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Abstract 

A series of magnetic flux ropes embedded in the ion diffusion region of a magnetotail 

magnetic reconnection event were investigated in this paper. Waves near the lower hybrid 

frequency were measured within each of the flux ropes, and can be associated with the 

enhancements of energetic electrons in some of the flux ropes. The waves in the largest flux 

ropes were further explored in more detail. The electrostatic lower-hybrid-frequency-range 
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waves are detected at the edge, while electromagnetic lower-hybrid-frequency-range waves 

are observed at the center of the flux rope. The electromagnetic waves are right-hand 

polarized and propagated nearly perpendicular to magnetic field lines, with a wavelength of 

ion-electron hybrid scale. The observations are analogous to simulations in which the 

electrostatic lower hybrid waves are confined to the edge of current sheet, but can directly 

penetrate into the current sheet center in the form of the electromagnetic mode. The 

observations indicate that the electromagnetic lower-hybrid-frequency-range waves can be 

excited inside magnetic flux ropes.  

 

1. Introduction  

Magnetic reconnection is a fundamental physical process in space, astrophysics as well 

as laboratory plasma, and is believed to be the major reason for a large number of explosive 

energy release phenomena, such as solar flares, magnetospheric substorms, jets in accretion 

disks, and sawtooth instability in Tokomaks [Yamada et al., 2010]. In the collisionless plasma 

environment, anomalous resistivity results from micro-instability turbulence and is supposed 

to be responsible for mediating magnetic reconnection. The lower-hybrid-drift instability 

(LHDI) has been invoked as a primary candidate to produce the anomalous resistivity 

[Davidson and Gladd, 1975; Daughton et al., 2004; Fujimoto et al., 2011]. The LHDI is 

driven by the diamagnetic drift current in the presence of inhomogeneity of the plasma 

density and magnetic field [Krall and Liewer, 1971], and the fastest growing rate peaks at 

1ek   for a broad range of frequencices ( ci lh   ), where ci  is proton 

gyrofrequency, 
2 2 1/2/ (1 / )lh pi pe ce      is the lower-hybrid-frequency, pe ( pi ) refers to 
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electron (proton) plasma frequency, and 
e  is the electron gyroradius. The linear theory 

predicts that the fastest growing modes are confined to the edge of the current sheet 

( 1/2| | L(T / 2T )e iz  , where z  is the distance from the current center in normal direction, L is 

the thickness of the current sheet, and 
eT  and iT  are electron and ion temperatures, 

respectively.) in a modified Harris current sheet [Davidson et al., 1977; Huba et al., 1980]. 

The lower hybrid waves (LHWs) have been observed by spacecraft measurement [Bale et al., 

2002; Vaivads et al., 2004; Zhou et al., 2009 and 2014; Norgren et al., 2012] and in 

laboratory experiments [Carter et al., 2002 and Dorfman et al., 2013]. Measurements at the 

magnetopause find that the contribution of the LHDI anomalous resistivity to the parallel 

electric field is less than 1% of the measured parallel electric field, indicating the LHDI 

cannot play a significant role in driving reconnection [Bale et al., 2002], Furthermore, even if 

they are important, their relevance is limited to the separatrices of the reconnection region 

[Vaivads et al., 2004]. A similar conclusion was also obtained from laboratory experiments 

[Carter et al., 2002 and Dorfman et al., 2013].   

Despite being confined to the edge of the current sheet, the LHDI may play an indirect 

role in reconnection onset [e.g. Daughton et al., 2004]. A number of numerical simulations 

[Winske, 1981; Horiuchi and Sato, 1999; Daughton, 2003; Guo et al., 2008] revealed that a 

significant electromagnetic component can penetrate into the center of the current sheet 

during the evolution of the LHDI. This longer wavelength electromagnetic LHWs may 

facilitate onset of magnetic reconnection [Horiuchi and Sato, 1999; Fujimoto, 2009] and 

influence its evolution [Daughton, 2003; Roytershteyn et al., 2012]. In a stastical study of the 

waves near the lower hybrid frequency measured in the magnetotail reconnection 
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region[Zhou et al., 2014], the magnetic field fluctuations are found to increase while electric 

field fluctuations decrease as the plasma beta (  ) increases, and they both disappear when 

  exceeds 10. Using the observations in the separatrix reigon and at a current sheet center, 

the electrostatic and electromagnetic fluctuations near the lower hybrid frequency are directly 

detected, resepctively. However, the observations of the electrostatic and electromagnetic 

waves are separated by two minutes in a single ion diffusionr egion, and there are multiple 

crossings of the current sheet between them [Zhou et al., 2009]. Thus, it is hard to say 

whether they are directly correlated.  

