-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Aberystwyth Research Portal

PRIFYSGOL

E¥ ABERYSTWYTH

—=—_ UNIVERSITY

Aberystwyth University

A review on brain structures segmentation in magnetic resonance imaging
Gonzalez-Villa, Sandra; Oliver, Arnau; Valverde, Segi; Wang, Liping; Zwiggelaar, Reyer; Lladd, Xavier

Published in:
Artificial Intelligence in Medicine

DOI:
10.1016/j.artmed.2016.09.001

Publication date:
2016

Citation for published version (APA):

Gonzalez-Villa, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., & Llado, X. (2016). A review on brain
structures segmentation in magnetic resonance imaging. Artificial Intelligence in Medicine, 73, 45-69.
https://doi.org/10.1016/j.artmed.2016.09.001

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

« Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.

« You may not further distribute the material or use it for any profit-making activity or commercial gain

« You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020


https://core.ac.uk/display/326671649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.artmed.2016.09.001
https://pure.aber.ac.uk/portal/en/persons/reyer-zwiggelaar(03ac06c6-9930-4afd-8039-42f8f5c1c33e).html
https://pure.aber.ac.uk/portal/en/publications/a-review-on-brain-structures-segmentation-in-magnetic-resonance-imaging(1f3d15f4-c0c8-4a0f-819f-e4d8da26a1f5).html
https://pure.aber.ac.uk/portal/en/publications/a-review-on-brain-structures-segmentation-in-magnetic-resonance-imaging(1f3d15f4-c0c8-4a0f-819f-e4d8da26a1f5).html
https://doi.org/10.1016/j.artmed.2016.09.001

Accepted Manuscript

Title: A review on brain structures segmentation in magnetic MEDICINE |
resonance imaging

Author: Sandra Gonzélez-Villa Arnau Oliver Sergi Valverde &\E b
Liping Wang Reyer Zwiggelaar Xavier Llado g
PII: S0933-3657(16)30115-4

DOI: http://dx.doi.org/doi:10.1016/j.artmed.2016.09.001
Reference: ARTMED 1480

To appear in: ARTMED

Received date: 1-4-2016

Revised date: 27-7-2016

Accepted date: 5-9-2016

Please cite this article as: Sandra Gonzalez-Villgravea, Arnau Oliver, Sergi Valverde,
Liping Wang, Reyer Zwiggelaar, Xavier Llad6, A review on brain structures
segmentation in magnetic resonance imaging, </[CDATA[Artificial Intelligence In
Medicine]]> (2016), http://dx.doi.org/10.1016/j.artmed.2016.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.


http://dx.doi.org/doi:10.1016/j.artmed.2016.09.001
http://dx.doi.org/10.1016/j.artmed.2016.09.001

Identifying the brain structures is a key aspect for cognitive disease diagnosis.

We present areview of automatic brain structures segmentation methods.

We provide a classification according to the strategy used to segment the structures.
Qualitative and quantitative results are presented and discussed.

Future trends should combine multi-atlas with learning-based or deformable approaches
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A review on brain structures segmentation in magnetic resonance imaging

Sandra Gonzilez-Villa?, Arnau Oliver?, Sergi Valverde?®, Liping Wang®, Reyer Zwiggelaar’®, Xavier Lladé?

“Institute of Computer Vision and Robotics, University of Girona.
Ed. P-1V, Campus Montilivi, University of Girona, 17071 Girona (Spain).
bDepartment of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, Wales (UK).

Abstract

Background and objectives: Automatic brain structures segmentation in magnetic resonance images has been widely
investigated in recent years with the goal of helping diagnosis and patient follow-up in different brain diseases. Here,
we present a review of the state-of-the-art of automatic methods available in the literature ranging from structure
specific segmentation methods to whole brain parcellation approaches.

Methods: We divide first the algorithms according to their target structures and then we propose a general classi-
fication based on their segmentation strategy, which includes atlas-based, learning-based, deformable, region-based
and hybrid methods. We further discuss each categorys strengths and weaknesses and analyze its performance in
segmenting different brain structures providing a qualitative and quantitative comparison.

Results: We compare the results of the analyzed works for the following brain structures: hippocampus, thalamus,
caudate nucleus, putamen, pallidum, amygdala, accumbens, lateral ventricles, and brainstem. The structures on
which more works have focused on are the hippocampus and the caudate nucleus. In general, the accumbens
(0.69 mean DSC) is the most difficult structure to segment whereas the structures that seem to get the best
results are the brainstem, closely followed by the thalamus and the putamen with (.88, 0.87 and 0.86 mean DSC,
respectively. Atlas-based approaches achieve good results when segmenting the hippocampus (DSC between
0.75 - 0.90), thalamus (0.88 - 0.92) and lateral ventricles (0.83 - 0.93), while deformable methods perform good
for caudate nucleus (0.84 - 0.91) and putamen segmentation (0.86 - 0.89).

Conclusions: There is not yet a single automatic segmentation approach that can emerge as a standard for the
clinical practice, providing accurate brain structures segmentation. Future trends need to focus on combining multi-
atlas methods with learning-based or deformable approaches. Employing atlases to provide spatial robustness and
modeling the structures appearance with supervised classifiers or Active Appearance Models could lead to improved
segmentation results.

Keywords: review, automated segmentation methods, brain structures, magnetic resonance imaging

1. Introduction

Magnetic resonance imaging (MRI) of the brain has
become standard tool in medical practice for diagno-
sis [1], disease follow up [2], treatment evaluation [3]
and brain development monitoring [4]. As it is non-
intrusive, painless, fast to acquire and provides good
contrast between tissues it provides the best choice for
a range of clinical application areas.

Brain segmentation is very useful for clinical analy-
sis since a qualitative evaluation of brain morphologi-
cal characteristics is very subjective and therefore quan-
tified techniques are needed. Segmentation is one of
the fundamental problems in biomedical image analy-
sis, which refers to the process of assigning a label with

Preprint submitted to Artificial Intelligence in Medicine

biological meaning to each pixel or voxel in such a way
that the pixels or voxels with the same label share cer-
tain characteristics or belong to the same anatomical re-
gion. Image segmentation is a well known and exten-
sively studied problem in computer vision for which a
huge amount of approaches have been proposed in re-
cent years, e.g. edge based approaches [5], region grow-
ing approaches [6], clustering techniques [7] or graph
cuts [8]. All these segmentation methods have many ap-
plications in medical imaging, but they have also been
useful in other disciplines such as recognition [9], video
surveillance [10] and machine vision [11].

Although manual segmentation of brain MRI is still
a highly used practice, it suffers from important short-
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comings. First of all, manual segmentations are poorly
reproducible and are subject to inter- and intra- oper-
ator variability. More importantly, it is a very time-
consuming task and, given the increasing amount of
data to analyze, the capacity of expert visual analysis
is being exceeded. As such, the need for accurate au-
tomatic segmentation methods has emerged in recent
years [12-16].

Initial automatic methods were focused on seg-
menting the brain MRI into three different tissues,
namely white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF). Most of these methods relied only
on signal intensity in T1-weighted images, where there
is a clear difference in its intensity distributions of these
tissues. However, the task of brain structure segmen-
tation is not that trivial, since its segmentation cannot
be performed based only on image intensities because
there is too much overlap between the class distribu-
tions and the structures boundaries are not always strong
enough. Hence, more information such as shape, loca-
tion in the brain or the relative position among structures
has to be incorporated in the segmentation algorithms.

The automatic segmentation of the hippocampus has
received significant attention in the last years since it
has been demonstrated to be an important biomarker
in many clinical applications such as Alzheimer’s dis-
ease. In the recent work of Dill et al. [17] a review of
the evolution of automated methods for the segmenta-
tion of the hippocampus in MRI was presented, whereas
[18] covered a quantitative comparison of four auto-
matic methods to segment the hippocampus in patients
with mesial temporal lobe epilepsy. Another group of
structures to which the community has paid attention is
the deep gray matter or subcortical structures. Several
approaches [15, 19, 20] have been presented focused on
automatically segmenting this group of structures, and
a recent study reviewed automatic and semi-automatic
methods [21]. In addition, Babalola et al. [22] quantita-
tively evaluated four different algorithms for the task of
subcortical brain structure segmentation. Other works
in brain structure segmentation have been presented re-
cently such Devi et al. [23], who reviewed several works
for neonatal brain segmentation in MRI and Iglesias
et al. [24] who gave an overview of the state-of-the-
art in multi-atlas segmentation of biomedical images.
Besides, Klein et al. [25] quantitatively compared 14
non-linear registration algorithms which were evaluated
based on brain structures segmentation. As far as we
know, there is no article which reviews the state-of-the-
art and describes automatic methods not concentrating
on an exclusive segmentation strategy and that either
segment a single structure or the whole brain in MR im-

ages.

In this paper, we present a review of such meth-
ods and classify them according to the segmenta-
tion strategy used, for which we propose a classifi-
cation that includes atlas-based, learning-based, de-
formable, region-based and hybrid categories. Fur-
thermore, to the best of our knowledge, this paper is
the first attempt to review the most relevant works in
brain structures segmentation that also presents an
analysis of the state-of-the-art results, showing dif-
ferent evaluation measures, databases and number
of testing cases, both from the point of view of seg-
mentation strategies and segmented structures.

We searched the literature in the following
databases: PubMed, Scholar, IEEE Xplore and Sco-
pus. The main search strategy combined four con-
cepts: Brain structures, Magnetic Resonance Imag-
ing, segmentation and automatic methods. From the
initial search we discarded the works that were out
of the scope of this review, such as tissue segmen-
tation methods, approaches that used contrast MRI
or diffusion tensor images, while keeping only the
works that strictly proposed an automatic approach
for brain structures segmentation in structural MRI.
To retrieve other relevant publications, we also ex-
amined the reference lists of the selected publica-
tions, and we included those works that were related
to our aim.

2. Clinical applications

Psychiatric and neurodegenerative disorders are fre-
quently associated with structural changes in the brain,
such as variations in the volume or shape of the deep
gray matter structures or in the thickness, area and fold-
ing pattern of the cortical regions [26]. Because of that,
the morphometric analysis of brain structures can be
used as an important biomarker of the disease or even as
a diagnostic test [27]. Other applications of MRI brain
structures segmentation may include pre-operative eval-
uation and surgical planning [28] for situations in which
the procedure requires high accuracy, such as deep brain
stimulation [29] or ablation of the appropriate func-
tional regions; longitudinal monitoring for disease pro-
gression or remission [30]; or radiotherapy treatment
planning [31]. In this section we briefly review the clin-
ical applications of some brain structures segmentation
such as the hippocampus, caudate nucleus, thalamus,
pallidum or brainstem. Table 1 provides a summary
of the relation of such structures with different diseases
and the consequent structure abnormalities.
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Table 1: Clinical applications. Brain structure abnormalities associated with various diseases.

L Structure ]L Implied Disease l Abnormality
Hippocampus Alzheimer Atrophy [34]
[32, 35] Temporal lobe epilepsy Asymmetric atrophy [33]
Posttraumatic stress disorder Reduced volume [36, 37]
Major depression Reduced volume [38]
Schizophrenia Reduced volume [39]
Bipolar disorder Non-conclusive volume difference [40, 41]
Brainstem Progressive supranuclear palsy Atrophy in midbrain and pons [42-44]
[45, 46] Parkinson Reduced nigral volume [47]
Alzheimer Reduced volume and structure deformation [48]
Caudate Huntington’s disease Atrophy [49]
[50-52] Tourette syndrome Reduced volume [53]

Autism

Fragile X syndrome

Attention deficit hyperactivity disorder

Increased right volume [52]
Reduced right volume [54]
Increased volume [55]

Bipolar disorder

Thalamus Multiple sclerosis Atrophy [56]
[57, 58] Alzheimer Atrophy [59]
Schizophrenia Non-conclusive volume difference [60]
Parkinson Reduced volume [61]
Corpus Callosum Multiple sclerosis Atrophy [62]
[63, 64] Schizophrenia Reduced volume [65]
Autism Reduced volume [63]
Alzheimer Atrophy [63]
Multi-Infarct dementia Atrophy [66]
Amygdala Schizophrenia Reduced volume [67]
[35, 68] Anxiety disorders Reduced left volume [69]

Non-conclusive volume difference [39, 41, 70, 71]

The hippocampus plays an important role in human
memory and orientation. Its atrophy has been shown
to be a predictive biomarker for patients with mild cog-
nitive impairment and Alzheimer’s disease, but it has
also been related to other diseases such as schizophre-
nia, major depression, bipolar disorder, post-traumatic
stress disorder, etc. [32]. Asymmetric atrophy of this
structure has also been demonstrated to be a good pre-
dictor of epilepsy [33].

The brainstem, which is usually described as includ-
ing the medulla oblongata, pons, and midbrain (red
nucleus and substantia nigra), is especially relevant to
primary tauopathies such as progressive supranuclear
palsy [45], in which brain atrophy occurs in the mid-
brain and pons, or corticobasal degeneration. The im-
portance of the brainstem substructures in other diseases
has also been reported, such as in [72] where the au-
thors proposed a technique for supporting the clinical
diagnosis of Parkinson’s disease; they claimed that the
initial assessment of the neurological condition of a pa-
tient should be performed by estimating the area of the
substantia nigra [73]. Alzheimer’s disease, is another
degenerative disease that also affects brainstem struc-
tures [46].

The diminished right caudate volume is one of the
most replicated findings among attention deficit hyper-

activity disorder patients and hence, the ratio between
right caudate volume and the bilateral caudate volume
is applied as a diagnostic test [27]. Aberrant morphol-
ogy and function of the caudate nucleus have also been
implicated in a number of important brain disorders, in-
cluding Huntington’s disease [50], Tourette syndrome
[51], autism [52, 74, 75], attention deficit hyperactivity
disorder [54, 76], and fragile X syndrome [55, 77].

The thalamus is associated with a wide range of clin-
ical manifestations including cognitive decline, motor
deficits, fatigue, painful syndromes, and ocular motility
disturbances in patients with multiple sclerosis. It has
also been demonstrated that the atrophy of deep gray
nuclei is closely related to the magnitude of inflam-
mation [57]. As stated before, the surgical treatment
for many movement disorders, such as essential tremor,
Parkinson’s disease, drug-resistant epilepsy as well as
chronic pain syndromes, involves ablation or electric
stimulation of the appropriate functional region within
inner-brain structures such as the subthalamic nucleus
and globus pallidus [78]. Surgical planning for these
procedures is often based on preoperatively acquired
MR images, thus segmenting the implied regions would
improve the planning and guidance of the surgery.

