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ABSTRACT

The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is
demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending
plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most
efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft
reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating
plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the
downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between
granules and in simulations of magnetoconvection.

Key words: instabilities – magnetohydrodynamics (MHD) – Sun: granulation – Sun: interior – Sun: magnetic fields
– Sun: photosphere

1. INTRODUCTION

Millions of granules representing the visible tops of
convective cells cover the photosphere of the Sun. They have
different shapes and sizes. Hot material rising to the surface in
bright granules falls back down along the cool and dark
intergranular lanes. Numerical experiments show that the
topology of convection beneath the solar surface is dominated
by effects of stratification. This leads to gentle, expanding and
structureless warm upflows on the one hand, and strong,
converging filamentary cool downdrafts on the other hand
(Stein & Nordlund 1989). These experiments are confirmed by
spectral observations of granulation which reveal blue shifts in
the bright sections with red shifts and increased line widths in
the darker sections (Nesis et al. 2001).

The magnetic field is ubiquitously present in the solar
photosphere and exhibits a wide range of scales and strengths
(Solanki et al. 2006; de Wijn et al. 2009). Magnetic flux
emergence through the solar surface is driven by buoyancy and
advection. On granular scales, it undergoes continual deforma-
tion and displacement because the ratio of gas to magnetic
pressure is large in the convection zone. Diverging upflows
sweep magnetic flux to intergranular downflow lanes where the
downflow speeds significantly exceed the upflow speeds (Tao
et al. 1998; Thelen & Cattaneo 2000; Weiss et al. 2002; Vögler
et al. 2005). This results in a magnetic field strength of a few
hundred Gauss at the solar surface. Flux tubes emerging
through the surface are produced either from emerging loops
that then open up through the top or by concentration of
magnetic flux by horizontal flows in the intergranular lanes. Far
below the surface their field lines spread out in many different
directions (Stein & Nordlund 2006).

Further intensification to kG strength may be driven by the
mechanism of convective collapse (Webb & Roberts 1978;
Spruit & Zweibel 1979; Bushby et al. 2008). Numerical
simulations of convective collapse (Danilovic et al. 2010) and
Hinode/SOT observations (Nagata et al. 2008; Shimizu
et al. 2008; Fischer et al. 2009) show downflows of between
7 and 14kms−1.

Downdrafts are often seen to support vortices in simulations
of convection (Muthsam et al. 2010) and magnetoconvection
(Nordlund et al. 2009). Moll et al. (2011) found that the vortex

features which develop in the downflow lanes typically exist
for a few minutes, during which they are moved and twisted by
the motion of the ambient plasma. Shelyag et al. (2013) argued
that the apparent vortex-like motions are signatures of
propagating twists or torsional Alfvénic perturbations rather
than vortices.
Vortex flows were only recently detected in SST (Swedish

Solar Telescope) and Sunrise observations of magnetic bright
points in the photosphere (Bonet et al. 2008, 2010; Steiner
et al. 2010). Photospheric twists and vortices are thought to be
responsible for producing similar types of motions in the solar
atmosphere. These include chromospheric swirls (Wedemeyer
Rouppe van der Voort 2009), prominence tornadoes (Li
et al. 2012; Wedemeyer et al. 2013), twists on spicules (De
Pontieu et al. 2014). However, no clear connection has yet been
established although some studies show that vortex tubes can
penetrate into the chromosphere and substantially affect the
structure and dynamics of the solar atmosphere (Kitiashvili
et al. 2012a).
Different source terms in the vorticity equation have been

considered as possible candidates for enhancement of vorticity
in the solar context. Non-magnetic simulations of turbulent
convection show that vortex stretching can be a primary source
for the generation of small-scale vorticity (Kitiashvili
et al. 2012b). The baroclinic term in the vorticity equation
may lead to the formation of horizontally oriented vortex tubes
(Steiner et al. 2010): the gradients of pressure and density are
close to vertical in the convection zone, so their cross product is
mainly horizontally oriented. During this process the vortex
tubes move into the intergranular lanes and become vertical due
to convective downdrafts. The generation of the vortical flows
observed by Bonet et al. (2008) has been attributed to
compression: the downdraft acts as a sink and as the matter
has angular momentum with respect to the draining point, it
must spin up when approaching the sink, giving rise to a
whirlpool also known as the bathtub drainage effect (Spurk &
Aksel 2008, p. 358).
The mechanisms described above are hydrodynamic in their

nature. In the real Sun, interaction between vortices and
ubiquitous magnetic fields is expected. Simulations of
magnetoconvection usually begin with a weak, initially random
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(Moll et al. 2011) or uniform magnetic field (Stein &
Nordlund 2006). Vortices with a small inclination appear
mostly inside the integranular lanes where the downflows are
strong. Horizontal flows advect the weak field and concentrate
it in the turbulent downflow lanes where vortical motions are
already well established.

