Condor, Isla Hoste, Tierra del Fuego, Estrecho de 

Magallanes, Riesco Island, Monte Burney, Parque Nacional Queulat and Parque Nacional Vicente 

Perez Rosales. These regions are all glaciers, ice caps and glaciated volcanoes outlying the major 

(NPI and SPI) ice fields and the majority of them are in southern Patagonia. Clearly, a simple change 

in ELA, such as a shift upwards in elevation by 100 m, will have dramatically spatially-differing 

consequences for southern South America glaciers. 

 

Analysis of the ice volume remaining within each major river catchment is an important concern for 

water resources, including irrigation and hydropower, for example, especially given that southern 

South America river flow records have exhibited a pronounced negative trend since the 1950s 

(Masiokas et al., 2008). We find that only the Rio Chico and the Rio Santa Cruz catchments in 

Argentina, and the Rio Chacabuco in Chile have modelled ice volumes > 300 km
3
 (Figure  6). The 

Rio Deseado and the Rio Coyle catchments have modelled ice volumes 193 km
3
 ± 38 km

3
 and 181 

km
3
 ± 36 km

3
, respectively, and a few other smaller catchments on the western side of the NPI and 

on the western side of the SPI each have ice volumes within them of < 100 km
3
. The Rio Ibanez and 

the Rio Simpson catchments in Chile have a modelled ice volume of 29 km
3
 ± 6 km

3
 and 24 km

3 
± 5 

km
3
, respectively. Except for a few small catchments at the southern end of the Cordillera Darwin 

virtually all other river catchments across southern South America have modelled ice volumes < 10 

km
3
 (Figure 6). Where river catchments are large, but ice volumes are small and diminishing, river 

flows must be progressively sustained by precipitation and any groundwater sources. 
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Discussion 

Regional total sea level contributions   

Huss and Farinotti (2012) used a physically-based approach to model ice thickness for Southern 

Andes glaciers (n = 19,089, area = 32,521 km
2
) and reported a mean thickness of 205 m and a total 

Figure 6. Total ice volume modelled 

for the major river catchments of 

Patagonia. 
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volume 6,674 ± 507 km
3
. That mean thickness is slightly less than the mean thickness of 264 m 

modelled in this study. Their total volume is 11 % more than our 5954.6 km
3
 ± 1190.9 km

3
, but both 

estimates agree within their respective uncertainty, and the uncertainty of the Huss and Farinotti 

model is ~ half that of our study.  This suggests that whilst our study covers a smaller geographical 

region because it uses the World Glacier Inventory (WGI)-GLIMS outlines whereas Huss and 

Farinotti (2012) used the Randolph Glacier Inventory (RGI) outlines, it is apparently considering the 

vast majority of ice volume. Furthermore, Huss and Farinotti (2013) reported a SLE of 16.6 ± 1.3 

mm for Southern Andes glaciers, which can be compared to our 15.08 mm ± 3.01 mm and to our 

SLR of 14.71 mm ± 2.9 mm.  Furthermore, using Radic and Hock’s (2011) projected SLE 

contributions of South American glaciers from 2000 to 2100 of 0.01 mm.yr
-1

, we calculate those 

contributions would cause a reduction of 6.8 % of the total ice mass available over that time period. 

For interest, further comparison of Radic and Hock’s estimates of SLE with that of Huss and 

Farinotti’s and of the usage of the WGI-GLIMS glacier outlines versus those from the RGI has been 

explored further by Grinstead (2013). 

 

SLE contributions from southern South America glaciers are accelerating. Rignot et al. (2003) 

reported rates of 0.042 ± 0.002 mm.yr
-1

 for 1968/1975 to 2000, but rates of 0.105 ± 0.011 mm.yr
-1

 

for 1995 to 2000. For the time period 2000 to 2012 Willis et al. (2012) reported SLE contributions 

from the SPI and the NPI combined of 0.067 ± 0.004 mm.yr
-1

. These rates over recent decades are an 

order of magnitude greater than that calculated over centennial scales since the Little Ice Age 

(Glasser et al., 2011: 0.0018 mm.yr
-1 

from NPI since 1870, and 0.0034 mm.yr
-1 

from SPI since 1650). 

The longer time to disappearance is produced using the most conservative SLE rate of Radic and 

Hock (2011), which is a process-based estimation, whereas the other shorter times to disappearance 

are simply via an extrapolation of modern rates and thus ignore probably future feedbacks between 

glacier mass balance and ice dynamics. The range of these published estimates of SLE highlight the 

need for future numerical modelling of southern South America glacier systems. The distributed ice 

thickness and bed topography datasets produced by this study will be very useful for this future 

modelling, and especially for examining any spatio-temporal variability in the response of glacier 

dynamics to climate change.  

 

Local topography and individual glacier dynamics 

Southern South America glacier changes in area and length since the Little Ice Age (LIA) have 

considerable spatial heterogeneity (Davies and Glasser, 2012) and likely will do so in the future too. 