The corpus callosum is also an important struc-
ture due to its vulnerability to environmental toxins,
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white matter diseases (such as multiple sclerosis) and
schizophrenia [79]. Effects on regional callosal struc-
ture have been reported in attention deficit hyperactiv-
ity disorder, Alzheimer’s disease, multi-infarct demen-
tia, and a range of neurodevelopmental disorders and
dysplasias [63].

3. Methods

Looking at the literature, we have seen that among
automatic brain structures segmentation methods, some
aim at parcellating the whole brain but, the vast ma-
jority are centered on segmenting a few or even only
one specific structure. Tables 2 to 4 show in their ‘C’
column, for all the reviewed methods that include
segmentation results, either graphically or numeri-
cally, the type of method we are referring accord-
ing to the following criteria: (1) methods which par-
cellate the whole brain, (2) methods that segment a
group of structures such as subcorticals, basal gan-
glia or those that, according to their results, have
been demonstrated that their method can be ex-
tended to several structures, (3) structure specific
methods, and (4) methods that segment a specific
structure and its substructures.

In this section, we provide a classification of the
state-of-the-art methods according to the strategy
used to segment the target structures, for which
we mainly distinguish four categories: atlas-based,
learning-based, deformable and region-based strate-
gies. A fifth category which combines some of these
four approaches is also included in our classification.

3.1. Atlas-based methods

In the context of image segmentation, an atlas is de-
fined as the combination of two image volumes: one
intensity image (or template) and one segmented image
(or labeled image). As stated in Cabezas et al. [80], an
atlas can be either topological or probabilistic. Topo-
logical or deterministic atlases consist of a single sub-
ject volume together with its corresponding, often man-
ual, segmentation. Probabilistic or statistical atlases are
constructed on the basis of populations, co-registering
all the segmented cases to a standard space and comput-
ing the frequency of each voxel to belong to a specific
structure.

While the methods presented in this section are all
based on topological atlases, statistical atlases can also
be used as prior information in statistical image segmen-
tation algorithms, as we will see later in section 3.2.2.

Table 2 shows a summary of the methods found in
this category that provided either graphical or quantita-
tive experimental results. The table indicates also the
target structures of each method based on the results
presented.

3.1.1. Label propagation

Probably the most straightforward principle to auto-
matically segment an image using a single training data
set (henceforth an atlas) is label propagation. The ba-
sic idea of this technique is to spatially map or deform
(i.e. register) the atlas image to the volume we want to
segment (target image). This registration produces a de-
formation field that can be used to propagate (i.e. warp)
the atlas labels to this new volume in order to get the
final segmentation.

To register two images, it is necessary to find a spa-
tial transformation, mapping the content of one image
to the corresponding area of the other in such a way
the image similarity is maximized [81]. According to
this definition, several works have been presented in the
last years focused on label propagation that differ on:
the image parts considered to perform the alignment
(feature-based vs intensity-based), the transformation
function employed (parametric vs non-parametric) or
the measure used (sum of squared differences, cross cor-
relation, mutual information (MI), landmark distances,
etc.) which defines how similar both images are. Collins
and Evans [12] proposed a popular intensity-based reg-
istration strategy, called ANIMAL (Automatic Nonlin-
ear Image Matching and Anatomical Labeling), which
performed at different spatial scales, starting with very
blurred data (where only major structures are apparent,
such as temporal lobe, ventricles and longitudinal fis-
sure) and increasing details at each step by using less
blurred images, refining the registration at each step.
The cross-correlation metric was used as a similarity
measure and the deformation was constrained to con-
sist of a linear combination of smooth basis warps that
were defined by discrete cosine transforms, performing
local translations. Alternatively, Wang and Vemuri [82]
employed B-splines to perform the deformation with a
previously introduced metric [83], called cross cumula-
tive residual entropy, as a similarity measure.

Combining geometric and intensity features for regis-
tration should result in more robust methods. This is ac-
tually of current interest and we have seen several meth-
ods combining intensity-based and feature-based crite-
ria to establish more accurate correspondences in dif-
ficult registration problems [84]. Shen and Davatzikos
[85] presented an elastic registration algorithm, called
HAMMER (Hierarchical Attribute Matching Mecha-
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nism for Elastic Registration), that applied deforma-
tion to image sub-volumes rather than voxels, based on
the similarity of attribute vectors over the whole sub-
volume. These attribute vectors consisted of three in-
dividual components: edge type (tissue), intensity and
geometric moment invariants, being a more robust way
to establish anatomical correspondences in the deforma-
tion procedure than considering only a measure derived
directly from the intensity.

According to the transformation function, which de-
fines how an image is deformed to match the other, we
can mainly distinguish between rigid or non-rigid trans-
formation, which range from smooth regional variation
described by a small number of parameters to dense dis-
placement fields defined at voxel level [84]. Klein et al.
[25] presented an evaluation of thirteen non-rigid reg-
istration algorithms and stated, corroborating Hellier’s
evaluation [86], that there was a modest correlation be-
tween the number of degrees of freedom of the deforma-
tion algorithm and the registration accuracy. Similarly,
Carmichael et al. [87] stated in their work that regis-
tration methods that produced higher degrees of geo-
metric deformation, produced automated segmentations
with higher agreement with manual annotations.

Another common technique is to perform first a
coarse registration, and refine in a second step the re-
sult with another registration method [20, 78]. This
is the case for BrainSuite [88]. In its brain labeling
tool (SVReg [89]), subject and atlas surfaces are first
smoothed and coarsely aligned in 3D space [90]. Af-
ter that, a curvature-based alignment, followed by volu-
metric spatial alignment is performed and, once cortical
features are aligned, as subcortical features trend to be
misaligned, an intensity-based registration refinement
is done. In a similar way, Postelnicu et al. [91] com-
bined a feature-based with an intensity-based non-rigid
registration method. They first aligned cortical fold-
ing patterns and using the resulting deformation as ini-
tialization they aligned subcortical regions, while pre-
serving the cortical alignment. With a similar idea,
Luo and Chung [92] presented a method to segment
the subcortical structures, for which they first obtained
a coarse structure-by-structure segmentation by means
of affine registrations, exploiting the spatial dependency
relations between the deep brain structures to determine
the segmentation order. In a second step, the segmen-
tation result was refined performing a non-rigid regis-
tration, that used information about the histogram of
the gradient magnitudes lying on the structure bound-
aries. Following also a two step registration (affine +
non-rigid surface-based), lacono et al. [78] presented
a method to segment the internal part of the globus pal-

lidus by means of registering an ultra-high resolution at-
las (7T MRI), in which this structure was well defined,
to the target image. Yousefi et al. [93] compared dif-
ferent strategies to segment subcortical structures based
on different registration methods, combining affine and
non-rigid registration applied to all brain and subcorti-
cal area. They concluded that the best results were those
obtained by means of an affine transformation applied to
the entire brain area, followed by a deformable transfor-
mation applied only to the subcortical structures.

3.1.2. Label fusion

In general, label propagation suffers from two main
drawbacks, which are the fact that a simple atlas cannot
sufficiently represent the whole population of potential
testing data and that the performance and quality of the
obtained results are limited by the accuracy of the pair-
wise registration method. As an attempt to solve the
inherent problems associated with label propagation, la-
bel fusion techniques have been extensively developed
in recent years. This approach, also known as classifier
fusion or multi-atlas segmentation, consists of register-
ing each training subject (i.e. atlas) to the test subject
separately so that each atlas label is propagated to the
target image space in the same way as in label propa-
gation. Once all these transferred labels are obtained,
they are fused to generate a segmentation result of the
target image. Across-subject anatomical variability is
better captured here than with a single atlas, and the
registration error for a particular propagated atlas is less
likely to affect the final segmentation when combined
with other atlases [94].

Significant research has been done on multi-atlas seg-
mentation with regard to the influence of several factors
that affect the final segmentation such as the atlas se-
lection, the best number of atlases involved in the seg-
mentation or the fusion strategy used. Lotjonen et al.
[95] developed and compared different similarity mea-
sures, atlas-selection strategies and methods to combine
multi-atlas segmentation and intensity modeling. They
demonstrated that all these factors play an important
role in multi-atlas segmentation and optimizing them is
clearly reflected in the brain structures segmentation ac-
curacy.

Several atlas selection strategies have been studied in
recent years. Wang et al. [96] first built a graph in-
cluding all the atlases and the target image and once
the graph was built, they grouped the atlases in differ-
ent clusters by searching the shortest path from each
atlas to the target. Finally, they chose from each re-
sulting cluster the atlas with the shortest path to the
target to perform the label fusion. Collins and Pruess-
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ner [97] also selected the best samples for a given sub-
ject from the atlas database, but they used normalized
mutual information. Aljabar et al. [94] compared dif-
ferent atlas selection strategies such as image similar-
ity, segmentation similarity or demographics and con-
cluded that image-based selection provided better seg-
mentations than random subsets. Regarding the number
of atlases used to perform the fusion, Heckemann et al.
[98] showed that the segmentation accuracy increased
in a logarithmic way when new random atlases were in-
cluded in the label fusion up to a limiting value, while
Aljabar et al. [99] found that beyond a certain number
of ranked atlases (based on a similarity criteria such as
image similarity or age-based selection) involved in the
segmentation (15-25 depending on the structure) the ac-
curacy of the resulting segmentation decreased. On the
other hand, Pipitone et al. [100] came across in their ex-
periments that when the number of templates was set to
an even number, the segmentation performance slightly
decreased.

Regarding the fusion strategy, we can mainly distin-
guish between global and local weighting methods. In
global combination strategies, the weight of the con-
tribution of each atlas to the segmentation is the same
for every voxel. The simplest global strategy is ma-
jority voting, which weights each candidate segmen-
tation equally and assigns to each voxel the label that
most segmentations agree on. In spite of its simplicity,
it has been shown to result in highly robust segmenta-
tions [94, 97, 98, 100, 101]. Another commonly used
fusion method is weighted voting, which can be per-
formed either globally [102] or locally [103]. In this
strategy, larger weights are assigned to the atlases that
show higher similarity to the target image.

Local weighting methods exploit the fact that differ-
ent atlases may have achieved a good registration at dif-
ferent parts of the target image, and so it makes sense
to borrow labels from different atlases at different target
locations. A widely used local combination strategy is
the Simultaneous Truth and Performance Level Estima-
tion (STAPLE) algorithm [13], which weights each seg-
mentation based upon its estimated performance level
with respect to other available candidate segmentations.
It treats image label fusion as a maximum-likelihood
problem, which is solved using Expectation Maximiza-
tion (EM). Several authors have published STAPLE re-
formulations [104—107] that include different advances
over the original framework. In [108], Artaechevarria
et al. studied the performance of different weighting
methods: either globally, using similarity measures for
the whole volume, or locally, using a small neighbor-
hood area, concluding that local methods should be pre-

ferred in regions that show high contrast with neighbor
areas, while global methods should be used in regions
that show similar intensities to the surrounding struc-
tures. They also stated that there is not a single method
that emerged as the best for all regions and images.

In non-local label fusion [109-112], the labels of all
the atlas voxels in the neighborhood of the target voxel
have a weight in its label assignment based on their sim-
ilarity. By means of local search windows, the one-
to-one mapping constraint existing in traditional local
weighting methods is relaxed. Due to the fact that they
explore the neighborhood of each voxel, the registra-
tion does not need to be precise, hence it is possible to
perform a linear registration instead of non-rigid defor-
mation. Following this idea, Rousseau et al. [109] pro-
posed a patch-based framework based on the construc-
tion of a weighted graph of non-local similarities that
linked together voxels in the target image and the cor-
responding neighbor voxels in the atlases. They stud-
ied several patch aggregation strategies and also tested
the influence of several parameters (neighborhood and
patch sizes, number of atlases) in the final segmentation
accuracy. Coupé et al. [110] also presented a non-local
patch-based segmentation strategy which was concep-
tually very similar to that of Rousseau et al., differing
basically on the patch preselection. In their approach,
they first performed an atlas preselection based on the
sum of squared differences. Once the best atlases were
selected, for each voxel of the target image they dis-
carded the corresponding atlas voxels that were not go-
ing to contribute in the label fusion based on their dis-
similarity (luminance and contrast). The remaining vox-
els contributed to the weighting based on their intensity
similarity. In a similar way, Wu et al. [111] recently pre-
sented a patch-based multi-atlas segmentation strategy
in which they introduced a multi-scale image patch that
combined both local and global information. They pro-
posed to dynamically adjust the patch size from large to
small during the label fusion procedure, using the global
image information to remove the misleading candidate
atlas patches and then gradually using more local infor-
mation to refine the label fusion result.

Recently, several brain structures segmentation meth-
ods using graph-based or tree-based intermediate tem-
plates guided registration have been presented, achiev-
ing effective segmentation results [96, 98]. This strat-
egy is based on the principle that it is generally diffi-
cult to obtain accurate registration between images with
large shape differences and thus, these methods try to
decompose a large registration into smaller ones with
the help of intermediate templates. Jia et al. [103] in-
troduced a multi-atlas-based multi-image segmentation
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Table 2: Atlas-based methods. Acronyms from left to right are: hippocampus (HIP), thalamus (THA), caudate nucleus (CAU), putamen (PUT), pallidum (PAL), amygdala (AMY), accumbens
(ACC), lateral ventricle (LV), brainstem (BS), corpus callosum (CC), cerebellum (CB), white matter (WM), cortical gray matter (CGM) and cerebrospinal fluid (CSF). Measures in order of
appearance: Kappa index (KI), Jaccard index (JC), Relative overlap (RO), Dice similarity coefficient (DSC), Relative mean squared error (MSE), Relative volume (RV), False negatives (FN), False
positives (FP), Hausdorff distance (HD), Similarity index (SI), Mean absolute distance (MAD), Precision (P) and Recall (R). Diseases in order of appearance: Normal controls (NC), Alzheimer’s
disease (AD), Clinical dementia (CD), Mild cognitive impairment (MCI), Probable Alzheimer’s disease (PAD) and First episode psychosis (FEP). The v' and X symbols stand for numerical and
graphical results, respectively, whereas the ® symbol means that the method perform the internal substructures segmentation of the indicated structure. The - symbol indicates that no results have
been reported for that particular structure. Column ‘C’ indicates the segmentation target: (1) whole brain; (2) a group of structures; (3) a single structure; (4) a single structure and its substructures.
Column ‘Ref” shows the reference work from which the results are obtained (in case they do not come from the original work).