One would expect stronger magnetic fields to have a
stabilizing influence on the turbulent flows and vortex motions.
However, Shelyag et al. (2011) found that when the field
strength rises to a few kilogauss in the intergranular lanes,
small-scale vortices and torsional motions develop at the
photospheric level that are co-spatial with these magnetic field
concentrations. These small-scale motions are not seen in the
non-magnetic model. They demonstrated that the vorticity
enhancement in the intergranular lanes was caused by a source
term in the vorticity equation which contains magnetic tension.

Here, we describe how a downdraft may amplify twists of an
ambient magnetic field. The theoretical mechanism behind the
amplification process is the Alfvén instability introduced by
Taroyan (2008). In the following sections, we present the
model, the conditions under which twists may become
amplified. In Section 3, we tackle the problem analytically to
find the continuous spectrum of eigenvalues and construct the
eigenfunctions. A forcing term is introduced in Section 4 and
the governing equations are integrated numerically to examine
the spatio-temporal evolution in the linear regime. In Section 5,
the energy source and the physical nature of the instability
associated with the twist amplification are discussed.

2. MODEL AND GOVERNING EQUATIONS

2.1. Downdraft Model

A near-vertical segment of an expanding magnetic flux tube
is embedded in a gravitationally stratified convection zone and
permeated by a field-aligned downdraft as shown in Figure 1.
We assume that the plasma inside the tube remains in
equilibrium with the surrounding medium.

The density in the convection zone increases with depth due
to the gravitational stratification. If the magnetic field remains
constant then the density inside the tube will have to increase
with depth as well in order to sustain a horizontal total pressure
balance. According to mass conservation, the downdraft speed,

= ´u cconst0 A
2, where m r=c BA 0 0 0 is the Alfvén speed

defined as the ratio of the magnetic field and the square root of
density with m0 being the permeability of free space. Note that

the flow speed decreases more rapidly with depth than the
Alfvén speed does.
The critical level where =u c0 A corresponds to equipartition

between the magnetic energy density, mB0
2

0, and the kinetic
energy density of the flow, r u 20 0

2 . The equipartition level
may not exist if the magnetic energy dominates the kinetic
energy of the downdraft everywhere in the upper subphoto-
spheric layers.
We adopt a cylindrical coordinate system, where z denotes

depth and θ represents the azimuthal coordinate. In the thin flux
tube approximation, the linear equations governing the motion
of small axisymmetric twists are decoupled from the other
MHD equations. These motions are governed by the azimuthal
components of the equations of momentum and induction
(Hollweg et al. 1982; Ferriz-Mas et al. 1989):
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where bθ, and vθ denote the azimuthal perturbations of the
magnetic field and velocity, with
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¶
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D
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z
, 30

being the substantial derivative. Note that when θ is replaced
by the Cartesian coordinate x, the same set of equations
describes the propagation of shear Alfvén waves in a flowing
plasma with a uniform magnetic field.
In the absence of an equilibrium flow ( =u 00 ), the set of

Equations (1) and (2) describes the propagation of incompres-
sible Alfvén waves in a static medium. The waves result from
the combined effects of the tension force (right-hand side of
Equation (1)) and the plasma inertia (first term on the right-
hand side of Equation (2)).
The presence of a constant flow ( =u const0 ) leads to a

constant Doppler shift due to the added advection term in the
substantial derivative(3).
The last term on the right-hand side of the induction

Equation (2) appears only when the equilibrium flow is
variable. It represents the effects of compression or expansion
of the plasma on the incompressible axisymmetric twists.

2.2. Twist Amplification: Analogy With Vortex Stretching

In a weak field, the Alfvén speed is small compared with the
speed of the flow, and the inertial term in Equation (2) can be
ignored. This eliminates the variable, vθ from the induction
equation, so it can be rewritten as:

( )= -
¶
¶

q
q

Db

Dt
b

u

z
. 40

Therefore, expansion of the plasma (¶ ¶ >u z 00 ) corre-
sponds to attenuation while compression (¶ ¶ <u z 00 )
corresponds to amplification of bθ. From the preceding
discussion it follows that the latter situation is more likely to
occur in downdrafts.

Figure 1. Cartoon representation of an intergranular downdraft (red) in a near-
vertical flux tube (green). The tube is in a horizontal pressure balance with the
surrounding convection zone, where the density increases with depth due to
gravitational stratification. The red vertical arrows become shorter and darker
as the downdraft slows down in the lower dense regions. Twisting motions of
the tube are indicated with blue arrows.
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Equation (4) looks remarkably similar to the vorticity
equation for an incompressible fluid:

( )
w

w=
¶
¶

D

Dt

u

z
, 50

where ω denotes vorticity in the z direction. The right-hand side
of Equation (5) represents the well-known vortex stretching
effect: the angular velocity of a vortex tube increases when it is
stretched and decreases when it is compressed (Spurk &
Aksel 2008, p. 100).

