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Summary

O  Although meiosis is evolutionarily conserved, many of the underlying mechanisms show species-specific differences. These are poorly understood
in large genome plant species such as barley (Hordeum vulgare) where meiotic recombination is very heavily skewed to the ends of chromosomes.

O  The characterization of mutant lines can help elucidate how recombination is controlled. We used a combination of genetic segregation analysis,
cytogenetics, immunocytology and 3D imaging to genetically map and characterize the barley meiotic mutant DESYNAPTIC 10 (des10).

o We identified a spontaneous exonic deletion in the orthologue of MutL-Homolog 3 (HvMIh3) as the causal lesion. Compared with wild-type,
des10 mutants exhibit reduced recombination and fewer chiasmata, resulting in the loss of obligate crossovers and leading to chromosome
mis-segregation. Using 3D structured illumination microscopy (3D-SIM), we observed that normal synapsis progression was also disrupted in

des10, a phenotype that was not evident with standard confocal microscopy and that has not been reported with Mlh3 knockout mutants in
Arabidopsis.

O  Our data provide new insights on the interplay between synapsis and recombination in barley and highlight the need for detailed studies of
meiosis in nonmodel species. This study also confirms the importance of early stages of prophase | for the control of recombination in large
genome cereals.

Introduction

Meiotic recombination is one of the principal forces underlying genetic diversity and a driver for evolution as well as progress in crop breeding
programmes (Riley et al., 1981). A deeper understanding of this process offers the opportunity to manipulate recombination and improve the speed and
accuracy of plant breeding in order to address the needs of food security within a period of increased environmental constraints (Able et al., 2009;
Martinez-Perez, 2009). This is particularly true in cereals such as wheat, barley, oats and rye, as well as in many forage grasses that show a highly skewed
distribution of meiotic crossovers (COs) relative to gene content, with large portions of the chromosomes around the centromeric regions rarely
recombining (Kunzel et al., 2000; Kunzel & Waugh, 2002; Higgins et al., 2012; IBGSC et al., 2012; Ramsay et al., 2014). Interestingly this CO
distribution phenotype is not found in Arabidopsis nor in either rice or Brachypodium, grass species with much smaller genomes (Chen et al., 2002; Huo
et al., 2011; Salomé et al., 2012). The control of recombination and the interlinked processes of early meiotic progression have been intensively studied in
model eukaryotic organisms with comparative studies being undertaken in mammalian species and the standard model plants Arabidopsis and rice (Gerton
& Hawley, 2005; Baudat et al., 2013; Luo et al., 2014; Mercier et al., 2014), but they have yet to be deciphered in large genome cereals.

During meiosis, homologous recombination starts with the formation of programmed DNA double-stranded breaks (DSB) by the protein SPO11 that is
found in all eukaryotes (Metzler-Guillemain & de Massy, 2000; Stacey et al., 2006; Keeney, 2008). The DSB ends are resected by the MRE11 complex
(MRE11-Rad50-Xrs2 in yeast, MRE11-Rad50-NSB1 in plants) to generate 3’ ssDNA tails (Daoudal-Cotterell et al., 2002; Raynard et al., 2008; Nicolette
et al., 2010) which are then coated by the recombinases RAD51 and DMC1 to mediate strand invasion resulting in a joint molecule (D-Loop) (Shinohara




et al., 1997; Kathiresan et al., 2002; Da Ines et al., 2012). The subsequent repair occurs either by synthesis-dependent strand annealing (SDSA) resulting in
noncrossovers (NCO) or via a double Holliday junction (dHj) (Hunter, 2007; Bzymek et al., 2010; Matos & West, 2014). Protein complexes
(MSH4-MSH5, MER3) stabilize the dHjs (Nakagawa & Kolodner, 2002; Snowden et al., 2004) that are mostly resolved into COs by the MutL homologs
MLH1-MLH3 (Ranjha et al., 2014; Rogacheva et al., 2014), with a certain fraction resolved into NCO by a helicase-dependent mechanism in Arabidopsis
(Knoll & Puchta, 2011). Orthologues for many of these proteins have been identified in plants, suggesting a broadly conserved mechanism for crossover
formation (Higgins et al., 2014; Luo et al., 2014; Mercier et al., 2014). It has been postulated that in Arabidopsis 85% of crossovers arise from a pathway
under the control of the ZMM (ZYP, MSH, MER) group of proteins (Higgins et al., 2004, 2005; Mercier et al., 2005). This pathway produces Class | COs
which exhibit interference, the phenomenon where the presence of a CO reduces the probability of an additional CO in an adjacent interval with the
remaining COs being Class Il that do not exhibit interference (Higgins et al., 2008).