Segmented structures [
[ Article [ Ref [ C |[ HIP [ THA [ CAU [ PUT | PAL [ AMY [ ACC [ LV [ BS | CC [ CB | WM [ CGM | CSF [ Others |[  Measure [ Database [ Disease
Collins (1997) [12] 971 1 v - - - - v - - - - - - - - - KLIC 80v (ICBM) NC
[114] v - - - - v - - - - - - - - - KI 30v (ICBM); 10v (ICBM) NC
Shen (2002) [85] [91] 1 v v v v v - v v - - v v - v 1C T1v (IBSR); 36v (Desikan et al.) AD+NC
g Shattuck (2002) [88] 1 - - - - - - - - - - - - - - -
5, Wang (2005) [82] 2 X - - - - - - X - X - - - - - - - -
5 Postelnicu (2009) [91] 1 v v v v v v - v v - - v v - v IC 11v (IBSR); 36v (Desikan et al.) AD+NC
& Lin (2010) [20] 2 B 7 v v B B B B B B B B B B B KLRO 15v (IBSR) NC
3 Luo (2011) [92] 2 - v v v - - - - - - - - - - - DSC 9v (IBSR) NC
3 Tacono (2011) [78] 4 - - - - ® - - - - - - - - - RMSE Tv (MNII52) NC
Yousefi (2012) [93] 2 x X x X X X X x X - - - - - - DSC:RV;EN;FP 18v (IBSR) NC
x - x x - - - - - - - - - - - DSC:RV;EN;FP 40v (LPBA40) NC
Joshi (2012) [89] 1 - - - - - - - - - - - - - v HD 6v -
Warfield (2004) [13] [115] 1 v v v v v v - v - - - v v - - DSC 39v (FS atlas) AD+CD+NC
[108] v v v v v v v v v - v v v v v SI; MAD 17v (IBSR) NC
Heckemann (2006) [98] 1 v v v v v v v v v v v - - - v SI 30v NC
Aljabar (2007) [94] 2 X X B - B - - x - - - - - - - DSC 275v (CMA) B
“Aljabar (2009) [99] 2 v v v v v v v v v - - - - - - DSC 275v (CMA) -
Artaechevarra (2009) [108] T v v v v v v v v v - v v v v v SI; MAD T7v (IBSR) NC
[104] v v v v v v v - - - - - - - - DSC 30v (Hammers) NC
[104] v - - - - - - - - - - - - - - DSC 30v (ADNI) AD+MCI+NC
[109] v v v v v v v v v - v v v v v DSC 18v (IBSR) NC
Lotjonen (2010) [95] 2 v v v v v v - - - - - - - - - SLP:R 18v (IBSR) NC
v - - - - - - - - - - - - - - SI 60v (ADNI) AD+MCI+NC
[109] v v v v v v - - - - - - - - - DSC 18v (IBSR) NC
- Collins (2010) [97] 2 v - - - - - - - - - - - - - - KI;JC 80v (ICBM) NC
2 Heckemann (2010) [116] I v v v v v v v v 7 v v - - - v 1C 30v (Hammers) NC
£ [104] v v v v v v v - - - - - - - - DSC 30v (Hammers) NC
3 Wolz (2010) [113] 3 v - B - B - - B - - - - - - - DSC 796v (ADNI) AD+MCL+NC
3 Rousseau (2011) [109] 1 v v v v v v v v v - v v v v v DSC 18v (IBSR) NC
Coupé (2011) [110] 2 v - B - B - - B - - - - - - - KI 80v (ICBM) NC
- - - - - - - v - - - - - - - KI 80V AD
[117] v - - - - - - - - - - - - - DSC 80v (ICBM); 202v (ADNI) AD+MCI+NC
Zhang (2012) [112] 1 - - - - - - - - - - - - - - - DSC 5v (NAO-NIREP) NC
Jia (2012) [103] 1 - - B - B - - v - - - v v v - DSC 50v (ADNI) MCI+NC
Cardoso (2013) [104] 1 v - - - - - - - - - - - - - - DSC 30v (ADNI) AD+MCI+NC
v v v v v v v - - - - - - - - DSC 30v (Hammers) NC
Wang (2013) [102] 1 v v v v B v v B v - - v v v - DSC 20v (MICCAT 12) CD(PAD)+NC
Asman (2013) [105] 1 x X x X X X - X - x x X X X DSC 15v (MICCAT 12) CD(PAD)+NC
Wang (2014) [96] 1 v v v v v v v v v - v v - - v DSC; MAD; HD 20v (MICCAT'12) CD(PAD)+NC
Pipitone (2014) [100] 3 v - - - - - - - - - - - - - - DSC 60v (ADNI1); 81v (FEP) AD+MCI+NC+FEP
® - - - - - - - - - - - - - - DSC 5v (Winterburn et al.) NC
Wu (2015) [111] [ v v v v v v v B B B B B - B B DSC 30v (Hammers) NC
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(MABMIS) framework to perform simultaneous seg-
mentation of a group of target images based on the con-
struction of a combinative tree. Similarly, Wolz et al.
[113] presented a graph based framework called LEAP
(Learning Embedding for Atlas Propagation), where the
newly segmented images also became candidate atlases
to segment the remaining target images. Pipitone et al.
[100] proposed the MAGeT-Brain (Multiple Automat-
ically Generated Templates) algorithm, that performed
multi-atlas segmentation using a template library built
from a subset of target images, constructed via label
propagation with each of the available atlases. The au-
thors stated that MAGeT minimized the number of at-
lases needed whilst still achieving similar agreement to
conventional multi-atlas approaches.

3.2. Learning-based methods

The goal of learning-based methods or machine
learning strategies is to predict the segmentation label
S given the input features /. From a probabilistic per-
spective, the goal is to find the conditional distribution
p(S|D), that can be either learned from a training set of
labeled images, in which case we have a discriminative
approach, or alternatively, the joint distribution p(Z, S)
can be found and used to evaluate the conditional p(S|I),
where the approach is known as generative [118]. These
two approaches differ in that discriminative models pro-
vide a model only for the target variables conditional
on the observed variables, whereas generative models
are full probabilistic models of all variables. In what
follows, we present different strategies based on such
both approaches which we have called supervised and
Bayesian methods.

A summary of the reviewed learning-based algo-
rithms can be found in Table 3.

3.2.1. Supervised methods

Supervised methods, also known as discriminative
models, attempt to directly estimate a label for each
voxel given the local appearance of the image around
it. For this purpose, these methods extract image fea-
tures with rich information and use them to train a clas-
sification model using supervised learning algorithms.
Among these learning algorithms we can find Artifi-
cial Neural Networks (ANNs) such as in [119], where
a segmentation framework that can be applied to ex-
tract various brain structures, composed by two archi-
tectures that act in two phases, was presented. The first
network classified the textures of the target image while
the second one took the output of the first classifier and
refined the segmentation correcting possible errors of

the initial stage via local shape/texture analysis. More-
over in [120], the authors proposed a two-stage method
that combined ANNs with Geometric Moment Invari-
ants (GMIs). At the first stage, a set of multiple Multi-
Layer Perceptron (MLP) networks were used for func-
tion approximation. There was one MLP for each scale
of the GMIs, whose outputs, together with voxel intensi-
ties and coordinates, were the input features of the ANN
of the second stage. At that stage, the ANN worked as a
classifier instead of a function approximator, classifying
each voxel as inside or outside the structure of interest.

In [121], Morra et al. introduced a learning approach
in which they iteratively learned the marginal distribu-
tion for each image voxel towards the final segmen-
tation. The classifiers were trained not only on the
features from the image patch, but also on the proba-
bility patch, and hence, their AdaBoost weak learners
were decision stumps on both image and probability
maps. In that context, they used the previously trained
classifier to compute new classification maps that were
used to train the next classifier, repeating this proce-
dure until convergence. More recently, Tu and Bai [122]
presented the Auto-Context algorithm, which was also
based on this principle. Following this framework, Kim
et al. [123] proposed a method to extract the hierarchi-
cal feature representation of image patches, from 7.0 T
MRI images, based on deep learning. These features
were further incorporated into a multi-atlas version of
the Auto-Context segmentation framework to improve
hippocampus segmentation on such high-resolution im-
ages. Moreover, Wels et al. [124] presented a method
for segmenting brain subcortical structures based on the
concept of marginal space learning. At each level of
abstraction they built a discriminative model from a la-
beled set of images, training a probabilistic boosting
tree from high-dimensional vectors of Haar and steer-
able features derived from the image intensities. These
models were used to narrow the range of possible solu-
tions until the final shape can be inferred.

Support Vector Machines (SVM) have also been used
as a learning strategy to perform brain structures seg-
mentation. In [27], Igual et al. proposed a method
for internal caudate nucleus segmentation, which first
delineated the external boundary of the structure by
means of the previously proposed algorithm, Caudate-
Cut [125]. After an automatic geometric criterion clas-
sification, a SVM classifier based on shape features of
the caudate regions was used, to separate head and body
caudate regions. Finally a post-processing step based
on a decision stump to improve the global classification
was applied.

Other learning approaches relying on dictionary
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learning [117, 126] or Genetic Algorithms (GAs) [127,
128] have also emerged in the last years. Tong et al.
[117] introduced a segmentation strategy based on the
minimization of patch reconstruction errors, in which
they learned a dictionary and a linear classifier simulta-
neously for every voxel of the target image from pre-
defined neighborhood patches around that voxel and
across the training atlases. Benkarim et al. [126] ex-
tended this method in their proposed multi-class dictio-
nary learning approach. They learned a single discrim-
inative dictionary and a multi-class linear classifier si-
multaneously for each target voxel, which allowed seg-
menting multiple structures at the same time. On the
other hand, Deoni et al. [127] presented a method to
segment fifteen thalamus internal structures by means
of a GA approach that incorporated characteristics of
the k-means clustering method. Regarding the fitness
function, it gave greater values to those candidate seg-
mentation solutions with maximized cluster (structure)
sizes while the variance of the T1 and T2 image modali-
ties was minimized. More recently, Traynor et al. [128]
re-evaluated this method under much broader operating
conditions.

3.2.2. Bayesian methods

Probabilistic segmentation methods try to infer the
most likely segmentation given the observed image,
which, according to the Bayes rule, can be approxi-
mated to the probability of the image occurring given
a certain segmentation p(I|S), together with the prior
probability of the segmentation p(S). This can be
achieved via Maximum A Posteriori (MAP) estimation.
p(S), henceforth the prior, encodes the spatial organi-
zation of anatomical structures in the image domain,
whereas p(I|S), is a likelihood distribution that pre-
dicts how a label image, where each voxel is assigned
a unique anatomical label, translates into an intensity
image.

There is a large amount of work that relies on this
general framework, differing mainly in the way the pri-
ors and the likelihood are specified as well as in the opti-
mization method chosen to estimate the model parame-
ters. In brain structures segmentation, priors come very
often in the form of probabilistic atlases while likeli-
hood is commonly modeled as a Mixture of Gaussians
(MoG), where the parameters (mean and variance) are
usually estimated by means of the EM algorithm. In
[129, 130] the prior was a mesh-based probabilistic at-
las where the mesh deformation was estimated in a co-
ordinated ascent scheme with the Levenberg-Marquardt
algorithm in combination with the Gaussian parameters
(EM). On the other hand, Makropoulos et al. [131] ob-

tained their priors from several atlases, whose labels
were propagated to the target image and averaged to
form, in combination with tissue probability maps, a
probabilistic spatial prior for each structure, while their
likelihood term was approximated by a MoG. Following
this framework, Riklin-Raviv et al. [132] introduced a
method for group-wise segmentation of brain structures
that avoided the use of statistical atlas by introducing
latent atlases, generated from an image ensemble. They
proposed to alternate between estimating the MAP seg-
mentations and refining the model parameters, replacing
the expectation step by a gradient descent process using
a probabilistic level-set formulation.

Markov Random Field (MRF) modelization, that in-
troduces local spatial dependencies between voxels, has
also been broadly used among probabilistic methods.
Fischl et al. [26] presented a method to segment the
whole brain which forms the basis for the well-known
software FreeSurfer [133]. In this method the intensity
distribution of each structure at each location was mod-
eled as a Gaussian, while the priors, that came in the
form of global spatial information given by an atlas and
local spatial relationship between anatomical classes,
were approximated by an anisotropic non-stationary
MRE. Another approach, proposed by Scherrer et al.
[134], is the LOcal Cooperative Unified Segmentation
(LOCUS) algorithm, that performed tissue and subcor-
tical structure segmentation, which cooperate gradually
to improve the accuracy. They performed the segmenta-
tion partitioning the target image into a set of local sub-
volumes and distributed one local MRF per sub-volume.
A-priori knowledge in the form of generic fuzzy spatial
relations was introduced in the MRF model to segment
the structures. More recently, Razlighi et al. [135] intro-
duced a segmentation method where they used quadri-
lateral MRF to model both the priors and the likelihood
probabilities. In such a model, not only the neighbor-
hood labels were taken into account, but also their in-
tensities, by contrast to the classical MRF model.

Other methods based on this probabilistic principle
have been proposed in recent years. Askelrod-Ballin et
al. [136] presented a multi-scale algorithm that used
a graph representation of the target image which was
recursively coarsened to obtain the final segmentation.
The posterior probabilities that two nodes were aggre-
gated was estimated by means of Bayesian formulation,
where the priors were given in a form of probabilistic
atlas, while the likelihood was estimated from a set of
manually labeled atlases. On the other hand, Pohl et al.
[14] proposed a hierarchical algorithm guided by a prior
information represented within a tree structure. They
followed a recursive segmentation process that started
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Table 3: Learning-based methods. Acronyms from left to right are: hippocampus (HIP), thalamus (THA), caudate nucleus (CAU), putamen (PUT), pallidum (PAL), amygdala (AMY), accumbens
(ACC), lateral ventricle (LV), brainstem (BS), corpus callosum (CC), cerebellum (CB), white matter (WM), cortical gray matter (CGM) and cerebrospinal fluid (CSF). Measures in appearance
order: Classification rate (CR), Reproducibility (Rep), Precision (P), Recall (R), Relative overlap (RO), Similarity index (SI), Hausdorff distance (HD), Dice similarity coefficient (DSC), Mean
absolute distance (MAD), Overlap error (OE), MICCATI’07 score (Score), Overlap by pairs (OBP), Tanimoto coefficient (TAO), Sensitivity (SN), Specificity (SP), Accuracy (Acc), Jaccard index
(JC) and Volume (Vol). Diseases in order of appearance: Normal controls (NC), Alzheimer’s disease (AD), Mild cognitive impairment (MCI), Schizotypical personality disorder (SPD), Autism
(AU), Parkinson disease (PD), Attention deficit hyperactivity disorder (ADHD), Clinical dementia (CD), Probable Alzheimer’s disease (PAD), Schizophrenia (SZ), Bipolar disorder (BD), Major
depressive disorder (MDD), Elderly controls (EC) and Neonatal normal controls (NNC). The v and X symbols stand for numerical and graphical results, respectively, whereas the ® symbol
means that the method perform the internal substructures segmentation of the indicated structure. The - symbol indicates that no results have been reported for that particular structure. Column
‘C’ indicates the segmentation target: (1) whole brain; (2) a group of structures; (3) a single structure; (4) a single structure and its substructures. Column ‘Ref” shows the reference work from
which the results are obtained (in case they do not come from the original work).