In contrast, Equation (4) shows that the θ component of the
magnetic field increases when the flow decelerates and
decreases when it accelerates. The fact that the twist
amplification stems from the induction equation emphasizes
the magnetic nature of the process. Twist amplification may be
thought of as a magnetic analogue of vortex stretching.

In a more general situation, when the magnetic field is not
weak, the twist evolution requires a more detailed treatment. In
the following sections we study the twist amplification
analytically as an eigenvalue problem and numerically, and
analytically. We also discuss the energy source, and the physics
of the amplification process.

3. UNSTABLE TWISTS IN AN EXPONENTIALLY
DECAYING DOWNDRAFT

The set of governing Equations (1) and (2) can be reduced to
a single second order PDE for the magnetic field perturbation,
bθ (Taroyan 2008):
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where ( )=u u z0 0 , and ( )=c c zA A . In deriving the above
equation, we have used the equation of mass conservation. In a
static medium with =u 00 , the well-known wave equation can
be derived from Equations (1) and (2):
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Equation (7) was first analyzed by Ferraro (1954) in the
context of Alfvén wave propagation in the solar atmosphere.
Solutions in terms of the Bessel functions were constructed for
an isothermal atmosphere with an exponential density profile:

( ) ( )r r=
⎛
⎝⎜

⎞
⎠⎟

z

z
0 exp , 80 0

0

where z0 is the scale height. The corresponding Alfvén speed is
given by:

( ) ( )= -
⎛
⎝⎜

⎞
⎠⎟c c

z

z
0 exp

2
. 9A A

0

Note that in our notations z denotes depth. Equation (7) with
the profile(8) was subsequently analyzed by different authors.
They found standing wave solutions in terms of the Bessel
functions (Ferraro 1954; An et al. 1989) or propagating wave
solutions in terms of the Hankel functions (Hollweg 1978;
Cally 2012) depending on the imposed boundary conditions.

An advantage of the smooth exponential profile is the
absence of any model dependent artificial reflections that may
arise due to discontinuities in the Alfvén speed or its

derivatives (Cally 2012). One of the drawbacks is the finite
Alfvén travel time to = -¥z (An et al. 1989).
In studies of the convection zone, it is common to adopt a

polytrope with a linear temperature. Here, we adopt the
exponential profiles(8) and (9) with a given scale height, z0.
This approach allows us to compare our results with those
already known from studies of Alfvén wave propagation in a
stratified and static environment. Conservation of mass requires
that the downdraft speed diminishes as:

( ) ( )= -
⎛
⎝⎜

⎞
⎠⎟u u

z

z
0 exp , 100 0

0

provided the tube radius remains constant. We will see that the
problems associated with the finite travel time to = -¥z are
no longer relevant because the downdraft prevents propagation
into the super-Alfvénic region.
The temperature represented by the square of the sound

speed, g r=c ps
2

0 0, can be determined from the equilibrium
equation of motion:

( )
r

= - + -u
du

dz

dp

dz
g

1
, 110

0

0

0

where p0 is thermal pressure, g is the gravitational acceleration,
and  is a general force term which vanishes at = ¥z .
Integration of Equation (11) yields:
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where ( )=c c 0s0
2 2, and g=¥c g z2

0 is the limit of cs
2 at = ¥z .

Thus, in contrast to a static force-free model, the sound speed is
no longer a constant. Instead, the behavior of the sound speed
and temperature will depend on the prescribed values for c0
and ¥c .
The coefficients in the governing Equation (6) are expressed

through the Alfvén and flow speeds. Therefore, in the linear
regime, the twist evolution does not depend on the temperature
profile and the subsequent analysis is carried out without
specifying the values of c0 and ¥c .
Equation (6) is Fourier analyzed and the result is the

following ODE:
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0
2
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2
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2

where

ˆ ( ) ( )w= -q qb b i texp . 14

The equipartition level where =u c0 A represents a singularity
in Equation (13). For simplicity we set this level at z=0, so
that ( ) ( )=u c0 00 A . It separates the upper super-Alfvénic
region, <z 0, from the lower sub-Alfvénic region, >z 0.
For small wavelengths, l z0, away from the singularity at

z=0, local phase speeds u c0 A can be introduced. The plus
sign corresponds to propagation in the positive direction. The
minus sign represents propagation in the negative direction in
the sub-Alfvénic region ( >z 0) and propagation in the positive
direction when the flow is super-Alfvénic ( <z 0). Thus, in
contrast to the static model, any perturbation in the super-
Alfvénic region will be swept down into the sub-Alfvénic
region without being able to reach = -¥z .
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We introduce a dimensionless variable:

( )t = =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

c

u

z

z
exp , 15A

0

2

0

so that, = t
t
,d

dz z

d

d0
and transform Equation (13) into:
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The regular singularity at t = 1 corresponding to z=0
requires separate treatment for >z 0 (t > 1) and
<z 0 ( t< <0 1).
We show in the appendix that the finite solution in the region
>z 0 can be represented in terms of the modified Bessel

function Kν:
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with ( )n > 0R . According to the definition(17) of ν, a
positive value of ( )nR corresponds to a positive value of ( )wI ,
i.e., exponential growth in time. The growth rate is determined
by the expression
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Therefore, a finite solution to Equation (13) corresponds to an
instability ( ( )w > 0I ). Note that solutions exist for arbitrary ν

with positive ( )nR and the spectrum of eigenvalues is
continuous. It is well-known that if the coefficients of the
differential equation are singular at the boundary or if the
interval is infinite then the spectrum of eigenvalues is
continuous and a Fourier integral replaces the linear combina-
tion of the eigenfunctions (Courant & Hilbert 1966, p. 340). In
the present problem, the interval extends from z=0 to ¥ and
there is a singularity at z=0.