In this paper, we revisited the electromagnetic fluctuations reported by Zhou et al., 

[2009] and find that the electromagnetic fluctuations themselves are bounded by the 

electrostatic fluctuations. All the electrostatic and electromagnetic fluctuations are confined 

inside a single large magnetic flux rope. To our knowledge, this type of waves inside a flux 

rope hasn’t been reported before. This type of waves is only detected in the largest flux rope. 

In other flux ropes observed in the same ion diffusion region, only the electrostatic 

fluctuations were observed. The role of the waves in controlling reconnection is discussed 

also.  

2. Database  

The data from several instruments onboard Cluster [Escoubet et al., 2001] are used in this 

letter. Magnetic field data sampled at 22/s and electric field data sampled at 25/s are obtained 

from the FGM [Balogh et al., 2001] and EFW [Gustafsson et al., 2001] instruments, 

respectively. Magnetic field and electric field spectrogram data from the STAFF instruments 

[Cornilleau-Wehrlin et al., 2003] are used. Electron energy spectrum data is taken from the 
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PEACE instruments [Johnstone et al., 1997]. The electron density is derived from the 

spacecraft potential [Gustafsson et al., 2001]. In this letter, the geocentric solar ecliptic 

system (GSE) is used to investigate the event associated with the waves. 

3. Observation and Analysis  

3.1 Overview of the reconnection event  

On September 19, 2003, Cluster crossed the current sheet in the near-Earth tail at (-17.5, 3.4, 

0.6) ER  and encountered one reconnection event therein [Borg et al., 2005]. Figure 1 shows 

an overview of the reconnection event. During 23:25-23:34 UT, the proton high speed flow 

reversed from tailward to Earthward at about 23:30 UT (Figure 1a), accompanied with the 

reversal of zB  (Figure 1b) from south (negative) to north (positive). In the same interval, 

yB  displayed a quadrupolar structure in the x zv B  plane (Figure 3, in [Borg et al., 2005]). 

Thus, it is concluded that the spacecraft passed through the ion diffusion region during 

23:25-23:34 UT, marked as a horizontal blue bar at the top of Figure 1. The spacecraft 

detected the reversal point of the high speed flow at about 23:30 UT, with a substantial value 

of xB (~10nT) in Figure 1d. Hence, the spacecraft traversed the region north of the X-line. 

Since Cluster crossed the current sheet several times in the ion diffusion region (Figure 1d), a 

few papers have studied this event on single or multiple crossings of the ion diffusion region 

[e.g. Borg et al., 2005; Zhou et al., 2009; and Huang et al., 2012]. Zhou et al. [2009] shows 

the waves near the lower hybrid frequency in crossings of the separatrix region and the 

current sheet center. Huang et al [2012] studied the electron acceleration near a secondary 

reconnection X-line. Before the high speed ion flows (before 23:24 UT), there was a 

background guide field in the y direction (Figure 1c), its average value was approximate -4 
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nT. Thus, this guide field directed to dawnward in this reconnection event.  