Segmented structures |
]l HIP [ THA [ CAU [ PUT | PAL [ AMY [ ACC [ LV [ BS [ CC [ CB [ WM [ CGM [ CSF_[ Others |[ Measure [ Database T Discase

[ Article [ Rf [ C
Pitiot (2002) [119] 2 v - v - - - - - - v - - - - - CR 10v -
Deoni (2007) [127] 4 - ® - - - - - - - - - - - - - Rep 4v (T1&T2) NC
Morra (2008) [121] 2 v X - - - - - - - - P; R; RO; SI; HD 83v (AD) AD+MCI+NC
Moghaddam (2009) [120] 2 - v v - - - - - - - - - - - DSC; MAD; HD 6v (IBSR) NC
3 Wels (2009) [124] 2 v v v v - - - - - - - - - - DSC: MAD 18v (IBSR) NC
é - v - - - - - - - - - - - - OE; MAD MICCAT'07 SPD+AU+PD+NC
g Tu (2010) [122] 1 g < , , , , , B , , , B , , Score MICCAT'07 SPD+AU+PD+NC
3 Traynor (2011) [128] 4 ® - - - - - - - - - - - - - OBP; TAO 16v; 18v NC
Tgual (2012) [27] 1 B ® N N N N N N - B B SN: SP; Acc 39v (VH) ADHD+NC
Tong (2013) [117] 3 v - - - - - - - DSC 202v (ADNI); 80v (ICBM) AD+MCI+NC
[126] - v v v DSC 35v (MICCAI’12) CD(PAD)+NC
Kim (2013) [123] 3 v B B B B B B P; R; RO; SI 20v (7T) B
Benkarim (2014) [126] 2 - v v v - - - - DSC 35v (MICCATI'12) CD(PAD)+NC
Fischl (2002) [26] [132] 1 v v v v v v - - - - - - - - - DSC 39v (Sabuncu et al.) AD+NC
[126] - - v v v - v - - - - - - - - DSC 35v (MICCAI’12) CD(PAD)+NC
[115] v v v 's 's v - v - - v v - - DSC 39v (FS atlas) CD+AD+NC
[137] s v v v v v - - - - - - - - DSC 30v -
[138] v o v v - - - v - o - = - - - P;R 14v (LONI28) NC
[109] v v v v v v v v - - - - - - - DSC 18v (IBSR) NC
Scherrer (2007) [134] 2 - v v v - - - - - - - DSC BrainWeb -
Scherrer (2007) [139] 2 N - - - X X X - JC BrainWeb -
- Akselrod-Ballin (2007) [136] 1 v v v v v v v v v v DSC; MAD: HD 18v (IBSR) NC
2 [109] v v v v v v v v v v DSC 18v (IBSR) NC
“_% Pohl (2007) [14] 1 v - - - v - - - - - - - - v DSC 50v SZ+BD+MDD+NC
el Scherrer (2009) [140] 2 - - - - - - - - - - - X X X - DSC 18-20v (IBSR) NC
- v v v - - - DSC BrainWeb -
VanLcemput (2009) [129] 7 ® , . . . , N . , . N , , DSC; MAD Tov NC
Riklin-Raviv (2010) [132] 2 v v v v v v - - - - - - - - - DSC 39v (Sabuncu et al.) AD+NC
Razlighi (2012) [135] 1 X X X X X X X X X X X X - DSC 20v (OASIS) -
Iglesias (2013) [130] 4 ® - - - - - - - - - Vol 383v (ADNI) AD+EC
Makropoulos (2014) [131] 1 v v v v v v v v - - - - DSC 20v (ALBERTS) NNC
Iglesias (2015) [141] 4 - ® - - - - - - DSC; HD; MAD 10v (BS) NC
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at the root, segmenting the image into its children, using
the propagated structure-specific information in a clas-
sical Bayesian framework and estimating the solution
through EM.

Recently, Iglesias et al. [130] presented a Bayesian
segmentation framework that extended the work of Van
Leemput et al. [129] based on the statement that tradi-
tional Bayesian methods do not fully consider the uncer-
tainty in the model parameters, relying just on point es-
timates. To overcome this issue, they proposed a Monte
Carlo sampling to account for the uncertainty in prior
and likelihood free parameters which resulted in an im-
proved approximation of the segmentation posterior.

3.3. Deformable methods

Deformable methods start with an initial contour
placed in the image, either manually or automatically,
which is then iteratively deformed, generating a new
contour at each iteration. In the primitive version of
a deformable model, known as snakes or Active Con-
tour Models (ACM) [142], the initial contour was de-
formed under the influence of internal and external
forces. The internal forces were related to the surface
features and aim to maintain a smooth contour, while
the external forces were related to the image features of
the adjacent regions to the surface and were responsible
for attracting the model towards the structure surface.
Ghanei et al. [143] presented an improved discrete de-
formable model to segment the hippocampus, that ad-
dressed some of the associated problems such as opti-
mizing the internal force weight, contour stability and
extraction of image features for external energy calcu-
lations. They introduced a new external force, which
was based on searching for local minima of the image
energy in the contour normal direction, to produce bet-
ter results near multiple and discontinuous edges. Col-
liot et al. [144] also presented a framework in which
they use ACM. They added spatial relations between
the different structures (direction and distance) repre-
sented as fuzzy subsets which were integrated in the de-
formable model as a new external force that attracted
the model to the edges of the structure being segmented.
Fouquier et al. [145] extended that work proposing a
criteria to optimize the structure segmentation order and
introducing a strategy to evaluate the obtained segmen-
tation quality and detect errors to prevent their propa-
gation. Zarpalas et al. [146] also presented a method
for segmenting several structures by means of a mix-
ture of different ACMs, all balanced by the gradient dis-
tribution boundaries which tried to differentiate regions
that need greater support of prior knowledge from those

11

which can be segmented only by their gray-scale infor-
mation. They used geodesic ACM on boundary parts
with strong gradients and a Chan-Vese model with prior
knowledge in parts where the boundary was not well
formed or contained weak parts. On the other hand,
Shariatpanahi et al. [147] used m-Rep (medial repre-
sentation) deformable models in a multi-agent frame-
work to segment several brain structures, namely, the
thalamus, the caudate nucleus and the putamen.

An evolution of ACM is the Active Shape Mod-
els (ASM) [148], in which the internal energy, besides
keeping the contour smooth, avoids also deformations
that go beyond the average geometric variation of the
structure being segmented, by using shape constraints
learned from a collection of training samples. A Point
Distribution Model (PDM) is used to build a shape
model of the structure of interest, in which shapes are
represented by a set of points or landmarks. Kelemen et
al. [149] presented a framework that closely followed
the seminal work of Cootes and Taylor [150] on ASM,
but based on a hierarchical parametric object description
rather than a PDM, under the statement that for a large
training set containing several anatomical structures, the
generation of the PDM parameterization became very
tedious and could be a source of errors. Ettaieb et al.
[151] also proposed a segmentation model based on
the ASM and a spatial distance relation. At the seg-
mentation stage, the contours evolved iteratively in two
steps: they first evolved independently of each other, ac-
cording to the constraints imposed by the corresponding
shape models and then, applying the constraint imposed
by the statistical distance model, which was also esti-
mated during the training phase. In [152], the authors
introduced an approach referred to as a active hierar-
chical shape model, that was able to characterize the
different inter-structure relationships and to model the
particular local variations of each single structure. Gao
et al. [153] also proposed a multi-scale representation
for the shape using the wavelet transform. Given the
initial shape obtained from label fusion, they proposed
a segmentation method that alternated data-driven and
a multi-scale shape-based process, iteratively evolving
the contour until convergence. Alternatively, Olveres
et al. [73] evaluated several ways to segment the mid-
brain including the combination of ASM with LBP (Lo-
cal Binary Pattern) descriptors and compared them with
the classical ASM segmentation, concluding that in-
corporating information about the texture surrounding
the edge (with LBP), the segmentation performance in-
creased, converging also in less iterations.

Another commonly used version of deformable
model is the Active Appearance Model (AAM) [154],
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which incorporates constraints of image intensity vari-
ation to the ASM. This appearance model is usually
based on the normalized first derivative of fixed-size
gray profiles, normal to the surface of the object and
centered at each landmark. In their work, Babalola et
al. [155] presented an AAM based method, called pro-
file appearance models, that instead of modeling the in-
tensities across an entire region containing the model,
as in the original AAM approach, they only modeled
the intensities along the profiles that were normal to the
boundary of the structure. Duchesne et al. [114] also
reformulated the original AAM approach, that initially
was not suitable for 3D images. Instead of using the
original PDM to characterize the shape, which is im-
practical in 3D, they proposed to utilize a warp distri-
bution model, that centered on 3D deformation fields
from ANIMAL [12]. On the other hand, Patenaude et al.
[15] utilized the principles of the AAM but placed them
within a Bayesian framework. The so called Bayesian
Appearance Model (BAM) incorporated both shape and
intensity information from a training set but, opposed
to the original AAM, it used a probabilistic framework
to estimate the relationship between shape and intensity
making use of conditional probabilities. Based on the
learned model, BAM searched the linear combination
for the most probable shape given the observed image
intensities to find the best fit for the segmentation. This
model was implemented as part of the FSL! package
under the name FIRST.

Other energy minimizing strategies have been pro-
posed in recent years. Pitiot et al. [31] presented
a segmentation method that relied on the deformable
templates framework which incorporated available a-
priori anatomical expertise, either in the form of implicit
knowledge (structures shape and appearance) or of ex-
plicit information (relative distance between structures,
non-intersection rules) as constraints of the model. Al-
Shaikhli et al. [156], on the other hand, proposed an
approach for multi-region segmentation using a multi-
level set formulation which included a topological graph
prior and topological information of an atlas. This topo-
logical representation was embedded in the multilevel
set energy equation and together with a curvature term,
constrained the curve evolution.

Deformable models have to be initialized, either man-
ually or automatically. Atlas registration is a typical
practise, but other techniques are also used. In [157] the
results of a classifier provided a localization point for
the initiation of a deformable template model, whereas

lhtt}c)://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ (Accessed: 8 June 2016)
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Garcfia et al. [158] proposed to use a Chan-Vese model
to initialize the structure contour.

A summary of the deformable methods presented
here is presented in Table 4.

3.4. Region-based methods

Region based brain structures segmentation methods
have also been proposed in recent years. These meth-
ods rely on the similarity of different properties of the
voxels belonging to the same region. Probably, one
of the most well established region based techniques is
region growing, which is the most frequently used in
brain structures segmentation. Based on this technique,
Xue et al. [159] proposed a method that performed re-
gionwise labeling by means of GAs followed by vox-
elwise refinement using parallel region growing. They
first over-segmented the target image into three brain
tissues (WM, GM and CSF) and also got a coarse loca-
tion of the structures by registering an atlas to the im-
age. Afterwards, they built a fuzzy model of the regions
of interest that represented useful structural knowledge
from the atlas (shape, distance and relationship of struc-
tures), which was then used to design the objective func-
tion of GAs and to guide the region growing. Xia et al.
[77] also presented an algorithm to segment the caudate
nucleus that performed region growing constrained by
anatomical knowledge. They first identified the lateral
ventricles, which are easily locatable due to the high
tissue contrast of the CSF, and based on their position
they determined an initial caudate location by apply-
ing region growing from gray matter voxels adjacent to
them. Bounding boxes were defined to reduce poten-
tial region growing leakage to other structures. After
obtaining this coarse segmentation, caudate boundaries
were fine-tuned to be smooth, recognizable and valid,
based on anatomical knowledge.

However, there are other strategies within region-
based techniques such as successive erosion and dilation
operations or the use of the watershed algorithms. For
instance, Gui et al. [160] proposed an approach to seg-
ment neonatal brain based on the use of general knowl-
edge of neonatal brain morphology, integrating infor-
mation about tissue connectivity, structure and relative
positions. They performed a sequential segmentation of
the brain structures that combined well-established seg-
mentation methods (marker-based and similarity-based
watershed, region growing and region-based active con-
tours), guided by anatomical knowledge, with morpho-
logical operations (openings/closings).