The existence of the instability is not affected by the flow
behavior in the region <z 0. However, for completeness we
construct the solution in the super-Alfvénic region assuming
that the flow profile is determined by Equation (10). The finite
solution in the region <z 0 is expressed in terms of the Bessel
functions n nJ Y, (see appendix):
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The coefficient C1 is derived assuming that vθ vanishes at
= -¥z due to the super-Alfvénic flow.
Figure 2 displays ˆqb as a function of z and ν, where the

normalization ˆ ( ) =qb 0 1 is applied. For simplicity, only real
and positive values of ν corresponding to purely imaginary ω
are considered. The corresponding eigenfunction shown in
Figure 2 is also real. Note that the maximum of ˆqb moves away
from the equipartition level (z=0) as ν increases.
Our analysis of the eigenvalue problem reveals the existence

of an instability: small axisymmetric twists are exponentially
amplified in a downdraft that exponentially decays with depth.

4. THE SPATIO-TEMPORAL EVOLUTION
OF THE INSTABILITY

In this section, the evolution of a single twist is presented
with two circumstances investigated. Both scenarios launch a
single Alfvénic pulse from within the lower sub-Alfvénic part
of the flux tube. However, the first case involves a static plasma
with an exponential density profile(8), whereas the second
case incorporates a downflow defined by Equation (10).
Equations (1) and (2) are numerically integrated using the

flux-corrected transport scheme (Boris et al. 1993). A uniform
grid is used which contains 1700 grid-points. The domain is
extended in such a way that the boundaries are sufficiently far
away from the region of interest as not to interfere with the
simulations. The critical point where the flow changes from

Figure 2. Plot of ˆqb as a function of z and ν, where the normalization ˆ ( ) =qb 0 1
is applied. The color bar indicates the magnitude and the sign of ˆqb . Only real
and positive values of ν corresponding to purely imaginary ω and real ˆqb are
considered.
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super-Alfvénic to sub-Alfvénic is situated at z=0. The
extension of the domain also means that any reflections or
change in behavior of the perturbations is purely down to
physical mechanisms, such as Alfvén speed variation, and is
not a numerical implication caused from a boundary region.

In what follows, length, speed and magnetic field are
normalized with respect to the scale length, z0, the Alfvén
speed ( )c 0A , and the equilibrium magnetic field B0,
respectively.

A smooth driver which describes a small-amplitude
perturbation is added to the right-hand side of Equation (1)
as a source term, F:

( )
r

p p=
-
-

-
-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟F

A t t

t t

z z

z z
sin sin . 26

0

2 min

max min

2 min

max min

Here, A is amplitude, t is time normalized with respect to
( )z c 00 A , where =t 0min and =t 0.5max are the start- and end-

times for which the driver is active. Similarly, =z 2min and
=z 2.3max are the start- and end-points within the tube where

the driver is active.
An exponentially decreasing profile is generated for the

Alfvén speed (Figure 3: Top panel) with the plasma in a static
equilibrium. A single twist is launched which separates into
upward (negative direction) and downward (positive direction)
propagating pulses (Figure 3: Middle and Bottom panels). The
upward propagating pulse has an increasing amplitude in the
velocity perturbation and a decreasing amplitude in the

magnetic field perturbation. Note that the kinetic energy
remains finite due to the density decrease with height. This
behavior is well-known from studies of Alfvén wave propaga-
tion in stratified media (Cally 2012).
The downward propagating pulse is impeded by the ever-

diminishing Alfvén speed in the positive direction. The twist is
not reflected due to the smooth equilibrium profile and its
propagation comes to a virtual standstill until it is lost to the
background plasma as the Alfvén speed approaches 0.
The introduction of a plasma flow yields some interesting

results (Figure 4). The initial pulse is launched from within the
flux tube and splits into two pulses that propagate in opposite
directions, much like what is seen in the static case. The pulse
that travels in the positive direction behaves identically to that
seen in Figure 3. That is, the propagation of the pulse stalls
with the qv and qb amplitudes decreasing until they are
eventually lost to the background.
The pulse that propagates upward in the negative direction

behaves somewhat similarly to the pulse in Figure 3. However,
unlike the static case, both bθ and vθ increase in amplitude as
they propagate. As the pulse approaches the critical point,
z=0, the propagation virtually ceases with qv and qb
continually amplifying (Figure 4: Middle and Bottom panels).
This situation is allowed to arise due to the propagation speed

-c uA 0 gradually approaching 0. Using the expressions for the
Alfvén and the flow speeds it can be shown that the travel

Figure 3. Top: Alfvén speed profile within a vertically stratified flux tube with
no flow. Middle: qv velocity distribution for time 0.5–4.5. Bottom: the
corresponding qb profile.