Gourlet et al. (2016) recently discussed that local topography apparently exerts a much stronger 
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control on glacier response variability across southern South America than regional climate gradients 

(see regional ELA mapped in SI_A). In this study we found it crucial to include nunataks in our 

glacier outlines so as to delimit ice-free parts within glacier drainage basins to which ice thickness 

should be interpolated to zero. Glaciers with termini that are retreating into overdeepened basins 

such as Jorge Montt, Occidental, O’Higgins, Viedma and Guilardi, Steffen, Colonia and Tyndall, 

could (i) store large amounts of meltwater subglacially with the potential for glacier outburst floods, 

or ‘jökulhlaups’, and (ii) become lacustrine-terminating if not already with implications for ice 

dynamics as well as for meltwater and sediment fluxes (Carrivick and Tweed, 2013; Loriaux and 

Casassa, 2013). The numerous southern South America glaciers that presently terminate in the sea, a 

tidal lagoon or a freshwater lake are subject to subaqueous melting and tidally-induced longitudinal 

stresses (Truffer and Motyka, 2016). Our model poorly represents these tidewater glaciers due to 

their floating termini. Glaciers with large zones of subglacial elevations below sea level will increase 

in surface gradient and thus likely accelerate in velocity with ongoing terminus retreat.  

 

Finally, whilst some southern South America glaciers are within semi-arid regions, many are located 

in regions with steep topographic gradients and high precipitation rates and they have snow and firn 

contributing to volumes (if determined geodetically) and accumulation enhanced by avalanching and 

snow drift. Glaciers in these ‘wet’ conditions can be relatively insensitive to increasing air 

temperatures, as has been modelled for Swiss glaciers (Huss and Fischer, 2016) and identified for an 

Austrian glacier (Carrivick et al., 2015) and for glaciers in the Canadian Rockies (Debeer and Sharp, 

2009). These spatio-temporal sensitivities of southern South America glaciers to air temperature and 

to precipitation changes mean that projection of future hydrograph patterns per major river 

catchment will need consideration of not only ice surface but also subglacial hypsometry, as 

provided by this study, in relation to present and projected glacier ELAs. 

 

Conclusions and future work 

This first complete coverage of modelled distributed ice thickness, which we make freely available 

as (i) an ArcGIS-format raster and (ii) a table of attributes per glacier (supplementary information) 

across the whole of southern South America greatly extends in coverage and spatial detail the few 

tens of available ice thickness point measurements in South America (Gärtner-Roer et al., 2014) and 

the gravity measurements coverage of parts of the ice thickness of the NPI and SPI (Gourlet et al., 

2016). This first-order ice thickness modelling has in turn permitted modelling of bed topography 

and of ice volume per glacier, per major glacier region and for southern South America in total. The 

total ice volume of southern South America is 5955 km
3
 ± 1191 km

3
 and this volume equates to 
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5458.3 Gt ± 1091.6 Gt ice and to 15.08 mm ± 3.01 mm sea level equivalent (SLE). Accounting for 

bed elevations below sea level and overdeepenings that will likely store future meltwater, the 

maximum potential sea level rise (SLR) from all southern South America glaciers is 14.71 mm ± 2.9 

mm. However, the rate at which individual glaciers will lose mass in the future depends on complex 

feedbacks between glacier dynamics and local topography, glacier hypsometry and regional and 

local ELAs and this study has produced those datasets. 

 

Development of the estimates of ice thickness presented herein could focus firstly on derivation of 

glacier flow lines rather than relying on relatively sparse centrelines, and should consider a routine 

for better-representing floating glacier terminii. Future studies could readily utilise the datasets 

produced in this study in volume-area scaling (Bahr et al., 1997, 2014) and also volume-thickness 

scaling and other area- and slope-dependant models (see Gärtner-Roer et al., 2014 for application of 

these). In addition to V-A scaling, the parameters of altitude range-area, mean glacier thickness and 

altitude range can be used for ice volume sensitivity analysis (c.f. Raper and Braithwaite, 2009), 

although some consideration of mass balance gradient has yet to be worked out for all southern 

South America glaciers. Future work on numerical process-based glacier mass balance modelling 

will require distributed bed topography and ice thickness and is necessary to unravel the complex 

feedbacks and process-links between glacier mass balance, glacier dynamics and tidewater and 

lacustrine influences on glacier dynamics. The bed topography and especially the realisation of large 

zones of subglacial elevations below sea level and the large zones of overdeepenings are important 

for glacier or ice sheet models and for glacial isostatic adjustment models. They are also of concern 

for potential future meltwater retention and thus for consideration of water resources and glacier 

hazards. 
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Highlights 

 New outlines and new centrelines for 617 glaciers between 41
o
S and 55

o
S 

 Ice thickness statistics and ice volume per glacier reported 

 Ice below sea level and within overdeepenings quantified 

 Ice volume per major hydrological catchment determined 