The region-based works reviewed here are summa-
rized in Table 4.
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Table 4: Deformable methods. Region-based methods. Hybrid methods. Acronyms from left to right are: hippocampus (HIP), thalamus (THA), caudate nucleus (CAU), putamen (PUT), pallidum
(PAL), amygdala (AMY), accumbens (ACC), lateral ventricle (LV), brainstem (BS), corpus callosum (CC), cerebellum (CB), white matter (WM), cortical gray matter (CGM) and cerebrospinal
fluid (CSF). Measures in appearance order: Relative agreement (RA), Mean absolute distance (MAD), Kappa index (KI), Hausdorff distance (HD), Similarity (Sim), True positive fraction (TPF),
Similarity index (SI), Jaccard index (JC), Comparison (Comp), Dice similarity coefficient (DSC), Overlap (Over), Hausdorff distance 95 (HD95), Mean squared error (MSE), False positive rate
(FPR), False negative rate (FNR), Volume difference (VD), Precision (P), Recall (R), Mean distance (MD), Relative volume difference (RVD), Average symmetric surface distance (ASSD) and
Root mean square distance (RMSD). Diseases in order of appearance: Schizophrenia (SZ), Normal controls (NC), Elderly controls (EC), Prenatal cocaine exposure (PC), Clinical dementia (CD),
Probable Alzheimer’s disease (PAD), Alzheimer’s disease (AD), Attention deficit hyperactivity disorder (ADHD), Parkinson disease (PD), Fragile X syndrome (FXS), Mild cognitive impairment
(MCI) and Autism (AU). The v and X symbols stand for numerical and graphical results, respectively, whereas the ® symbol means that the method perform the internal substructures segmentation
of the indicated structure. The - symbol indicates that no results have been reported for that particular structure. Column ‘C’ indicates the segmentation target: (1) whole brain; (2) a group of
structures; (3) a single structure; (4) a single structure and its substructures. Column ‘Ref” shows the reference work from which the results are obtained (in case they do not come from the original

work). (*)DSC; JC; P; R; HD; HD95; MAD; ASSD; RMSD.

l

Segmented structures

C Article [ Ref [ C J[HIP [ THA [ CAU [ PUT [ PAL [ AMY [ ACC [ LV [ BS [ CC [ CB | WM [ CGM [ CSF | Others ]IL Measure Database Disease
Ghanei (1998) [143] 3 v - - - - - - - - - - - - - - RA [slices -
Kelemen (1999) [149] 2 X X - x x - - - - - - - - MAD 21y SZ+NC
Duchesne (2002) [114] 2 v - - - - v - - - - - - - KT 30v;10v (ICBM) NC
Ashton (2003) [157] 3 X - - - - - - - - 10v NC
Pitiot (2004) [31] 2 v - v - - - - v - - - - - HD; MAD 20v EC
Sharfatpanahi (2006) [147] 2 - v v v - - - - - - - - - Sim; TPF; HD 4v (IBSR) NC
Colliot (2006) [144] 2 - X v - - - - X - - - - v HD; MAD; SI 10v -
o Babalola (2007) [155] 3 - - v - - - - - - - - - - iC 24v EC+PC+NC
2 Zarpalas (2011) [146] 2 X - - - - X - - - - - - - Comp 13v (OASIS) CD(PAD)+NC
£ Patenaude (2011) [15] 2 v v v v v v v - v - - - - DSC 37v;A2v; 1 7v;87 v 14v;139v SZ+AD+PC+ADHD+NC
3 Cerrolaza (2012) [152] 2 - - x X - - - x - - - - - Over 87v NC
= Gao (2012) [153] 2 v - v - - - - - - - - - DSC; HDY5 24v (HIP); 24v (CAU) -
Fouquier (2012) [143] 2 - v v v - - - - - - - - - MAD 30v (IBSR+OASIS) NC
Olveres (2013) [73] 3 - - - - - - - - v - - - - DSC; HD T0slices NC
Garcfa (2014) [158] 3 - X - - - - - - - - - - - MSE 4v (DB-UTP) PD
Al-Shaikhli (2014) [156] 1 - - - - - - - X X X X X X DSC; MAD; HD BrainWeb; MedPix; NCSUIAL -
Ettaic (2014) [151] 3 v - - - - - - - - - - - HD 10slices -
Xue (2000) [163] 2 - v v v - - - v - - - - - FPR; FNR; ST; KT - -
£ Xue (2001) [159] 2 - v v v - - - v - - - - - FPR; FNR; ST; KI - -
g Xia (2007) [771 3 - - v - - - - - - - - - Over 55v FXS+NC
= Gui (2012) [160] 1 - - - - - - - v v v v v v DSC 10v (newborns) NC
Zhou (2005) [19] 2 v v v v - v - - - - - - - VD; Over; MAD 17v (IBSR) NC
Tu (2008) [164] 2 v - v v - - - v - - - - - P; R; HD; MD 14v -
Karsch (2009) [165] 2 v - - - - - - v - - - - - DSC; Over - -
Sabuncu (2009) [137] 1 v v v v v v x - - X X - DSC 30v -
Sabuncu (2010) [115] 1 v v v v v v - v - - v v - DSC 39v (FS atlas) AD+CD+NC
[104] v v v v v v v - - - - - - DSC 30v (Hammers) NC
[104] v - - - - - - - - - - - - DSC 30v (ADNI) AD+MCI+NC
He (2011) [166] 2 - v - - - - - v - - - - - DSC; Over 20v+25v AU+NC
5 Weisenfeld (2011) [107] 1 - X x X - - - - - - X x - DSC 14y NC
é Iglesias (2012) [161] 1 X X X X X X - X - X X X - DSC 8v (multimodal) NC
= van der Lijn (2012) [167] 2 v - - - - v - - DSC; JC; RVD 18v -
v - - - - - - - - - - - - DSC; JC; RVD 18v -
Tglesias (2013) [162] 1 v v v v v v - v - - v v - DSC 8v (PD) -
Liu (2013) [138] 2 v v v v v v - v - - - - - DSC 6v (IBSR) NC
v - v v - - - - - - - - - DSC; HD 15v (LPBA40) NC
v - v v - - - v - - - - - PR 14v (LONI28) NC
v - v v - - - v - - - - - HD; MAD 28v (LONI28) NC
Hao (2014) [16] 2 v - - - - - - - - - - - - ) 30v+30v (ADND; 57v AD+MCI+NC
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3.5. Hybrid methods

Several combinations of the previous categories have
also been described in the literature. These methods try
to combine the strengths of the different strategies in
order to improve the segmentation accuracy. A com-
mon example is the combination of label fusion and
learning-based strategies. For instance, in [115] the au-
thors presented a probabilistic framework that lead to
label fusion style segmentation algorithms. Under the
assumption that each voxel of the target image is gener-
ated from one of the atlases, they constructed the con-
ditional probability of generating the target image and
label map where the final segmentation was achieved
via MAP estimation. Recently, Iglesias et al. [161, 162]
extended this framework to multi-modal data. Another
approach combining these strategies is the one proposed
by Weisenfeld and Warfield [107] in which a multi-
classifier fusion algorithm called Learning Likelihoods
for Labeling (L.3), which combined label fusion and sta-
tistical classification, was introduced. They employed
each atlas from the training set to train a classifier that
was used to generate a classification of the target image.
These resulting classifications, generated by a Bayesian
segmentation strategy, were later fused with the STA-
PLE algorithm to produce the final segmentation. Hao
et al. [16] also proposed a learning-based label fusion
method to segment the hippocampus. In their approach,
for each voxel in the target image, candidate training
samples were obtained from voxels of atlases within a
spatial neighborhood of the voxel considered, and the
image feature vectors were then computed. Once the
image features were extracted, a k-NN strategy based
SVM classification algorithm was adopted to build a
classifier for each voxel, which was applied to each
voxel feature vector of the target image to obtain the
final segmentation.

Combining discriminative and generative models is
also common practice. Van der Lijn et al. [167] pre-
sented a segmentation method that combined structures’
spatial and appearance information in a posterior prob-
ability function which was maximized using graph cuts.
The spatial information came in the form of a proba-
bility map and the structure appearance was described
by a k-NN voxel classifier based on Gaussian scale-
space features. Liu et al. [138] proposed a hybrid
method that combined a generative and a discriminative
model, with feature augmentation and adaptation. Their
approach was based on using the estimated segmenta-
tion and the parameters of a Bayesian segmentation to
normalize the image intensities and extract robust, in-
variant local features. Afterwards, they used the auto-
context algorithm [122] to obtain the final segmenta-
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tion. Tu et al. [164] also introduced a hybrid model that
combined both a discriminative approach to model the
appearance and a generative model to describe shape.
For appearance modeling they adopted a probabilistic
boosting tree framework to learn a multi-class discrimi-
native model while shape information was incorporated
through principal component analysis. Once the sys-
tem was trained, structures segmentation was obtained
performing surface evolution by minimizing an energy
function associated with the proposed hybrid model.

Other combinations have also been proposed, such
as the ones in [165] and [166] that presented a hybrid
method combining both region-based and boundary-
based procedures. In these approaches they first applied
a clustering technique (k-Means) to generate an initial
seed contour and afterwards, the seed was deformed
based on a level-set PDE. On the other hand, Zhou
and Rajapakse [19] proposed a segmentation method
based on fuzzy templates. From a set of labeled sam-
ples they obtained three fuzzy maps (intensity, spatial
location and relative spatial relations to other struc-
tures) based on information obtained from structure his-
tograms. These fuzzy maps were calculated for each
structure and in each training image and were fused to
obtain a total fuzzy template involving all features for
different structures. This total fuzzy template was then
registered to the target image, and combining its infor-
mation with a probabilistic tissue segmentation [168], a
fuzzy membership map of each structure was created.
Final segmentation was performed by applying alpha-
cut thresholding to this final fuzzy map.

Table 4 includes an overview of the segmentation tar-
gets and evaluation criteria of the methods summarized
in this section.

4. Pros and cons of the strategies

In section 3 we have presented five main strategies
to perform brain structures segmentation, namely atlas-
based, learning-based, deformable, region-based and
hybrid methods. The main advantages and drawbacks
of these strategies are presented here and summarized
in Table 5.

Atlas-based methods insert robustness to the segmen-
tation strategy, as they overcome the deficiencies of
contrast and MRI resolution. Label propagation is the
most straightforward atlas-based technique, based on
the propagation of the atlas labels to the target image
after registration. It is a good technique when only one
atlas is available and is also quite fast, but it suffers from
two main drawbacks. The fist one is the fact that a sim-
ple atlas cannot sufficiently represent the whole popu-
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Table 5: Pros & Cons. Advantages and disadvantages of the segmentation strategies presented.

L Method H Advantages L Disadvantages
o Label propagation -Quite fast -Dependent on the atlas anatomical similarity
% -Only one atlas is needed -Dependent on the registration method
< -Useful as initialization
= Label fusion -Anatomical variation is better captured -Computationally expensive
<

-Registration error is less likely to affect the segmentation

-Usually rely on registration accuracy
-Prior segmented images (atlases) needed

Supervised methods

-Good results if test/training data variations are small

-Prior segmented images needed (training)

=
% -Can accurately capture local appearance variations -Not easily adapted to capture global shape information
i’b -Changes in MRI contrast reduce their performance
g -Highly dependent on the training set
§ Bayesian methods -Require small amounts of training data -Can be difficult to define and learn
— -Allows explicit incorporation of prior information -Can be slow
-Robust against image artifacts
-Flexibility and adaptability
ACM -No training required -Sensitive to initialization
k) -Minimized number of parameters -Low contrast boundaries can cause them to fail
2 -Perform an accurate adjustment that registration cannot -Initialization required
g ASM & AAM -Robust against noise -Construction of an explicit model required (training)
E -Avoids deformations that go beyond the average -Prior segmented images needed

-Handles discontinuities along structure boundaries
-Perform an accurate adjustment that registration cannot

-Less flexible
-Larger number of parameters

Region-based methods -Quite fast

-Do not need training data

-Low contrast boundaries can cause them to fail

-Initialization required

Hybrid methods are not included in the table since they combine the strategies presented here, with their corresponding strengths and weaknesses.

lation of potential test data and the second is that the
quality of this approach is limited by the accuracy of the
pairwise registration method. This technique is com-
monly used as a starting point of other methods, which
use the propagated labels as a initialization or as a prior.

In order to overcome the problems presented in label
propagation, multi-atlas or label fusion methods have
emerged in recent years. Several atlases are used to im-
prove the capture of anatomical variability between dif-
ferent scans but at the expense of a high computational
time. These methods are less dependent on the regis-
tration as the effect of errors associated with any single
atlas propagation is reduced in the combination process.

Supervised methods provide good results when the
differences between the training data and the target im-
age are small, capturing accurately local appearance
variations. However, they are very dependent on these
training set, hence changes in MRI contrast or strong
anatomical differences among training and testing im-
ages highly reduce their performance, limiting their ap-
plicability to images acquired with the same protocol
as the images used for training. As such, larger train-
ing data sets trend to be beneficial. On the other hand,
Bayesian approaches are more flexible and adaptable,
as they permit explicitly modelling image artifacts such
as the bias field or other image acquisition parameters,
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making these methods more robust. They also allow the
explicit incorporation of a-priori information by means
of the prior term, that frequently comes in the form of
a probabilistic atlas, which captures global shape infor-
mation. However, these methods can be slow and dif-
ficult to design and learn, especially for complex struc-
tures with inhomogeneous textures.

Deformable methods give dynamics to the segmen-
tation, performing an accurate adjustment that the reg-
istration methods cannot perform, but they require ro-
bust initialization. In the case of ACM, as they repre-
sent a local search, this initialization must be done near
the structure of interest in order to avoid falling in a lo-
cal minima. Furthermore, low contrast boundaries may
prevent them to provide the desired solution. By con-
trast to ACMs, ASMs and AAMs need to be trained
to learn an explicit model (shape or appearance con-
straints) that captures the variation of shape and gray
level across a training set. This model guides the con-
tour evolution and avoids deformations that go beyond
the average geometric variation of the structure being
segmented, making these methods robust against noise,
but at the same time less flexible and with a larger num-
ber of parameters/constraints than ACMs.

Contrary to these methods, region-based strategies do
not require to be trained and are usually quite fast in
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finding a solution. However, these methods must usu-
ally be combined with some other kind of anatomical
knowledge and require an initial seed to initialize the
growing. Furthermore, and similarly to ACMs, noisy
structure boundaries can easily cause them to fail.

Tables 2 to 4 summarize the approaches reviewed in
section 3 and show, for each work, the brain structures
segmented as well as the measures and databases used
for evaluation indicating also if they were tested with
normal controls or diseased subjects. As shown from
these tables, atlas-based methods are the most com-
monly used to segment the whole brain whereas they
are rarely used to segment a single structure. They use
to register the atlas/es to the whole volume, which is the
hardest and more computationally expensive task, and
once it is done, performing label propagation and fusion
is as trivial for one label as for all of them. Even among
the hybrid methods, the ones which segment the whole
brain are all based on combinations of atlas-based ap-
proaches with another segmentation strategy. Accord-
ing to these tables, region-based strategies are the less
popular in segmenting brain structures. As stated be-
fore, these methods on its own are not sufficient in most
of the cases and usually need additional anatomical in-
formation or to be combined with another segmentation
strategy, which makes them not very attractive. Further-
more, it can be stated that there are not so many meth-
ods requiring a training phase, such as supervised, ASM
and AAM, which segment the whole brain. This is due
to the fact that these trainings use to be task specific in-
stead of generalistic, with the aim of segmenting a sin-
gle structure or a reduced group of them.

From these tables, we can also observe that the vast
majority of research evaluate their algorithms with non-
lesioned brain databases. As an exception, Fouquier et
al. [145] used a database composed by 30 healthy cases
and 14 pathological (brain tumor) cases. However, they
only provide quantitative segmentation results for the
healthy cases, which does not provide any information
of how these lesions affect the structure segmentation.