Figure 4. Top: Alfvén speed and flow-speed profiles within the modeled
downdraft. The critical point ( ) ( )=c u0 0A 0 can be seen clearly at z=0 where
the two plots intersect one another. Middle: qv velocity distribution for time
0.5–8. Bottom: the corresponding qb profile.
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time to z=0,

( )ò=
¢

-
t

dz

c u
, 27

z

A
0 A 0

is infinite. The pulse propagation does not extend to the super-
Alfvénic region and the twist amplification is therefore
unaffected by the flow profile in the region above the
equipartition height. The pulse amplification in the vicinity of
z=0 confirms the instability found in the preceding section.

Figure 5 displays the twist evolution when the downdraft
speed is much smaller than the Alfvén speed at z=0. The
downward propagating component damps as in the previous
cases. It is interesting that the upward propagating bθ
component initially attenuates before it begins to grow in the
vicinity of the equipartition height at around = -z 3. Therefore
growth does not occur away from the equipartition height in the
sub-Alfvénic region. Nevertheless, the downdraft maintains a
twist which is larger than the static case (Figure 3).

In Figure 6, a ratio ( ) ( )u c0 00 A of 7 is taken. This is unlikely
to occur in the real Sun. However, Figure 6 is still instructive as
it shows the spatio-temporal evolution of a twist when the
source term is located in the super-Alfvénic region. Both the
upward and downward propagating components are swept
down toward the sub-Alfvénic region by a strong downdraft.
The downward propagating component quickly escapes into
the sub-Alfvénic region with subsequent attenuation by the
tension force. The upward propagating component, on the other

hand, grows as it approaches the equipartition level at around
z=4. It never reaches the sub-Alfvénic region because the
local propagation speed –u c0 A becomes small in the vicinity of
z=4. The associated travel time to z=0 is determined
analogous to Equation (27) and it is therefore infinite.

5. ENERGY CONSIDERATIONS AND THE PHYSICS OF
TWIST AMPLIFICATION

In fluid dynamics, the process of wave shoaling is well-
known (Wiegel 1992, p. 150). When a tsunami approaches the
shallower coastal water the leading edge slows down while the
trailing part is still moving rapidly in the deeper water. As a
consequence, the wavelength decreases proportionally to the
group speed of the wave. This compression of the tsunami
leads to a pileup and growth in the wave height.
The presented mechanism might seem to be a magnetic

analogue of the wave shoaling process due to a similar decrease
in the propagation speed –c uA 0 when the wave approaches the
equipartition level. However, the Fourier analysis applied in
Section 3 reveals the presence of an instability ( ( )w > 0I ).
According to Equations (14) and (42), the exponential growth
proportional to ( ( ) )w texp I is global in z.
Similarly, the analysis of the spatio-temporal evolution of a

driven pulse carried out in Section 4 shows a reduction in the
travel speed as the pulse approaches the equipartition level but
no corresponding decrease in the wavelength (Figures 4–6). An
evanescent tail can be seen to extend into the super-Alfvénic
region in Figure 4 and into the sub-Alfvénic region in Figure 6

Figure 5. Same as Figure 4 but with ( ) ( )= ´u c0 0.2 00 A .
Figure 6. Same as Figure 4 but with ( ) ( )= ´u c0 7 00 A .
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as the pulse grows in amplitude. Therefore, the physics of wave
shoaling is different from that of the twist amplification process
presented in this paper.

In order to gain a physical insight into the process of
amplification and to identify the source of wave energy, we
derive the following equation of wave energy (see appendix):

( )
¶
¶

+
¶
¶

= -
¶
¶

W

t

F

z

u

z
W , 28T W

m
0

where WT is the sum of the kinetic and magnetic energy
densities:

( )
r

m
= + = +q qW W W

v b

2 2
, 29T k m

0
2 2

0

and

( )
m

= - q qF u W
B

v b , 30W T0
0

0

is the total wave energy flux. The second term in Equation (30)
is the energy flux in the absence of a flow, and the first term is
the flow contribution. The right-hand side of Equation (28)
represents a source term which is present due to the wave-flow
coupling. Note that this term is absent when the flow is
constant.

The nonlinear coupling between the Alfvénic and long-
itudinal motions due to the magnetic pressure term in the
longitudinal momentum equation is well known. Equation (28)
demonstrates coupling of a decelerating flow (¶ ¶ <u z 00 ) to
Alfvénic twists. This allows the flow’s kinetic energy to be
converted into magnetic twists in the linear regime. In this case,
the right-hand side of Equation (28) acts as a source of energy.
Conversely, in an accelerating flow (¶ ¶ >u z 00 ) the right-
hand side of Equation (28) acts as a sink of energy.