Homologous pairing, recombination and synapsis have been studied extensively, but the interdependence between these processes remains to be fully
resolved and may differ between species (Santos, 1999; Zickler, 2006). In cereals, telomeres cluster during early meiosis to bring homologous
chromosomes together and initiate synapsis (Colas et al., 2008; Higgins et al., 2012). During zygotene the two homologues progressively synapse along
their entire length and the process is completed at pachytene (Santos, 1999; Zickler, 2006). The synaptonemal complex then disassembles but the
chromosomes remain held together by chiasmata (the cytogenetic manifestation of the COs). At metaphase | the bivalents align at the equatorial plate and
each of the homologous chromosomes then separates at anaphase I. A second round of cell division then follows, resulting in sister chromatid separation
and the formation of haploid cells (Stack & Anderson, 2001).

Although much of our current understanding has been developed in small genome models, it is now being extended to large and complex genome
nonmodel crops such as barley, where recent cytogenetic studies have described meiotic progression and the chronology of meiotic events (Higgins et al.,
2012; Phillips et al., 2012; Barakate et al., 2014). Although largely conforming to expectations, specific observations such as the clustering of the
telomeres and the spatiotemporal organization of the recombination machinery reveal that barley differs from Arabidopsis(Armstrong et al., 2001; Higgins
et al., 2012; Phillips et al., 2012; Barakate et al., 2014). Even in related grasses (e.g. barley vs rice) there are conflicting reports of the direction of change
in the number of chiasmata formed after disrupting the amount of the synaptonemal complex protein ZIPPER1 (HvZYP1/OsZEP1) (Wang et al., 2010;
Barakate et al., 2014) hinting at significant functional differences between related components of the overall meiotic machinery.

In order to explore meiosis in a large genome crop we have been using a collection of barley DESYNAPTIC mutants that were determined cytologically in
the 1970s to have an aberrant meiotic phenotype with the presence of univalents being ascribed to premature desynapsis (Lundqvist et al., 1997). Here we
have taken a classical forward-genetics approach to map the spontaneous semi-sterile DESYNAPTIC 10 (des10) mutant (Lundqvist et al., 1997) and
identify the causal mutation as a deleted exon in the mismatch repair gene HvMIh3. Using a combination of genetic segregation analysis and
super-resolution immunocytology, we show that the mutation has a deleterious effect on recombination and crossing over. The unique form of the des10
mutant allele results in the coding sequence being maintained in frame, allowing immunofluorescent visualization of the protein in both mutant and
wild-type, providing novel insights into its importance in the very early stages of meiosis.

Materials and Methods

Plant material

Plants (Hordeum vulgare L.) were grown under 16 h of light at 18-20°C and 8 h of dark at 16°C. For cytology, the cv Bowman (wild-type (WT)) and its
near-isogenic line BW230 (des10) were grown in a growth cabinet until meiosis. Anthers were checked for meiosis stage and fixed in formaldehyde. To
assess the effect of des10 on recombination, F, and F; populations derived from BW230x cv Morex were grown in a glasshouse and young leaf tissue
were collected in 96 well plates for DNA extraction and genotypic analysis. Plants were grown to maturity to assess fertility.

Mapping and sequencing

Frozen plant material was disrupted in a lysis buffer using a Qiagen grinder and DNA extracted with Qiagen DNA extraction kit using an automated
station QIAxtractor® (Qiagen). Initial genetic mapping utilized a custom 384 single nucleotide polymorphism (SNP) genotyping array using the Illumina
beadXpress platform. For mapping we used the segregation of the semi-sterile phenotype of des10 as a Mendelian trait. Using joinmar 4.0 (Kyazma BV,
Wageningen, Netherlands) software, loci were assigned to linkage groups and two rounds of regression mapping were used to order the loci within groups.
The iterative development of custom KASPar® SNP assays (LGC, Middlesex, UK) derived from alignments of genic sequences, known to map in this
interval, were mined for polymorphism between cv Bowman and Morex, and these used to delineate the interval containing des10 to a single 1.02 Mb
BAC contig (contig_38558) containing six annotated genes (http://mips.helmholtz-muenchen.de/plant/barley/fpc/index.jsp
(http://mips.helmholtz-muenchen.de/plant/barley/fpc/index.jsp)). Primers were designed to amplify the genomic sequences of the six genes within the
BAC contig and all other possible syntenic genes and the PCR products sequenced using the big dye v.3.1 reaction kit and analysed on an ABI Prism 3730
(Applied Biosystems, Foster City, CA, USA). For cDNA sequencing, mRNA from young inflorescences and anthers from BW230 (des10) and Bowman
was extracted using an RNA extraction kit (Qiagen) in the presence of DNAsel. cDNA was made using the standard protocol of the Superscript 111 kit
(Life Technologies, Thermo Fisher Scientific, Waltham, MA, USA) and sequenced using specific primers encompassing the deleted region.