To the best of our knowledge, how white matter le-
sions, such as the ones produced in multiple sclero-
sis or lupus, affect these algorithms has not yet been
evaluated. Nevertheless, it is a well known problem
among automatic tissue segmentation methods [169],
where lesion filling techniques [170-172] have already
been applied improving the accuracy of tissue volume
[173, 174]. As far as we know, these techniques have
not yet been evaluated in combination with automatic
brain structure segmentation algorithms and making
these algorithms robust against lesions remains still an
open challenge to the research community.
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Automatic segmentation of severely atrophied brains,
which produces morphological changes in the brain
structures, can also make some methods performance,
such as the ones relying on registration, oscillate. This
could be prevented by means of large atlas databases
with high anatomical variability reducing the dissimilar-
ity between the atlases and the target image. However,
there are not many public databases with ground truth
and furthermore most of them only contain healthy sub-
jects, which makes this solution hard to accomplish.

In order to give an overall quantitative perfor-
mance estimate of the state-of-the-art methods, in
the following section we present an evaluation of the
methods reviewed here, grouping the results both
per segmentation strategies and target structures
and reporting the different evaluation measures and
databases used. Furthermore, the existing challenges
in the evaluation of automatic brain structure segmenta-
tion methods are discussed and a quantitative evaluation
of three well known software tools, each relying on a
different category of our classification, is performed.

5. Validation and quantitative evaluation

5.1. Public databases

Comparing the results of the available brain struc-
tures segmentation methods is not a trivial task. There
are a few publicly available manually labeled images
[175-177] that serve as a ground truth and some au-
thors use their own images for evaluation, which makes
quantitative comparison of the structures segmenta-
tion algorithms difficult. As we have noticed from
the reviewed papers, the most frequently used pub-
lic databases for evaluation include the Internet Brain
Segmentation Repository> (IBSR18), the LONI Prob-
abilistic Brain Atlas® (LPBA40) [178] and the Ham-
mers Adult atlases* [179-181]. Table 6 shows the main
features of these databases, that include the name and
webpage, the number of images it contains, the image
modalities, the number of structures labeled, the scan-
ner used for acquisition, the image resolution, the voxel
size and some demographics such as subjects’ age and
sex.

Zhttps://www.nitrc.org/projects/ibsr

(Accessed: 8 June 2016)
3http://wwwAloni.usc.edu/atlases/AtlasJ)ctail.php?atlas,id=12

(Accessed: 8 June 2016)
4http://brain—development.org/brain—atlases/

(Accessed: 8 June 2016)
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Table 6: Most commonly used public databases for evaluation in brain structure segmentation.

L Name H Subjects l Ages l Modality L Structures l Scanner l Volume (mm) l Voxel (mm) ]

IBSR182 18 7-71 Tl-w 43 12: GE (1.57T) 256x256x128 8: 0.94%0.94x1.5

(14 5,4 9) 6: Siemens (1.5T) 6: 0.84%0.84%1.5
4: 1x1x1.5

LPBA40? 40 19.3-39.5 T1-w 56 GE Signa (1.5T) 256x256x124 | 38: 0.86x0.86x1.5
(205,20 9) 2:0.78x0.78%1.5

Hammers* 30 20-54 Tl-w 83 GE Signa (1.5T) 192x256x124 0.937x0.937x1.5
(150,159)

Volume and voxel dimensions in native space.

5.2. Evaluation measures

Apart from the difficulty of having good datasets,
there is not a standard measure for evaluation and results
are presented using different metrics. Analyzing the lit-
erature we have seen that the most commonly used mea-
sures are based either on volume overlap or contour dis-
tance. Measures based on volume compute how much
the ground truth and the obtained segmentation volume
overlap. The most common metric in this category is
the Dice similarity coefficient (DSC) and variants such
as the Kappa index (KI), the Similarity index (SI), the
relative overlap (RO) or the Jaccard index (JC), but other
metrics are also used such as the specificity (SP), sensi-
tivity (SN), accuracy (Acc), precision (P) and recall (R).
Regarding contour distances, which rely on computing
how close the ground truth and the obtained segmenta-
tion contours are, the most recurrent are the Hausdorff
distance (HD) and its variants, and the mean absolute
distance (MAD).

As an attempt to standardize this evaluation proce-
dure, three MICCAI Challenges5 on brain structures
segmentation have been proposed during recent years.
The first one was the CAUdate SEgmentation 2007
(CAUSE07)°, which was a competition held as part of
the workshop ‘3D Segmentation in the Clinic: A Grand
Challenge’ [182], in conjunction with MICCAI 2007.
The goal of this competition was to compare different
algorithms when segmenting the caudate nucleus from
brain MRI scans, for which they provided 67 images (33
for training and 34 for testing) collected from different
databases. As a comparative measure, they devised a
scoring system that combined several metrics into a sin-
gle overall score. The second one, was the MICCAI
2012 Grand Challenge and Workshop on Multi-Atlas
Labeling’ [183]. The challenge was on whole-brain la-
beling, assuming the majority of the participant meth-

Shttp://grand-challenge.org/ (Accessed: 8 June 2016)

Shttp://cause07.grand-challenge.org/ (Accessed: 8 June 2016)

7https://masi.vuse.vanderbilt.edu/workshop2012/index.php
(Accessed: 8 June 2016)
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ods to be multi-atlas but accepting any method as long
as the approach were described in a reproducible man-
ner. They provided 15 images for training and 20 for
testing, obtained from the Open Access Series of Imag-
ing Studies (OASIS) project® and the primary metric for
evaluation was the mean DSC across all brain labels and
all subjects in the testing cohort. Finally, the MICCAI
2013 Segmentation: Algorithms, Theory and Applica-
tions (SATA) challenge® [184], was created to test the
limits of the applicability of multi-atlas segmentation.
In this case, they proposed two sub-challenges: the free-
for-all sub-challenge, which allowed any segmentation
framework to be applied, and the standardized registra-
tion sub-challenge in which pairwise registrations were
provided to remove the impact of the registration algo-
rithm. A collection of 47 images was provided, 45 of
which were from the OASIS project and the remaining
two were part of the Child and Adolescent NeuroDevel-
opment Initiative (CANDID)', whereas the image labels,
that included seven subcortical structures (accumbens,
amygdala, caudate, hippocampus, pallidum, putamen
and thalamus), were provided by Neuromorphometrics,
Inc.!! As an evaluation metric for strategies compari-
son, they used DSC and the symmetric HD.

5.3. Quantitative analysis of the reviewed literature

We present in what follows a quantitative com-
parison of the works reviewed in this article, sep-
arately for each brain structure, including: hip-
pocampus, thalamus, caudate nucleus, putamen,
pallidum, amygdala, accumbens, lateral ventricles,
and brainstem. Table 7 summarizes the results, as
well as the data and the evaluation measures ob-
tained from the analyzed approaches. Note that the

8http://www.oasis—brains.org/ (Accessed: 8 June 2016)
9https://masi.vuse.vanderbilt.edu/workshop2013/index.php
(Accessed: 8 June 2016)
1Ohttp://www.nitrc.org/projects/candi_share
(Accessed: 8 June 2016)
llhttp://WWW.neuromorphometrics.corn/ (Accessed: 8 June 2016)
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Table 7: Quantitative results of the reviewed methods. Acronyms from left to right are: hippocampus (HIP), thalamus (THA), caudate nu-
cleus (CAU), putamen (PUT), pallidum (PAL), amygdala (AMY), accumbens (ACC), lateral ventricle (LV) and brainstem (BS). Measures
in order of appearance: Kappa index (KI), Jaccard index (JC), Relative overlap (RO), Dice similarity coefficient (DSC), Similarity index
(SI), Mean absolute distance (MAD), Hausdorff distance (HD), Classification rate (CR),Similarityy (Sim), Hausdorff distance 95 (HD95)
and Overlap (Over). Column ‘Ref’ shows the reference work from which the results are obtained (in case they do not come from the

original work).

Segmented structures

[ Ref |

C Article HIP [ THA [ CAU [ PUT | PAL | AMY | ACC [ LV [ BS ][ Measure | Database
Collins (1997) [12] 971 0.86 B B B B 0.82 E E B KI 80v (ICBM)
[971 0.76 - - - - 0.70 - - - ic 80v (ICBM)
= [114] 0.71 - - - - 0.65 - - - KI 30v (ICBM)
-] [114] 0.69 - - - - 0.64 - - - KI 10v (ICBM)
S Shen (2002) [85] o1 0.49 0.64 0.55 0.52 0.41 0.46 E 065 | 0.72 1C TTv (IBSR)
S [91] 0.62 0.74 0.65 0.72 0.60 0.61 - 058 | 079 iC 36v (Desikan et al.)
= Postelnicu (2009) [91] 045 0.60 0.53 0.48 0.23 041 E 0.67 | 0.7 iC T1v (IBSR)
g 0.63 0.75 0.67 0.75 0.60 0.57 066 | 073 ic 36v (Desikan et al.)
= Lin (2010) [20] - 0.81 0.73 0.78 - B - - B K1 15v (IBSR)
- 0.68 0.57 0.64 - - - - - RO 15v (IBSR)
Luo (2011) [92] B 0.84 0.78 0.80 B B B B B DSC 9v (IBSR)
Warfield (2004) [13] [115] 0.81 0.89 0.83 0.88 0.82 0.79 - 0.86 B DSC 39v (FS atlas)
[108] 0.52 0.85 0.68 0.80 0.70 0.65 0.49 0.51 0.85 SI 17v (IBSR)
[108] 373 0.96 1.64 1.04 136 1.33 3.74 3.08 1.08 MAD 17v (IBSR)
Heckemann (2006) [98] 0.82 0.91 0.90 0.90 0.80 0.81 0.71 0.90 | 094 ST 30v
Aljabar (2009) [99] 0.83 0.91 0.88 0.90 0.82 0.78 0.76 0.91 0.94 DSC 275v (CMA)
Artacchevarrfa (2009) [108] 0.75 0.88 0.83 0.86 0.79 0.72 0.67 083 | 091 ST 17v (IBSR)
0.79 0.75 0.64 0.67 0.72 0.85 0.68 0.69 | 0.69 MAD 17v (IBSR)
[104] 0.84 0.88 0.88 0.89 0.77 0.80 0.69 - - DSC 30v (Hammers)
[104] 0.87 - - - - - - - - DSC 30v (ADNI)
[109] 0.75 0.88 0.83 0.86 0.79 0.72 0.67 0.83 | 091 DSC 18v (IBSR)
Létjonen (2010) [95] 081 0.90 0.87 0.91 0.84 0.77 - E B ST 18v (IBSR)
0.88 - - - - - - - - S 60v (ADNI)
[109] 0.80 0.89 0.85 0.90 0.83 0.75 - - - DSC 18v (IBSR)
Collins (2010) [97] 0.89 B B B B 0.83 E E B KI 80v (ICBM)
- 0.80 - - - - 0.70 - - - (¢ 80v (ICBM)
g Heckemann (2010) [116] 0.71 0.80 0.81 0.81 0.63 0.65 0.52 083 | 088 1C 30v (Hammers)
E [104] 0.83 0.89 0.89 0.89 0.77 0.79 0.68 - S DSC 30v (Hammers)
2 Wolz (2010) [113] 0.85 - - - - - - - - DSC 796v (ADNI)
3 Rousseau (2011) [109] 0.83 0.89 0.89 0.89 0.79 0.75 0.67 093 | 093 DSC 18v (IBSR)
Coupé (2011) [110] 0.88 - B B B E E . . KI 80v (ICBM)
- - - - - - - 0.96 < KI 80v
[117] 0.88 - - - - - - - - DSC 80v (ICBM)
[117] 0.85 - - - - - - - - DSC 202v (ADNI)
Jia (2012) [103] B B B B B B 0.91 B DSC 50v (ADNI)
Cardoso (2013) [104] 0.90 B B B B B g - B DSC 30v (ADNI)
0.84 0.89 0.89 0.89 0.80 0.81 0.70 : - DSC 30v (Hammers)
Wang (2013) [102] 0.87 0.92 0.88 091 B 0.82 0.80 B 0.95 DSC 20v (MICCAT 12)
Wang (2014) [96] 0.80 0.89 0.75 0.88 0.84 0.76 0.71 0.84 | 090 DSC 20v (MICCAT'12)
0.58 0.52 0.79 0.38 0.42 0.56 0.55 0.61 0.55 MAD 20v (MICCAI'12)
5.95 4.10 5.36 312 274 3.65 4.00 8.76 6.85 HD 20v (MICCAT'12)
Pipitone (2014) [100] 0.87 B B B E DSC 60v (ADNII)
0.89 - - - - c - - - DSC 81v (FEP)
Wu (2015) [111] 0.85 0.90 0.90 0.89 0.80 0.82 0.71 - B DSC 30v (Hammers)
Pitiot (2002) [119] 0.91 0.90 B B B B B B CR 10v
Morra (2008) [121] 0.70 B B B B B E E B RO 83v (AD)
0.82 - - S - - - - - SI 83v (AD)
4.15 - - < - - - - - HD 83v (AD)
Moghaddam (2009) [120] E 0.89 0.83 0.88 B E DSC 6v (IBSR)
- 0.90 0.75 0.70 - - - - - MAD 6v (IBSR)
- 2.21 2.40 1.92 - - - - - HD 6v (IBSR)
3 Wels (2009) [124] 0.73 B 0.80 0.82 0.75 B E E B DSC 18v (IBSR)
H 091 - 0.67 0.72 0.79 - - - - MAD 18v (IBSR)
g - - 0.66 - - - - - - MAD MICCAI'07
3 Tong (2013) [117] 0.87 P - - - - - - - DSC 202v (ADNI)
0.89 3 - - - - - - - DSC 80v (ICBM)
[126] - 3 0.87 0.90 0.86 - 0.74 - - DSC 35v (MICCAT'12)
Kim (2013) [123] 0.82 - - - - - - - RO 20v (7T)
0.89 - - - - - s 20v (7T)
Benkarim (2014) [126] = B 0.87 0.91 0.87 B 0.76 B B DSC 35v (MICCAT 12)
Fischl (2002) [26] [132] 084 0.88 0.85 0.85 0.80 075 - - E DSC 39v (Sabuncu et al.)
[126] . - 0.82 0.79 0.74 - 0.55 - DSC 35v (MICCATI'12)
[115] 0.85 0.88 0.85 0.84 0.79 0.80 - 0.88 - DSC 39v (FS atlas)
[137) 0.79 0.88 0.79 0.81 0.71 0.71 - - - DSC 30v
[109] 0.75 0.86 0.82 081 071 0.68 0.58 0.78 - DSC 18v (IBSR)
Scherrer (2007) [134] 2 0.80 0.76 0.79 B B B B B DSC BrainWeb
= Akselrod-Ballin (2007) [136] 0.69 0.84 0.80 0.79 0.74 0.63 E E 0.84 DSC 18v (IBSR)
2 1.88 1.44 1.44 1.60 243 1.67 - - 1.62 MAD 18v (IBSR)
S 4.57 2.90 3.07 3.36 375 338 - - 342 HD 18v (IBSR)
a [109] 0.69 0.84 0.80 0.79 0.74 0.63 - - 0.84 DSC 18v (IBSR)
Pohl (2007) [14] 0.81 B B B B 0.86 B B B DSC 50v
Scherrer (2009) [140] B 0.72 0.83 0.77 - B B B B DSC BrainWeb
Riklin-Raviv (2010) [132] 0.76 0.85 0.82 0.85 0.78 0.79 - - B DSC 39v (Sabuncu et al.)
Makropoulos (2014) [131] 0.79 0.90 0.85 - - 0.83 B 0.84 | 092 DSC 20v (ALBERTS)
Duchesne (2002) [114] 0.68 B B B B 0.63 E E B KI 30v (ICBM)
0.67 - - - - 0.61 - - - KI 10v (ICBM)
Pitiot (2004) [31] 3.00 2.00 B B E E 2.60 E HD 20v
2.10 - 1.60 - - - - 1.80 - MAD 20v
Shariatpanahi (2006) [147] E 0.78 0.72 0.74 B B E E B Sim 2v (IBSR)
- 1.54 1.17 1.10 - - - - - HD 4v (IBSR)
Colliot (2006) [144] E E 2.20 B B E E E E HD T0v
- - 1.00 - - - - - - MAD 10v
o - - 0.87 - - - - - - sl 10v
e Babalola (2007) [155] - - 0.73 - - - B B B 1C 24v
§ Patenaude (2011) [15] 0.80 0.87 0.84 0.89 0.78 0.73 0.72 E 0.86 DSC 37v (NC+5Z)
2 0.83 0.87 0.84 0.87 0.78 0.77 0.71 - 0.86 DSC 42v (NC+AD)
0.84 0.87 0.87 0.86 0.76 0.76 0.67 - 0.86 DSC 17v (NC+AD)
0.80 0.85 0.85 0.88 0.72 0.73 0.73 - 0.81 DSC 87v (NC+SZ)
0.80 0.87 0.84 0.86 0.76 0.74 0.67 - 0.85 DSC 14v (NC+PC)
0.81 0.86 0.84 0.89 0.79 0.74 0.70 - 0.83 DSC 139v (NC+ADHC+SZ)
Gao (2012) [153] 0.82 0.91 B B E E E E DSC 24v (HIP); 24v (CAU)
3.32 - 2.36 - - - - - - HDY5 24v (HIP); 24v (CAU)
Fouquier (2012) [145] B 2.13 3.16 325 B B B B B MAD 30v (IBSR+OASIS)
18
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d structures