3.2 Magnetic flux ropes inside the ion diffusion region  

In this paper, we will mainly focus on a train of magnetic flux ropes detected immediately 

Earthward of the reconnection X-line between 2331:00 and 2332:40 UT, corresponding to the 

pink bar in Figure 1b. The flux ropes are also shown in more detail in Figure 2. There exists 

five magnetic flux ropes encountered by Cluster one after another. The vertical dashed lines 

correspond to the centers of each of the flux ropes. Essentially, a magnetic flux rope is 

denoted by the helical magnetic field structure. So, the criteria for identifying magnetic flux 

ropes in the magnetotail are 1) a bipolar zB  signature (Figure 2c) and 2) an enhanced core 

field over the background field in the dawn-dusk direction ( yB , Figure 2d). Then, five flux 

ropes are identified and all of them are embedded within the Earthward burst bulk flows ~ 

500 km/s (Figure 1a). For the first (~2131:18 UT), second (2131:25 UT) and fourth (2131:48 

UT) flux ropes, their core field was negative and as strong as the amplitude of zB . In 

contrast, at the third flux rope (2131:40 UT), the core field (15 nT) was positive and stronger 

than the amplitude of zB . As for the last one at 2332:15 UT which was also the largest one 

(the longest duration, ~ 18s), | |yB  was enhanced up to 10 nT but without a clear peak at its 

center as the other flux ropes. The reason could be the large disturbance of magnetic field at 

its center. The disturbance will be further studied later. After the last flux rope, xB  decreased 

down to -18 nT (Figure 2e).  

The spacecraft separation was smaller than 250 km during this interval, so that the 

Curlometer technique [Dunlop et al., 2002] can be used to calculate the current density on the 

ion scale (ion inertial length / ~pic   500 km for 30.2eN cm ). The current density 



 

 

© 2016 American Geophysical Union. All rights reserved. 

(
/ / ,| |j j  , Figure 2b) were both enhanced inside the first two flux ropes. Within the third and 

fourth flux ropes, only the parallel current density was dramatically enhanced and the 

perpendicular components kept nearly constant. For the last one, the perpendicular current 

density peaked near its center and the parallel current fell to 0 around its center. The plasma 

number density (Figure 2a) was enhanced within the first, second, and fifth flux ropes. In the 

third flux rope, the plasma number density was enhanced also but had a local depression near 

the flux rope center. For the fourth flux rope, the density was always very low. During the 

interval shown in Figure 2, all enhancements of the current density were closely associated 

with one of the flux ropes except the one at about 2331:35 UT when the parallel current 

density changed sign from negative to positive in association with an enhanced perpendicular 

current. This thin current layer corresponds to a secondary reconnection X-line rather than a 

flux rope, as indicated by Huang et al. [2012]. So, the flux ropes can be regarded basically as 

thin filamentary currents.  

3.3 Waves within magnetic flux ropes  

The Morlet wavelet spectrograms of electric field and magnetic field from 0.1 Hz to 11 Hz 

are presented in Figures 2g and 2h, respectively. The upper and lower white curves in both 

panels correspond to the proton gyrofrequency, cif , and lower hybrid frequency, lhf , 

respectively. It appears that the electric field fluctuations between cif  and lhf  are enhanced 

within each flux rope. The electric fluctuations are stronger in the first, fourth and fifth flux 

ropes than the other two ropes (the second and third flux ropes). The magnetic field 

fluctuations between cif  and lhf  show clear enhancement also, but without close 

correlation to the flux ropes. Analyzing power spectra of the fluctuations within each flux 
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rope, we find that the waves are primarily electrostatic and the frequencies extend over a 

broad range from 1.0 Hz to 11 Hz (Figure 2g). Therefore, the electrostatic waves are 

lower-hybrid-frequency-range waves (LHRWs). In some flux ropes (e.g. the first, second, and 

fifth flux ropes), the strong cross-field drift currents ( | |j  Figure 2b) and the significant 

density gradient (Figure 2a) could be the source of free energy for the observed LHRWs. In 

other two flux ropes (the third and fourth flux ropes), the parallel current density was very 

strong and the perpendicular current density was negligible. Thus, the source of free energy 

for the observed LHRWs in these flux ropes should be different. Inside some of the flux ropes 

(e.g. the first, second, fourth and fifth), an evident increase of the electron differential fluxes 

are found between 4 and 10 keV (Figure 2i).   