Recombination frequency

F5 individuals derived from selfed seed from F; individuals homozygous for des10 or WT alleles at HvMIh3 were used for the recombination assay. The
genome-wide genetic mapping utilized the custom 384 SNP genotyping array. Three independent c. 20-cM intervals on 4H (centromeric), short arm of 6H
(distal) and long arm of 7H (distal) were studied in more depth using KASP®© assays.



Immunocytology

Anthers were fixed in 4% formaldehyde (1xphosphate-buffered saline (PBS) /0.5% Triton™ X-100) for 20-30 min, rinsed twice in 1xPBS/0.5% Triton™
X-100 and tapped to release the meiocytes. Meiocytes suspension (30 pl) were transferred onto a Polysine® slide (poly-,-lysine coated slides) and left to
air dry (room temperature) and without squashing to preserve the 3D conformation. Slides were first blocked for 30 min in 3% bovine serum albumin in
1xPBS, 0.1% Triton™ X-100 and then incubated in the primary antibody solution which consisted of one or multiple antibodies (raised in rabbit or rat)
diluted in blocking solution in a wet chamber for 1 h at room temperature followed by 24-48 h at 4°C. The antibodies that have been previously described
were; anti-AtASY 1, -AtZYP1, -HYMLH3, -AtRADS51, -AtMHS4 and -AtDMCI1 (Higgins et al., 2012; Phillips et al., 2012, 2013; Barakate et al., 2014).
We also prepared a new barley antibody, anti-HvZYP1 (Rat), from an immunization with two individual peptides (Dundee Cell Products, Dundee, UK) to
confirm the ZYP1 phenotype. Slides were warmed for 30 min to 1 h at room temperature before washing for 15 min in 1x PBS and incubating for up to 2
h at room temperature in a secondary antibody solution consisting of a mixture of anti-rabbit Alexa Fluor® (488 or 568) and/or anti-rat Alexa Fluor® (568
or 488) (Invitrogen) diluted in 1xPBS. Slides were washed for 15 min in 1xPBS, counterstained with Hoechst 33342 (Life Technologies) for 15 min, and
mounted in Vectashield® (H-1000; Vectorlabs, Burlingame, CA, USA).

DNA in situ hybridization

For chiasmata counts, anthers were fixed in ethanol : acetic acid (3 : 1) for 24 h and stored in 70% ethanol at 4°C until use. Slide preparation and DNA in
situ hybridizations were performed as previously described (Higgins et al., 2012) using rDNA 5s-digoxigenin and rDNA 45s-biotin probes to identify the
individual chromosomes.

Time course

Stems were injected with 0.5-1 ml of 10 uM 5-ethynyl-2'-deoxyuridine (EdU) in the region of the inflorescence (under the base of the spike) and also
two-thirds of the way up along the length of the stem. The EdU solution was left in the stems for 2 h to allow for its incorporation into S-phase nuclei as
described previously (Higgins et al., 2012). Spikes were collected and fixed in fresh 4% formaldehyde/PBS fixative for 30 min to 1 h at various
time-points (6, 18, 24, 48 and 68 h after the 2 h of EAU pulse). Fixed anthers were prepared for immunodetection with anti-ASY1 (primary and secondary
incubation) as described earlier, immediately followed by EdU detection as per the suppliers protocol. EdU was detected with Click-iT® EdU Alexa
Fluor® 488 HCS assay kit (Life Technologies) with 45 min incubation instead of 30 min in the supplied protocol. Slides were counterstained with Hoechst
33342 (2 ug ml™!, Life Technologies), mounted in Vectashield® (H-1000, Vectolabs) and sealed.