Article [ Ref HIP PUT

[ THA [ CAU |

[

Measure | Database

Xue (2000) [163] 0.94 0.91

0.92 0.90

0.95
0.93

PAL_[ AMY | ACC [ LV
. B B 098
0.96

[ BS
- ST
KI

Xue (2001) [159] 0.94 0.91

0.92 0.90

0.95
0.93

Region

0.98
0.96

SI
KI

Xia (2007) [77] 0.87

Over 55v

Gui (2012) [160]

0.90 DSC 10v (newborns)

Zhou (2005) [19] 0.71

0.56

0.84 0.81

0.32

0.83
0.29

0.65 Over

MAD

17v (IBSR)
17v (IBSR)

0.32
Tu (2008) [164] 10.50 -

240

7.35 10.15

0.67 -
- 6.60
1.10

HD
MD

14v

1.45 2.50

Karsch (2009) [165] 0.70

0.66

14v
0.80 -
0.77

DsC
Over

Sabuncu (2009) [137] 0.81 0.84 0.84 0.89

0.83 0.80 DSC 30v

Sabuncu (2010) [115] 0.87
0.82

0.87

0.91
0.89

0.87
0.89

0.89
[104] 0.87
[104] -

0.84
0.77

0.82
0.78

DSC
DSC
DSC

0.91 39v (FS atlas)
- 30v (Hammers)

30v (ADNI)

0.70
0.66

He (2011) [166]

0.80
0.77

DSC
Over

20v+25v
20v+25v

0.87
0.77
0.87
0.76

van der Lijn (2012) [167]

DSC
iC
DSC
iC

18v (Set I)
18v (Set I)
18v (Set IT)
18v (Set IT)

Iglesias (2013) [162] 0.80 0.88 0.85 0.89

0.83 0.70 0.81 DSC 8v (PD)

Hybrid

Liu (2013) [138] 0.78
0.83
7.82
4.90
1.25

0.84
0.81
4.21
4.89

0.87
0.84
6.85
5.56

0.89

DSC
DSC
HD
HD
MAD

6v (IBSR)
15v (LPBA40)
15v (LPBA40)
28v (LONI28)
28v (LONI28)

0.81 0.73 0.81

42.68

0.91 0.96

Hao (2014) [16] 0.89
3.26
0.27
0.91
1.88
0.21
0.91
291
0.25

0.72
- DSC
HD
MAD
DSC
HD
MAD
DSC
HD
MAD

30v (ADNI 1.5T)
30v (ADNI 1.5T)
30v (ADNI 1.5T)
30v (ADNI 3T)
30v (ADNI 3T)
30v (ADNI 3T)
57v (3T)
57v (3T)
57v (3T)

results are provided with different measures which
have been obtained on different databases with dif-
ferent number of volumes. Ideally, a comparison of
the methods should have been done using the same
dataset and measures, but as we can see from the
table only a few of those methods share these prop-
erties. The choice of the cited brain structures has
been done because there were the ones for which a
sufficient number of quantitative results to perform
analysis was available. The results are shown as av-
erages for each structure (left and right pair com-
bined), except the brainstem (BS) which is a unique
structure.

From the table we can observe that the most com-
monly used evaluation measures are those based on
volume overlap, in particular DSC. For this reason,
we perform a first analysis based on this measure re-
gardless of the data used, to have an overall quan-
titative estimate of the state-of-the-art methods re-
viewed here. Another reason of choosing an overlap
measure is that the distance measures are calculated
differently in each of the works, even if the name
of the measure is the same, it can be symmetric or
asymmetric and the results can be given in pixels,
millimeters or even being not specified, thus the pro-
vided distance measure is not always comparable.

At first glance, we can see that the structures
on which more works have focused on are the hip-
pocampus and the caudate nucleus, whereas the
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structures on which less attention has been paid are
the brainstem and the nucleus accumbens. Fur-
thermore, we can say that the nucleus accumbens is
the most difficult structure to segment, with a mean
DSC of 0.69, whereas the structures that seem to
get the best results in terms of volume overlap are
the brainstem with a mean DSC of 0.88, closely fol-
lowed by the thalamus (with mean DSC of 0.87) and
the putamen (mean DSC of 0.86). The lower re-
sults for the accumbens are reasonable since it is
the smallest structure, thus small errors in overlap
give the highest changes in the DSC. On the other
hand, the brainstem presents relatively strong con-
trast boundaries therefore its segmentation should
be easier compared to the rest of the structures.

If we perform an analysis by structure, for hip-
pocampus segmentation we can highlight the work
of Hao et al. [16] which we have classified in the hy-
brid category. Their method has been evaluated with
three different databases with a total number of 117
volumes, achieving DSC values ranging from 0.89 to
0.91. Moreover, the works of Cardoso et al. [104]
and Pipitone et al. [100], both atlas-based strate-
gies, which have been tested with 60 and 141 volumes
respectively (two different databases each) obtained
DSC values of 0.84-0.90 and 0.87-0.89. Finally, the
learning-based approach proposed by Tong et al.
[117], achieved DSC values of 0.87 and 0.89 in two
different databases, with a total number of 282 cases.
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Regarding the thalamus, some important works
have to be mentioned, such as the ones by Aljabar et
al. [99] and by Wang and Yushkevich [102], which
achieved DSC coefficients of 0.91 and 0.92 respec-
tively, when tested with 275 and 20 volumes (both
classified in the atlas-based category). Another re-
markable work for segmenting this structure is the
deformable strategy proposed by Patenaude et al.
[15], which was tested with 6 different databases
with a total number of 336 volumes and obtained
DSC values between 0.85 and 0.87. Moreover, the
hybrid approach presented by Sabuncu et al. [115]
achieved a DSC of 0.89 and 0.91 in two different
datasets with a total of 69 testing images.

In caudate nucleus segmentation, the work of Gao
et al. [153], classified as a deformable strategy, ob-
tained a DSC of 0.91 when tested with 24 cases.
Moreover, the atlas-based approach presented by
Wu et al. [111] and tested with 30 cases, achieved a
DSC of 0.90. Finally, the hybrid proposal of Sabuncu
et al. [115] obtained DSC values of 0.87 and 0.89 with
a total of 69 cases.

Segmenting the putamen, some atlas-based strate-
gies have provided good results such as the ones by
Aljabar et al. [99], Lotjonen et al. [95] and Wang
and Yushkevich [102] that achieved DSC values of
0.90, 0.90 and 0.91 respectively when tested with
275, 18 and 20 volumes. Some learning-based strate-
gies have also obtained good results in putamen and
globus pallidum segmentation, which include the ap-
proaches of Tong et al. [117] and Benkarim et al.
[126] , that obtained DSC values for putamen seg-
mentation of 0.90 and 0.91 respectively, and 0.86
and 0.87 for pallidum segmentation, both with a
database composed of 35 images. Finally, the de-
formable approach proposed by Patenaude et al.
[15] is also remarkable for the large amount of data
used for testing (336v). When segmenting the puta-
men, the authors achieved DSC values ranging from
0.86 to 0.89.

For amygdala segmentation we can highlight two
learning-based approaches, which are the ones pro-
posed by Pohl et al. [14] and by Makropoulos et al.
[131] which achieved DSC values of 0.86 and 0.83
respectively, tested with 50 and 20 cases. In the cat-
egory of atlas-based strategies we can remark the
works of Wang and Yushkevich [102] and Wu et al.
[111], both obtaining a DSC of 0.82 when tested with
20 and 30 volumes respectively.

With regard to nucleus accumbens segmentation,
some notable works are those presented by Al-
jabar et al. [99], Wang and Yushkevich [102] and
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Benkarim et al. [126]. The first two are atlas-based
strategies, while the third is a learning-based ap-
proach. The DSC values achieved when segment-
ing this structure are 0.76, 0.8 and 0.76, respectively
(275, 20 and 35 testing volumes).

In segmenting the lateral ventricles and the brain-
stem, atlas-based approaches provide good results.
The work presented by Rousseau et al. [109] ob-
tained a DSC of 0.93 for both structures with a test-
ing dataset of 18 volumes. Furthermore, Aljabar et
al. [99] and Jia et al. [103] achieved both a DSC
value of 0.91 when segmenting the lateral ventri-
cles with 275 and 50 volumes respectively, whereas
Wang and Yushkevich [102] obtained a DSC of 0.95
in brainstem segmentation with a testing cohort of 20
cases. It has to be highlighted that in the other cat-
egories there are not too many works that segment
these particular structures, however the hybrid ap-
proach proposed by Sabuncu et al. [115] achieved
good results when segmenting the lateral ventricles
(DSC of 0.91 with 39 testing volumes).

If we perform a second analysis based only on
the works that use the same database and mea-
sure (DSC) for evaluation, we can state that for the
IBSR18 database, the approach that seems to per-
form best in terms of volume overlap for almost all
the structures is the one presented by Rousseau et
al. [109], which is a patch-based label fusion strat-
egy and therefore classified in the atlas-based cate-
gory. On the other hand, if we look only at the works
that use the Hammers adult atlases database for
evaluation, it seems that the strategy that achieved
the highest DSC for all the evaluated structures is
the one proposed by Wu et al. [111], which is also
a patch-based approach (atlas-based) that dynam-
ically adjusts the patch size during the label fu-
sion procedure. Finally, when using the 35 volumes
of the MICCAI12 database for evaluation, the ap-
proach that performed best is the multi-class dictio-
nary learning approach presented by Benkarim et
al. [126].

5.4. Quantitative analysis of available software

We have evaluated three publicly available and
well-known software tools, each relying on a differ-
ent category of our classification, namely MABMIS
[103] (atlas-based), FreeSurfer [26] (learning-based)
and FIRST [15] (deformable). The three software
tools have been evaluated on the 30 subjects of the
Hammers Adult atlases database [179, 180] with de-
fault parameters. See Table 6 for the details of
this database. The Dice similarity coefficient and the
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Table 8: Software tools evaluation on the Hammers adult atlases database. The results show the Dice similarity coefficient (DSC) and the
Hausdorff distance (HD) for each structure separately (meanztstd). Acronyms from left to right are: hippocampus (HIP), thalamus (THA),
caudate nucleus (CAU), putamen (PUT), pallidum (PAL), amygdala (AMY), accumbens (ACC), lateral ventricle (LV) and brainstem (BS). The
results are averages for each structure (left and right pair combined), except for brainstem. The - symbol indicates that the FIRST software does not
segment the lateral ventricles. (*) The low DSC values reported for the hippocampus are due to the ground truth segmentations of the Hammers
atlases database, in which only the hippocampus head is labeled, whereas the evaluated tools segment the whole structure.