In addition to the electrostatic waves detected inside the flux ropes, more complex 

fluctuations were detected in the last flux rope. The waveform and wavelet spectrogram data 

associated with this flux rope are enlarged in Figure 3. The spacecraft traversed this flux rope 

in the southern hemisphere ( 0xB  , Figure 3b). At the beginning of this short period (before 

2332:04 UT), the spacecraft was in the edge of the flux rope. From 2332:04 to 2332:13 UT, 

corresponding to the left pink bar below panel b, xB  progressively increased from -12 nT to 

-6 nT and zB  gradually rose from negative to zero. Meanwhile, the plasma beta   evolved 

from 0.5 to 5 (Figure 3a). Therefore, the spacecraft was gradually approaching the center of 

the flux rope from its edge. During 2332:13-2332:19 UT (the blue bar below the panel b), 

zB  was close to 0;   reached its maximum value but fluctuated around 6. Thus, the 

spacecraft was then near the center of the flux rope. After 2332:19 UT, xB  decreased to -10 

nT, zB  enhanced to 10 nT, and   reduced to 0.5 with a spike at about 2332:21 UT. Thus, 
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the spacecraft got into the trailing part of the flux rope. Based on the analysis above, the 

spacecraft passed through the filament current of the flux rope with a relatively long stay of 7 

seconds near its center. The electric field fluctuations were as strong as 100 mV/m in this flux 

rope (Figure 3c). A large amplitude magnetic field perturbation was detected in the center of 

this flux rope (the blue bar). According to the wavelet spectrogram, the electric field 

fluctuations were measured in the entire flux rope (Figure 3d) whereas the magnetic field 

fluctuations were mainly detected near its center (Figure 3e). The power spectra of the 

electric field and magnetic field versus frequency for the interval in Figure 3 are displayed in 

Figure 4. The clear peaks for both electric field and magnetic field were observed at ~ 2 Hz, 

lower than the lower hybrid frequency lhf , and corresponded to the electromagnetic waves in 

the flux rope center. Enhancements near the lower hybrid frequency (3~50 Hz) were only 

measured in the electric field, which corresponds to the electrostatic waves detected in the 

boundary regions of the flux rope (the pink bar below Figure 3b). Since only two components 

of electric field were measured by Cluster, properties of the electrostatic waves cannot be 

resolved in further detail.  

The details on the electromagnetic waves in the filament current center are shown in Figure 5. 

Figure 5a displays the density at C2. Figures 5b and 5d show magnetic field variations (B ) 

in the GSE coordinates and in the field-aligned coordinates, respectively. It can be found that 

the magnetic field fluctuated in all three components ( ~x y zB B B    , Figure 5b) but 

primarily in the parallel direction (Figure 5d). Since the electromagnetic waves were detected 

by all four satellites and are almost monochromatic, the Timing method [e.g. Schwartz 1998] 

can be used to calculate its propagating direction and velocity. The Timing analysis was 
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performed to yB  during 2332:15 ~ 2332:19 UT. The propagation direction ( k ) and 

velocity ( v ) of the waves was estimated to be (0.807, -0.591, 0.014) and (520.8, -381.1, 9.06) 

km/s in the spacecraft frame. The wave propagation angle with respect to ambient magnetic 

field was about 95
o
. Thus, the waves were propagating nearly perpendicular to magnetic field 

and the wave length was about 391 km. During 2332:15 ~ 2332:19 UT, the geometrical shape 

of the Cluster spacecraft is close to regular tetrahedron and the wave speed is much faster 

than the Cluster speed, therefore the errors of the Timing analysis mainly arises from the 

uncertainties of the time lag between various satellites [e.g. Zhou et al., 2009]. Using the 

equation (1.7) in the ref. [Sonnerup et al., 2008], the maximum uncertainty of the time lag is 

only about 0.01s (between C1 and C3), which is much short than the time lag of about 0.30 s. 

Thus, the Timing results are reliable. The density perturbation (Figure 5a) was related with 

the electromagnetic fluctuations and therefore the fluctuations should be the compressional 

waves. 