The evolution of the total energy, WT is determined by the
relative magnitudes of flux divergence and the source term. In
regions where the flow speed gradient is small, the twist
evolution is determined by the second term in Equation (28).
Flux divergence (¶ ¶ >F z 0W ) leads to twist attenuation and
loss of energy, WT. Flux convergence (¶ ¶ <F z 0W ), on the
other hand, leads to amplification and an energy increase.
However, the twist amplification in one region is accompanied
by attenuation in a different region. An example of amplifica-
tion due to flux convergence is the wave shoaling process
discussed above. The situation is different in regions where the
gradient of the decelerating flow is large enough to determine
the evolution through the source term. In this case, the twist
growth is not accompanied by shrinking, which is in agreement
with the presented results.

Figure 7 is a cartoon representation of the wave-flow
coupling in a decelerating downdraft: the descending plasma
(red) amplifies and transfers energy into a twisted field line
(green). The energy flux is small and the pulse evolution is
mainly determined by the source term when the propagation is
against the flow. A constant flow will have no effect on the
twist except a constant Doppler shift, whereas an accelerating
flow will smooth out any perturbations in the magnetic field.

It is possible to show that the total wave energy content
grows due to the wave-flow coupling. The integral of

Equation (28) is:

( ) ( ) ( )ò
¶
¶

+ ¥ - -¥ = -
¶
¶-¥

¥E

t
F F

u

z
W dz, 31T

W W m
0

where

( )ò
r

m
= +q q

-¥

¥ ⎡
⎣⎢

⎤
⎦⎥E

v b
dz

2 2
. 32T

0
2 2

0

First, ( )¥ =F 0W due to vanishing bθ and vθ at = ¥z .
second, the boundary condition we have imposed on vθ to
vanish at = -¥z implies zero flux at = -¥z : indeed it is
easy to check that =qu b 00

2 at = -¥z and there-
fore ( )-¥ =F 0W .
The integrand on the right-hand side of Equation (31) is

finite everywhere. Using Equation (50) it is easy to check that it
decreases exponentially when z→−¥. Similarly
Equation (42) can be used to show that the integrand is
bounded by an exponentially decreasing function when
 ¥z . Therefore the integral on the right-hand side of

Equation (31) is convergent. We obtain:

( )ò
¶
¶

= -
¶
¶

>
-¥

¥E

t

u

z
W dz 0. 33T

m
0

Therefore, the total wave energy grows due to coupling with
the flow along the tube.

6. CONCLUSIONS

We have analyzed the behavior of magnetic twists in the
presence of intergranular downdrafts. The analysis is carried
out in the thin flux tube approximation. It is shown that small

Figure 7. Twist amplification due to coupling with a decelerating flow.
Propagation is in the direction opposite to the flow. Note, however, that an
upward propagating twist will be swept down by the flow in the super-Alfvénic
region.
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twists become amplified if the descending plasma decelerates
with depth. The deceleration leads to amplification of the twists
as shown in Figure 7. In Section 2, we argue that the presented
mechanism can be thought of as a magnetic analogue of vortex
stretching.

A detailed analysis is carried out for an exponential flow
profile. Analytical solutions representing a spectrum of
unstable modes are constructed. The instability only exists
for a negative flow gradient.

The spatio-temporal evolution of the instability is examined
and compared for different ratios of ( ) ( )u c0 00 A . The flow
continually amplifies a magnetic twist as its propagation grinds
to a halt in the vicinity of the equipartition level. The
amplification is caused by the interaction between the twisted
magnetic field and the decelerating flow. An upward
propagating twist in the sub-Alfvénic region is not affected
by the flow profile above the equipartition level. The super-
Alfvénic flow may even become sub-Alfvénic above a certain
height without affecting the twist evolution. Therefore the
process of twist amplification does not require unrealistically
high speed flows at high altitudes.

The present study was mainly confined to exponential
velocity and density profiles with an arbitrary scale height.
There is no reason why the instability should not arise for other
smooth profiles. We have shown that the total azimuthal wave
energy content grows for arbitrary decelerating flow profiles if
there is no wave energy flux through the boundaries. For a
given location, the twist dynamics is determined by the
competing effects of the flow gradient and the energy flux
divergence. The amplification is most efficient in the vicinity of
the equipartition level, where the propagation stalls and the
dynamics are dominated by the transfer of the flow energy into
the twisting motions.

We make some simple estimates to assess the applicability of
the presented amplification mechanism. The Alfvén speed can
be expressed as = ´ -c B n2.8 10A

12
0

1
2 m s−1, where n

denotes the number density in m−3 and B is measured in
Gauss (Priest 2014, p. 487). For a photospheric number density
of 1023 m−3 and a field strength of 1 kG we find
cA=8.86 kms−1, which is within the range of downflow
speeds mentioned in the Introduction. Therefore, an equiparti-
tion is likely to occur at the photospheric level.