Microscopy

For confocal microscopy, 3D Confocal stack images (512 x 512, 12-bit) were acquired on a LSM-Zeiss 710 fitted C-Apochromat x63/1.20 W Korr M27
oil objective. Laser light (405, 488, 561 and or 594 nm) was used at 2-4%, sequentially with two (up to four) lines averages. 3D stack slices were taken at
0.25-0.44 um intervals at a pixel dwell of 1.58 ps. For synaptonemal complex (SC) spreads, imaging was performed using a Nikon Eclipse 90i
microscope as described previously (Higgins et al., 2012; Barakate et al., 2014). For structured illumination microscopy, 3D structured illumination
microscopy (3D-SIM) images were acquired on a DeltaVision OMX Blaze (GE Healthcare,Buckinghamshire, UK) fitted with an Olympus PlanApo N
x60 1.42 NA oil objective. Laser light from solid state lasers (405, 488 and 564 nm), shuttered by high-speed tilt mirrors and coupled into a broadband
single mode optical fibre, was split into three beams. 3D interference patterns in the sample plane were generated by focusing of the beams onto the back
focal plane of the objective lens. Striped illumination patterns were shifted by five phase steps and rotated by three angles (—60°, 0° and +60°), providing a
set of 15 images per unprocessed z-section. Interference patterns were phase-shifted by directing the outer two beams through a separate pair of windows
with individual tilt control. Phase of Survey the interference pattern at the sample plane was shifted due to the change in the path length for the respective
outer beam, whereas lateral refractive beam translation was cancelled by tilting a given window pair in complementary directions. Angles of pattern
orientation were shifted by a tilt mirror, directing the three beam patterns to one of three mirror clusters; the beam pattern from each of the three rotation
paths was redirected back to a common exit path by reflecting a second time from the tilt mirror. Exposure times were typically between 100 and 200 ms,
and the power of each laser was adjusted to achieve optimal intensities of between 1000 and 3000 counts in a raw image of 15-bit dynamic range of Edge
SCMOS camera (PCO AG, Germany). The lowest possible laser power was chosen for each channel to minimize photo bleaching. Unprocessed image
stacks were composed of 15 images per z-section (five phase-shifted images for each of three interference pattern angles). The microscope was routinely
calibrated by measuring channel specific optical transfer functions (OTFs) to optimize lateral and axial image resolution (channel dependent and
typicallyc. 120 and 300 nm, respectively). Super-resolution 3D image stacks were reconstructed with sorrworx 6.0 (GE Healthcare) using channel specific
OTFs and Wiener filter setting of 0.002 (0.005 for the 4',6-diamidino-2-phenylindole channel) to generate a super-resolution 3D image stack. Images from
the different colour channels, recorded on separate cameras, were registered with the sorrwoRx 6.0 alignment tool (GE), based on alignment parameters
obtained from calibration

Imaging and modelling

Images were processed with the respective microscope software package, or with external imaging tools like Fiji (jwaces 1.49 m, (https://imagej.nih.gov/ij/)
for deconvolution (Vonesch & Unser, 2008; Schindelin et al., 2012) and jvaris 8.1.2 (Bitplane) for 3D projection and MLH3 counting. Barley MLH3 protein
modelling was obtained by submitting the protein sequence of the intact protein and the truncated version to the SWISS-MODEL workspace (Bordoli et al.,
2009).




Results

des10 is the result of a mutation in the mismatch repair gene HvMIh3

des10 is a spontaneous semi-sterile mutant of the barley cv Betzes (Lundqyvist et al., 1997). The original mutation was backcrossed repeatedly to cv
Bowman then selfed to produce the BcsF; near-isogenic line BW230 (des10) (Fig. 1a) (Druka et al., 2011). To identify the lesion causing the observed
phenotype, we genetically mapped the des10 mutation using an F, population (n = 168) derived from a cross between BW230 (des10) and the cv Morex to
the long arm of chromosome 5H (Fig. 1b) using a standard SNP marker set (Close et al., 2009; Druka et al., 2011). By extending the population to 1102 F,
plants and using additional KASP™ SNP markers developed using published genome sequence data from cv Morex and Bowman (IBGSC et al., 2012), we
located des10 to a 0.2-cM interval encompassed entirely within a 1.02 Mb BAC contig (contig_38558) containing six annotated genes (Fig. 1b).
Sequencing all six genes revealed a single polymorphism between BW230 (des10) and Betzes in MLOC_52425 (Fig. 1b) consisting of a 159-bp deletion
that removes the entire seventeenth exon of a putative gene model encoding HvMutL-homolog 3 (HYMLH3 — GenBank accession no. JQ855501
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=JQ855501), Supporting Information Fig. S1a), but
maintaining the open reading frame of the downstream exons (Figs S1b, 2a). The deleted exon encodes the majority of the conserved DQHAXEX,E
metal binding motif essential for the endonuclease activity of HYMLH3 (Fig. 2b), a mismatch repair protein that has a role in the resolution of double
Holliday junctions (dHj) arising from the ZMM dependent CO pathway (Lipkin et al., 2000; Jackson et al., 2006; Nishant et al., 2008; Phillips et al.,
2013). Deletion of this domain is predicted to affect protein conformation (Fig. 2c,d), potentially destabilizing the MutLy protein complex (MLH1-MLH3)
required for resolution of dHjs (Guarne et al., 2004; Ranjha et al., 2014).