The Cluster spacecraft only measures the electric field components xE  and yE  (Figure 5c) 

in the spacecraft spin plane. Thus, the parallel electric field and the perpendicular electric 

field can only be estimated, if the magnetic field was lying in this plane. In order to confirm 

whether the parallel electric field can be estimated here, we calculated the angle between the 

ambient magnetic field and the spacecraft spin plane and showed it in Figure 5e. It can be 

seen that the angle was smaller than 5
o
 between 2332:12 and 2332:15 UT. In other words, the 

parallel and perpendicular electric field estimations may be considered substantially reliable 

during this short span. Quantities / / / | |E  E B B  and ( ) yE  ( 2( )/ | |E   B E B B ) are 

presented in Figure 5f. The parallel electric field fluctuations were intermittently observed in 



 

 

© 2016 American Geophysical Union. All rights reserved. 

the electrostatic wave (2332:11-2332:13 UT) and also in a short period of the electromagnetic 

waves (after 2332:13 UT), but were much weaker than the perpendicular component.  

Figure 6 shows the polarization of the electromagnetic waves using the data in the interval 

2332:13.8-2332:14.5 UT when the waves began to be detected. The two components are 

obtained from the equations: 1

  

  k k B  and 2 1

  

  k k k , where the script denotes the 

unit vector. It is clear that the waves are elliptically right-hand polarized. In our event, the 

wavelength of the electromagnetic wave was estimated to be 391 km ≈ 4.5
i e  , where 

847i km   and 9e km  . The relative drift velocity was /drfitv j eN  ≈ 938 km/s, 

where j   30nA/m
2
. The ratio between the wave phase velocity ( phasev  ~ 645km/s) and 

the drift velocity is about 0.68. Considering the Doppler Effect, the wave frequency in the 

plasma frame was modified slightly and the effect does not change our conclusion.  

4. Discussion and Summary  

Numerical simulations of the LHDI instability predict that electromagnetic waves can be 

excited in the current sheet center [e.g. Daughton, 2003]. Using the linear Vlasov theory and 

particle-in-cell simulations, Daughton [2004] concluded that the electromagnetic wave is one 

significant component of the LHDI with a longer wavelength ( ~ 1i ek   ) than the 

electrostatic lower hybrid waves ( ~1ek ) confined in the edge of the current sheet. In our 

event, the electromagnetic waves are surrounded by the electrostatic waves and are observed 

in the center of one flux rope. The electromagnetic waves were propagating obliquely to 

magnetic field with a phase speed comparable to the drift velocity (
phase

drift

v

v
~0.68), and the 

wavelength of the electromagnetic wave was estimated to be the ion and electron hybrid scale 
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(4.5
i e  ). All of these features of the electromagnetic fluctuations are in accordance to the 

simulation results and also the experimental results from MRX [Ji et al., 2004]. In these 

experiments [Ji et al., 2004], the magnitude of the electromagnetic fluctuations and 

enhancement of reconnection rates display a positive correlation and the electromagnetic 

waves were identified as a right-hand polarized whistler wave branch. Moreover, the 

electromagnetic waves in the simulations [Daughton, 2003] have a coherent structure of ion 

scale while the waves in the experiments [Ji et al., 2004] are strongly nolinear with a much 

shorter coherence length. Given the frequency of the observed electromagnetic fluctuations 

(about the lower hybrid frequency), we suggested that the observed electromagnetic wave in 

the flux rope center is one contribution of the LHDI, i.e. the electromagnetic 

lower-hybrid-frequency-range waves.  

Zhou et al., [2009] also show the electromagnetic LHDW at the center of the current sheet 

and explore their properties, but neglect the electrostatic lower-hybrid-frequency-range waves 

surrounding the electromagnetic waves. In this paper, we find that the electrostatic and 

electromagnetic LHDWs are both located inside a large magnetic flux rope, and that the 

electromagnetic component was mainly confined to the center of the flux rope while the 

electrostatic components were observed at the edge of the flux rope. In the other flux ropes 

embedded in the ion diffusion region, however, only the electrostatic lower hybrid-range 

waves are always detected. The main difference between the last flux ropes and the others is 

the spatial scale. Since the electromagnetic waves were detected only near the center of the 

flux rope, the question of whether they can really occur in a broad current sheet, as predicted 

in simulations [Daughton et al., 2003], is still open. It appears in this event that the waves are 
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all limited to the inside of the flux ropes.  