[ Method [ Ms |[ HIP( [ THA | CAU [ PUT [ PAL [ AMY [ ACC [ LV [ BS
MABMIS [ DSC |[ 0.65+0.04 [ 0.85+0.02 [ 0.80+0.03 [ 0.84+0.03 [ 0.71+0.07 | 0.58+0.08 [ 0.50+0.08 [ 0.82+0.04 | 0.73+0.03
(atlas) HD || 17.75+6.35 | 6.73+3.03 | 8.40+2.28 | 5.11+1.11 | 4.98+1.08 | 7.08+2.04 | 7.76:+2.00 | 37.00+2.59 | 16.76-1.89
FreeSurfer | DSC || 0.61+0.03 [ 0.82+0.03 | 0.81+0.02 | 0.80+0.02 | 0.70+0.06 | 0.73+0.03 | 0.48+0.06 | 0.73+0.07 [ 0.83=0.01
(learning) [ HD || 19.00+6.17 | 7.96x+2.74 | 7.00+1.50 | 5.50:0.82 | 5.21:1.61 | 4.37:0.81 | 8.04:1.97 | 39.30+:2.44 | 14.30+1.87
FIRST [ DSC || 0.64x0.02 [ 0.85+0.03 [ 0.85+0.02 | 0.87+0.02 | 0.75+0.05 | 0.74+0.04 | 0.54+0.08 - 0.77£0.10
(deform) | HD || 19.55+5.72 | 7.81+2.87 | 6.34x1.90 | 4.40:+1.13 | 4.65:1.38 | 4.18+0.76 | 9.29+6.91 - 15.63+3.94

Hausdorff distance have been computed for the fol-
lowing structures: hippocampus, thalamus, caudate nu-
cleus, putamen, pallidum, amygdala, accumbens, lat-
eral ventricles and brainstem. The obtained results are
shown in Table 8 for each of the strategies.

Analyzing each strategy separately, we can ob-
serve that in terms of both volume overlap (DSC)
and contour distance (HD), the deformable method
is the one that performs better for caudate nucleus
(0.85 mean DSC / 6.34 mean HD, respectively), puta-
men (0.87 / 4.40) and globus pallidum (0.75 / 4.65),
whereas the atlas-based strategy is the one that per-
forms better for thalamus (0.85 / 6.73) and lateral
ventricles (0.82 / 7.76) segmentation. We can see
from the table that the learning-based strategy pro-
vides the lowest performance in segmenting the tha-
lamus (0.82 / 7.96), the putamen (0.80 / 5.50), the
pallidum (0.70 / 5.21) and the lateral ventricles (0.73
/ 39.30), while the atlas-based strategy provides the
poorest results when segmenting the caudate nucleus
(0.80 / 8.40). On the other hand, looking only at
the HD measure for comparison, we can see that for
hippocampus (17.75) and accumbens (7.76) segmen-
tation, the atlas-based method performs better than
the others.

We can see that the results obtained here mostly
follow the trend observed in the works highlighted
in section 5.3 for each particular structure. For hip-
pocampus segmentation, two of the four enhanced
works were atlas-based (Cardoso et al. [104] and
Pipitone et al. [100]) while the same happened in tha-
lamus segmentation (Aljabar et al. [99] and Wang
and Yushkevich [102]). In caudate nucleus segmen-
tation, the approach that achieved the highest DSC
(Gao et al. [153]), with a total of 24 testing cases, was
a deformable strategy. On the other hand, in puta-
men segmentation, the work of Patenaude et al. [15],
which is the deformable method analyzed in this sec-
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tion, even not being the one that achieved the highest
DSC results, was highlighted due to its results ro-
bustness with a large testing dataset (336 volumes).
Finally, either for accumbens or lateral ventricles
segmentation, almost all of the highlighted methods
were atlas-based [99, 102, 103, 109].

As shown in Table 8, when using MABMIS for
segmentation, the results for the amygdala and the
brainstem are much poorer than the ones of the
learning-based and deformable strategies. The rea-
son for this arises from the database used to build the
atlases tree in the MABMIS algorithm. In this case we
used as atlases the MICCAI’ 12 database, whose labels
for the amygdala and brainstem are not exactly the same
as the ones in the testing dataset (Hammers adult at-
lases). A common practice in the evaluation of multi-
atlas algorithms is to use the atlases database, leaving
one atlas out for testing and repeating this strategy for
all the atlases in the database. This can be a good prac-
tice although it can also provide biased results.

Another relevant issue from the performed quantita-
tive evaluation is that the DSC values obtained for the
hippocampus when using the same tools are much lower
than the ones gathered from the analyzed works in the
literature. This is also due to the ground truth segmen-
tations of the Hammers atlases database, in which the
hippocampus is labeled following a different protocol.
Therefore, the non-existence of a standardized labeling
protocol for brain structures segmentation constitutes
another open problem in order to evaluate the perfor-
mance of automatic brain structure segmentation meth-
ods.

Figure 1 shows some illustrative results of automatic
brain structures segmentation obtained with these dif-
ferent strategies. As can be seen from this figure, the re-
sult of the atlas-based approach is similar to the ground-
truth, in spite of the atlases used were collected from a
different database to that of the target image, whereas
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(a) MABMIS [103]: Multi-atlas (b) FreeSurfer [26]: Bayesian (¢) FIRST [15]: Deformable

(d) MABMIS [103]: Multi-atlas (e) FreeSurfer [26]: Bayesian (f) FIRST [15]: Deformable

(g) Ground-truth axial (h) Ground-truth coronal

Figure 1: Example of automatic structures segmentation using various publicly available softwares. Image a03 from Hammers’s work [179][180]
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Table 9: MICCAI’07 Challenge (CAUSEQ7) results. Acronyms from left to right are: volumetric overlap error (OE), relative absolute volume
difference (VD), average symmetric surface distance (AD), root mean squared symmetric surface distance (RMD) and maximum symmetric surface
distance (MD). OE and VD results are shown in percentage while AD, RMSD and MD are measured in millimeters.

[ Method [ OE T VD [ AD [ RMD | MD | Score |  Strategy |
ISICAD [185] 3109 [ 498 1062 ] 1.03 | 7.03 [ 79.16 [ Multi-atlas
MIAL-SFU [186] |[ 2549 | -5.01 | 056 | 141 | 12.77 [ 75.99 Hybrid
Moghaddam [120] 2998 | -0.96 | 0.64 1.37 11.79 | 75.77 | Learning-based

Table 10: MICCATI’12 Grand Challenge results. Dice similarity coefficient (DSC) results for cortical structures (CS) and non-cortical structures
(NCS). The fourth column of the table shows the mean DSC across all brain labels and all subjects in the testing cohort.

[ Method ][ DSC(CS) [ DSC (NCS) | Overall mean DSC [ Strategy |
Wang and Yushkevich [102] 0.73 0.83 0.76 Multi-atlas
Non Local STAPLE [105] 0.73 0.82 0.75 Multi-atlas
MALP_EM [187] 0.73 .82 0.75 Hybrid

the learning-based approach, as already mentioned, is a locally weighted fusion to obtain probabilistic labels
the one that seems to provide the least accurate results, that were used as priors in an EM refinement step. It is
not being able to provide well defined structure bound- important to remark that the representation of each cat-
aries, and including misclassifications such as the ones egory in this challenge may be biased since, as said be-
in the lateral ventricles (purple label). The deformable fore, although any reproducible method was accepted,
method, contrary to the other two, performs a well- it was assumed the majority of the participant methods
defined segmentation, as it is topologically constrained. to be multi-atlas based. Therefore, it should come as no
surprise that the best strategies relied on the atlas-based
5.5. Quantitative analysis of the MICCAI Challenges strategy. The obtained results for these three methods

. in terms of Dice similarity coefficient are shown in Ta-
Analyzing the results of the MICCAI challenges we ble 10

see that for caudate nucleus segmentation (CAUSEQ7
challenge) the method that gave the best overall re-
sult was the ISICAD [185]. This method performed
an adaptive local multi-atlas segmentation that locally
decided how many and which atlases were needed to
segment a target image and registered only the selected
parts of those atlases. The second place in this challenge
was for the MIAL-SFU [186] algorithm, that can be
classified in the hybrid category, since it used FreeSurfer
segmentation for initialization (which has been classi-
fied as a learning-based algorithm) and then looked for
the best transformation to perform label propagation.
Finally, the third position in this caudate segmentation
challenge was for the method proposed by Moghaddam
and Soltanian-Zadeh [120], a learning-based strategy.

Finally, in the free-for-all subchallenge of the
MICCAI SATA challenge the mean/median DSC re-
sults ranged from 0.61/0.63 to 0.86/0.87 and the
mean/median Symmetric HD results ranged from
3.30/3.10 mm to 7.68/8.00 mm. The best en-
try in terms of both DSC and Symmetric HD was
the UPENN_SBIA_MAM algorithm [188], which was
based on a multi-atlas strategy that performed atlas se-
lection.

6. Concluding remarks and future trends

6.1. Overview

The numerical results obtained in the challenge for these In this article we have reviewed the problem of
three methods are detailed in Table 9. automatic brain structures segmentation in MR im-

For the MICCAI 2012 Grand Challenge, we observe ages, presenting a classification of the state-of-the-
that the best segmentation strategy was the one pre- art methods based on the segmentation strategy
sented by Wang and Yushkevich [102] which performed used, where we have identified five main categories.
label fusion followed by ‘corrective learning’. The sec- The first category includes the approaches that rely on
ond position was for the Non Local STAPLE (NLS) topological atlas registration, either using a single at-
algorithm [105], which is also a label fusion strategy, las (label propagation) or a set of them (label fusion).
while the third position was for the MALP_EM [187] The second category in this classification comprises the
algorithm. MALP_EM combined both multi-atlas label learning-based strategies which have been subdivided
propagation and probabilistic segmentation, performing into supervised methods such as classifiers, like ANNs
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or SVM, and methods based on Bayesian inference. Fi-
nally, the last three categories include deformable meth-
ods (which include ACM, ASM, AAM and other en-
ergy minimizing strategies), region-based approaches
and strategies that combine some of the methods of the
previous categories. To conclude this classification, we
have discussed about the strengths and weaknesses that
each category presents.

As we have seen from Tables 2 to 4, a compari-
son of the state-of-the-art methods is not an easy task,
since there is a lack of standard in both databases and
metrics for evaluation. In order to solve this problem,
some challenges [182—184] have been proposed in re-
cent years, but they are either target specific (caudate
nucleus) [182] or methodology oriented (multi-atlas)
[183, 184], which makes the participant methods in the
challenge to be not representative of the overall strate-
gies available in the literature. Furthermore, the quanti-
tative results of the challenges are often given in terms
of average measures for the whole structures instead
of giving evaluation results for each structure indepen-
dently, which means that an analysis of which method
performs better for a given structure cannot be deduced.

We have analyzed the results of the different
works reviewed in this article, providing an overview
of the state-of-the-art in terms of different evalua-
tion measures, databases and number of cases used,
showing the results both from the point of view of the
segmentation strategies and segmented target struc-
tures. Furthermore, a quantitative evaluation of three
publicly available software tools, each relying on a dif-
ferent category of our classification, have been per-
formed. Lastly, we have commented on the results and
the methods presented to the three MICCALI challenges
in brain structures segmentation.

6.2. Future trends

In recent years, it seems there exists a trend on the
use of multi-atlas strategies for brain structures segmen-
tation, either as a segmentation method on its own or
combined with other strategies. Given the fact that its
greatest weakness is that it is computationally very ex-
pensive due to the big amount of registrations it has
to perform, some strategies have included either atlas
selection [94, 97, 102] to reduce the number of regis-
trations or non-local weighting label fusion [109, 110]
in which only affine registrations are needed, which re-
duces significantly the computational time. All that, in
combination with computers becoming more powerful,
seems to make multi-atlas approaches a good strategy
to follow [102, 111]. Furthermore, hybrid methods
have shown to achieve good results [16, 19, 115] in
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segmenting brain structures as they can combine the
advantages of each category of methods and try to
overcome their weaknesses with the strengths of the
other methods in the amalgamation. Because of that,
combining multi-atlas methods with any other method
in the classification could be a good line of investiga-
tion. Atlases give robustness to the method and they
are good in providing spatial information for structures,
so merging atlases with another method which is able
to model the structures appearance such as supervised
classifiers or AAM could lead to improved segmenta-
tion results. Van der Lijn et al. [167] presented work re-
lying on this strategy for hippocampus and cerebellum
segmentation, achieving mean Dice similarity indexes
of 0.87 and 0.95 respectively.

Most of the methods reviewed here are tested with
images of non-lesioned brains, either healthy subjects or
patients with schizophrenia, Alzheimer, epilepsy or at-
tention deficit hyperactivity disorder. One of the biggest
problems is that, as far as we know, there is not any pub-
licly available database of lesioned brains with ground
truth of structures segmentation, to test or train the
methods. However, when performing structures seg-
mentation in brain MRI of patients with demyelinating
lesions (like in multiple sclerosis or lupus) or space-
occupying lesions (such as tumors), the performance of
some of these methods is affected, providing less accu-
rate results. To the best of our knowledge, how these
lesions affect the automatic brain structure segmenta-
tion algorithms has not yet been evaluated. In Figure 2
we show an example of how these lesions can intro-
duce errors in the automatic brain structures segmen-
tation. In Figure 2a we can see how either the caudate
nucleus (yellow label) and the lateral ventricle (brown
label) are oversegmented, due to the fact that the auto-
matic method is interpreting the lesions as part of the
structures. The same situation is seen in Figure 2b,
in which multiple sclerosis lesions produce false pos-
itives in the putamen (pink label) and lateral ventricle
segmentation. As far as we know there has not been
a proposal tackling this issue and therefore there is a
need to improve the performance of such methods try-
ing to make them robust with brain lesions. Note that
an accurate segmentation is necessary in order to per-
form disease follow-up, for instance, in multiple scle-
rosis patients where deep gray nuclei atrophy is closely
related to the magnitude of inflammation. Interestingly,
lesion filling techniques [170-172] to reduce the effect
of hypo-intense T1-weighted multiple sclerosis lesions
have already been applied to assess the progression of
GM atrophy [173, 174] showing an improvement on
the accuracy of tissue volume. Furthermore, integrat-
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(a)

(b)

Figure 2: Structures segmentation in brains with demyelinating lesions. FreeSurfer [133] segmentation results show that these lesions affect the
structures segmentation performance, increasing the number of false positives. Images show (1) the original T1-weighted MRI, (2) the lesion
ground truth and (3) the automatic segmentation. Figure 2a shows oversegmentation of the caudate nucleus (yellow) and the lateral ventricle
(brown) whereas in Figure 2b the same situation is shown for the putamen (pink) and the lateral ventricle. Images from Vall d’"Hebron Hospital,

Barcelona.

ing automatic lesion segmentation and filling on auto-
matic tissue segmentation pipelines has recently been
studied [169], showing very similar results to that of
manually segmenting the lesions. This has not yet been
integrated as part of any automatic brain structures seg-
mentation pipeline and indeed opens new challenges to
the research community.
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