In practice, solar flux tubes are highly inhomogeneous,
dynamic and time-varying and these estimates should be
taken with caution. A more detailed numerical analysis
accounting for the temporal and spatial variability of the
downdraft in a realistic convection zone is needed. It is likely
that a compressive downdraft which lasts longer than the
growth timescale of ( )z u 00 0 will produce vortex motions. A
short-lived downdraft, on the other hand, will have the effect of
drawing a bowstring: the twists will be amplified and will begin
to propagate up along the field lines upon release.

In turbulence dynamics, the enhancement of vorticity by
stretching is argued to be the most important mechanism by
which energy is transferred to small scales. Based on the
analogy we have drawn between the vortex stretching and the
magnetic twist amplification effects it is tempting to argue that
the presented mechanism may play an important role in the
energy transfer to small scales with subsequent heating in the

solar atmosphere. However, a detailed analysis is required
before any conclusions can be made.

T. Williams is thankful to the STFC for financial support.
The authors thank the anonymous referee for the suggestions
made to improve the quality of the original manuscript. The
authors also thank M. S. Ruderman for discussions and
feedback.

APPENDIX A
ANALYTICAL SOLUTIONS

In the sub-Alfvénic region ( >z 0), Equation (16) can be
transformed into the modified Bessel’s equation when n ¹ -1
(Polyanin & Zaitsev 2002, p. 242):

( )
n

+ - + =
⎛
⎝⎜

⎞
⎠⎟

d y

dx x

dy

dx x
y

1
1 0, 34

2

2

2

2

where

( )= n-y x w, 35

and

( ) ( )n t= + -x 1 1 . 36

The solutions to Equation (34) are expressed in terms of the
modified Bessel functions (Abramowitz & Stegun 1972, p.
374). When ( ) n 0R and n ¹ -1 the corresponding general
solution to Equation (13) is:

ˆ ( )

( )

( ) ( )

t n

n

n

= = + -

´ + -

+ + -

q
n n

n

n

n

-

-

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

b x y
z

z

z

z

C I
z

z

C K
z

z

1 exp 1 exp

1 exp 1

1 exp 1 , 37

0

2

0

1
0

2
0

where C1 and C2 are arbitrary constants. Using the limiting
forms of the modified Bessel functions (Olver & Max-
imon 2010, 10.30.1, 10.30.2) and assuming that n ¹ 0, we
obtain:

ˆ ( )

( )

( )

( )

n

n
n

n n

~ + -

´
+

G - -

+
+ G -

-



q
n

n

n

n
n

- -

+

n

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥

b
z

z

z

z

C
z

z

C
z

z

z

1 exp 1 exp

1

2
1 exp 1

1

2 2
exp 1 ,

when 0 , 38

0

2

0

1
0

2
0

2

2

which will remain finite only when =C 02 . A similar result is
obtained when n = 0 (Olver & Maximon 2010, 10.30.3). We
also require the solution to remain finite when  ¥z . A finite
ˆqb is equivalent to the magnetic energy density being finite.
However, the solution(37) with =C 02 is unbounded when
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 ¥z because n-I increases exponentially (Olver & Max-
imon 2010, 10.30.4, 10.30.5, and 10.45.5):

( )

( )

( )

( )

( )

( ) ( )

n

n

p n

n

+ -

~
+ -

+ -

- <

n-

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

I
z

z
1 exp 1

exp 1 exp 1

2 1 exp 1

when 1 0, 39

z

z

z

z

0

0

0

R

( )

( )

( )

( )

( )

( ) ( )

n

n

p n

n
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~
- + -

+ -
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n-

⎛
⎝
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⎞
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⎞
⎠
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⎞
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⎛
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⎞
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I
z

z
1 exp 1

exp 1 exp 1

2 1 exp 1

when

1. 40

z

z

z

z

0

0

0

R

We conclude that Equation (13) only has a trivial solution
when ( ) n 0R and n ¹ -1. For n = -1 the general solution
to Equation (13) is:

( )
ˆ ( )= +

-
q

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
b

u
C

C1

exp 1
. 41

z

z
0

1
2

0

It will remain finite at z=0, and = ¥z only if = =C C 01 2 .
Therefore only a trivial solution exists when n = -1.

Next we consider the case when ( )n > 0R . The general
solution to Equation (34) represents a linear combination of Iν
and Kν. The behavior of Iν is still determined by an estimate
similar to (39) when  ¥z and, therefore, the corresponding
coefficient must be set to zero to satisfy the requirement of
finite energy density. The solution to Equation (13) is therefore
expressed in terms of the modified Bessel function nK :

ˆ ( )

( ) ( )

n

n

= + -

´ + -

q

n

n
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⎞
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⎝
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
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b C
z

z

z

z

K
z

z

exp 1 exp 1

1 exp 1 . 42

0 0

0

An important asymptotic property of the modified Bessel
function Kν is the exponential decay at infinity (Olver &
Maximon 2010, 10.25.3). Thus the solution(42) vanishes
when  ¥z and the requirement of a finite magnetic energy
density is satisfied. Using Equation (2) it is easy to show that
the kinetic energy density, ˆr qv0

2 also remains finite as  ¥z .