The core field of magnetic flux ropes is generally supposed to be created by the ambient 

guide field in magnetic reconnection. As stated in section 3.1, the guide field in this 

reconnection event directed to the dawn side ( ~ 4gB nT ). However, the core field of the 

five magnetic flux ropes did not all point to the dawn side. For example, the core field of the 

third flux rope pointed duskward. Apparently, it cannot be formed by the compression of the 

ambient guide field [Huang et al., 2012]. In other words, the core field of the flux ropes does 

not appear to necessarily originate from the background guide field. Since the third flux rope 

was observed at 0xB   while the other four flux ropes were detected at 0xB  , the polarity 

of the core field is consistent with the Hall magnetic field. It indicates that the core field 

could be created by the compression of the localized Hall magnetic field, in good agreement 

with the previous observations [Teh et al., 2014; Wang et al., 2016].  

Strong broad band waves of higher frequency up to local electron cyclotron frequency were 

detected inside magnetic flux ropes tens of years ago [Kennel et al., 1986]. Recently, 

Khotyaintsev et al., [2010] reported another interesting event where a series of electron holes 

were found at the center of one flux rope. In our reconnection event, even though a series of 

flux ropes are detected within one reconnection diffusion region, the properties of the density, 

core field, current density and the waves inside each of the flux ropes are different. It means 

that the microphysics within magnetic flux rope could be complicated. If all of the flux ropes 

experience a similar evolution in their lifetime, the different properties indicates that the flux 

ropes were encountered at a different stage. Alternatively, the various xB  values of the flux 

ropes indicate that the distances between the spacecraft trajectory and the centers of the flux 
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ropes, i.e. the various “impact parameter” [Slavin et al., 2003], are different. Thus, the 

different properties of the flux ropes could be due to the different regions relative to the axis 

of the flux ropes where the spacecraft passed through.  

In summary, by analyzing the LHRWs associated with a large flux rope observed in a 

magnetotail reconnection event, we found the electrostatic LHRWs at the edge of and the 

electromagnetic LHRWs at the center of the largest flux rope. The observation is consistent 

with the simulation prediction that the LHDW is confined at the current sheet edge but can 

penetrate into the current sheet center in the form of the electromagnetic mode. The LHRWs 

are observed in each flux rope filling in the ion diffusion region.  
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Figures and Figure Captions  

 

Figure 1. An overview of the reconnection event from the four satellites (C1: black, C2: red, C3: 

green, C4: blue) of Cluster. (a) ion bulk flows in x  direction, (b)-(e) , ,z y xB B B  and | B | , (f) 

electron energy spectrum at C4. The horizontal bar at the top corresponds to the interval 23:25-23:34 

UT when the ion diffusion region was encountered. 
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Figure 2.. (a) electron density, (b) absolute values of the current density in the perpendicular direction 

( | j | ) and the parallel current density ( / /j ), (c)-(f) three components and magnitude of magnetic 

field, (g)-(h) power spectral density of electric field and magnetic field at C2, (i) electron energy 

spectrum at C4. 



 

 

© 2016 American Geophysical Union. All rights reserved. 

 

Figure 3. Waves inside the last flux rope at ~23:32:15 UT. (a) plasma beta at C2, the ion temperature 

at C2 was obtained assuming the ratio between the ion and electron temperature is about 5, (b) xB : 

blue, yB : green, zB : red, and | B | : black, (c) xE : blue and yE : green, (d)-(e) power spectral 

density of magnetic field and electric field. 
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Figure 4. power spectral density of magnetic field (black) and electric field (red) 
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Figure 5. The wave properties at C2. (a) electron density, (b) variation of magnetic field in the three 

components, (c) electric field in x and y components, (d) variation of magnetic field in parallel and 

perpendicular directions, (e) the angle between magnetic field and the spacecraft spin plane, (f) the 

parallel electric field and the perpendicular electric field in y component.  



 

 

© 2016 American Geophysical Union. All rights reserved. 

 

Figure 6. The polarization of the waves, using the magnetic field data in the interval 

2332:13.8-2332:14.5 UT.  

 