We note that as z→0+ the behavior of the function Kν is
determined by:

( )
( )
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n n
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K
z

z

z

z

1 exp 1
2

1

2

exp 1 , 43

0

0

2

where ( )n > 0R (Olver & Maximon 2010, 10.30.2). This
gives the following estimate for ˆqb near z=0:

ˆ ( ) ( )n~ Gq
n-

⎛
⎝⎜

⎞
⎠⎟b C

z

z
2 exp , 441

0

for small z. Hence, the solution(42) is finite near z=0 if
( )n > 0R . The constant coefficient, C is determined from

expression(44):

ˆ ( )

( )
( )

n
=

G
q

n-
C

b 0

2
. 45

1

The growth rate is determined by the expression:

( )
( )

( )w
n

= -
+

=

⎡
⎣⎢

⎤
⎦⎥

du

dz

1

2
, 46

z

0

0

I
R

where the ratio ( )-u z00 0 has been replaced by the flow
derivative at z=0.
For-¥ < <z 0 ( t< <0 1) Equation (16) is transformed

into Bessel’s equation:

˜

˜ ˜

˜

˜ ˜
˜ ( )
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⎛
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⎞
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2

where

˜ ˜
˜ ˆ

( )
t

= =n
n

q-
-

y x w
x b

, 48

and

˜ ( ) ( )n t= + -x 1 1 . 49

The solution to Equation (47) is expressed in terms of the
Bessel functions. The corresponding general solution to
Equation (13) is:
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For z→0− we have (Olver & Maximon 2010, 10.7.3, 10.7.4):
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Therefore, the solution remains finite near z=0, and the
coefficient C2 is determined by:

ˆ ( )

( )
( )

p
n

= -
G
q

n
C

b 0

2
. 522

The coefficient, C1 can be determined by imposing a boundary
condition at = -¥z . Any perturbation in the super-Alfvénic
region should be swept in the positive z direction, so there
should be no propagation in the negative z direction. We
therefore require the perturbations ˆqb and q̂v to vanish when
z→−∞. The variable ˆqb automatically vanishes due to the
presence of the factor τ in the expression(50). The same is not
true for q̂v . Using Equations (2) and (3) the following
relationship can be derived:
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which allows us to express q̂v in terms of ˆ t= qw b :
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Using the formulae for the derivatives of the Bessel functions
we have (Abramowitz & Stegun 1972, p. 361):
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First, using Equation (55) and a similar expression for q̂v in the
region >z 0 it can be shown that q̂v is continuous across z=0.
second, the condition on q̂v to vanish when z→−∞

determines the coefficient, C1:
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n n

n n

-

-
C

Y Y

J J
C

1 1 1 1

1 1 1 1
. 561

1

1
2

APPENDIX B
ENERGY EQUATION

We multiply Equation (1) by vθ, and Equation (2) by mqb 0:

( )r r
m

¶
¶

+
¶
¶

=
¶
¶

q
q

q
q

q
qv

v

t
u v

v

z

B
v

b

z
, 570 0 0

0

0

( )
m m m m

¶
¶

+
¶
¶

=
¶
¶

-
¶
¶

q q q q
q

q qb b

t

u b b

z

B
b

v

z

b u

z
. 58

0

0

0

0

0

2

0

0

Adding Equations (57) and (58), we obtain

( )

( )

r
m m

r

m m

¶
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¶
¶

-
¶
¶

-
¶
¶

-
¶
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q q
q q

q

q q

⎡
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⎤
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⎡
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⎤
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t

v b B

z
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u v

z

u
z

b b u

z

2 2 2

2
, 59

0
2 2

0

0

0

0 0
2

0

2

0

2

0

0

where the density, r0 has been taken inside the square brackets
as it does not depend on time. Equation (59) can be rewritten in
the following form:

( )

( )
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m m

r
m

r
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¶
¶

+ =
¶
¶

-
¶
¶

+
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¶
¶

-
¶
¶

q q
q q

q q

q
q

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥t

v b B

z
v b u

z

v b

u

z
v

u

z

b

2 2 2 2

2
,

60

0
2 2

0

0

0
0

0
2 2

0
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where we have used the equality:
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. 610 0

2

0
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2
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The condition of mass conservation, r =u const0 0 can be used
to reduce Equation (60) to:
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or

( )
¶
¶

+
¶
¶
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¶
¶

W

t

F

z

u

z
W , 63T W

m
0

where WT is the sum of the kinetic and magnetic energy
densities:

( )
r

m
= + = +q qW W W

v b

2 2
, 64T k m

0
2 2

0
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and

( )
m

= - q qF u W
B

v b . 65W T0
0

0
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