Figure 1. des10 mapping. The barley (Hordeum vulgare) mutant des10 exhibits a semi-sterile phenotype (a)
producing fewer seeds per ear (7.0 + 2.7) in des10 than wild-type (13.7 + 3.7). The des10 (in red) region was
initially delineated (b) between two single nucleotide polymorphism (SNP) markers (11_11273 and

- 11_21203) on the long arm of chromosome 5H and then fine mapped on an extended F2 population to a 0.2
cM region between two markers (MLOC_17896 and MLOC_34818) located on the same BAC contig
(contig_38588). The only exonic polymorphism for the genes within this BAC contig was a deletion in
MLOC_52425 (in red) encoding the barley orthologue of HYMLH3.

—_— Figure 2. des10 mutation. (a) Alignment of the barley (Hordeum vulgare) HvMIh3 gene sequences in
wild-type (WT) and des10, with exons highlighted in grey. The 159-bp deletion removes the entire 17th
exon coding for the peptide sequence HAADERIRLEELRSK without affecting reading frame. (b) The

— histidine kinase-like ATPases and the MutL_Trans domains are unaffected but the des10 Mutl-C domain
= is missing the majority of the metal binding motif QHAADERIRLEE (red box). This 15 amino acid
deletion potentially affects the Mutl-C conformation in (c) des10 as compared with (d) WT (default

!_{",\‘ : .:é;,‘;- Swissmodel colouring).

des10 has fewer chiasmata than observed in WT

In order to confirm and further characterize the meiotic phenotype of des10 mutants we used fluorescence in situ hybridization (FISH) with probes against
45S and 5S rDNA to determine chiasma frequencies and CO at metaphase | in WT and des10. Although homologues are normally paired at pachytene in
both genotypes (Fig. 3a,e), des10 exhibits fewer chiasmata. In the WT metaphase |, the number of chiasmata ranged from 16 to 20 per nucleus with the
mean frequency of 18.4 + 1.3 (n = 21) (Fig. 3b,i,j) slightly lower than CO numbers (mean = 21.8) estimated from genetic maps (Close et al., 2009; IBGSC
et al., 2012) but closer than previous estimates (Nilsson et al., 1993). In des10 we observed significantly fewer chiasmata ranging from 5 to 13 per nucleus
with amean of 9.2 + 2.1 (n = 57) (Fig. 3fi,j) and we also observed the presence of univalents (1.7 + 2.0, n = 57) (Fig. 3f,i) leading to occasional aberrant
chromosome segregation at anaphase | (Fig. 3c,g), genetically unbalanced tetrads (Fig. 3d,h) and a subsequent semi-fertile phenotype. Given the similar
size of the seven chromosome pairs, the distribution of chiasmata per nucleus indes10 can be compared with that expected assuming a Poisson distribution
of the number of chiasmata observed (Jones, 1967). The observed distribution was significantly different from that expected from a random distribution (P
=0.034), which indicated that although the presence of univalents is indicative of a substantial disruption, some control of CO distribution remained
(Jones, 1967; Jackson et al., 2006).

Figure 3. Reduced chiasmata and abnormal chromosome segregation in des10. 3D confocal optical section of (a-d)
barley (Hordeum vulgare ) wild-type (WT) and (e—h) the barley mutant des10 meiocytes (bars, 10 pm). At
pachytene, homologous chromosomes are paired in both (a) WT and (e) des10 as shown with the 45 s (red) and 5 s
(green) probes. (b) WT metaphase | has seven ring bivalents that can be identified with 45S (red) and 5S (green)
probes, whereas (f). des10 metaphase | averages 9.2 chiasmata per nucleus with occasional univalents. During

anaphase |, chromosomes segregate to each pole in (c) WT, whereas chromosome mis- segregation is evident in (g)
! — - des10. Tetrads are normal and genetically balanced in (d) WT but not in (h) des10 (white arrow indicating

‘ unbalanced complement). (i) Histogram of the distribution of chiasmata per cell for des10 and WT and (j) a table of
the number of chiasmata per chromosome in WT and des10.



des10 shows reduced genetic recombination frequency

Given the recessive nature of the mutation, we investigated the effect of des10 on genetic recombination using segregating F3 families derived from specific F2 individuals from the BW230 (des10) x Morex
cross that were homozygous for either the WT (n = 188 across 15 F» familes) or des10 mutant (n = 183 across 16 F» familes) allele at HvMIh3. The reconstituted chromosome linkage maps generated from
the segregation data within the F3 families derived from WT F; individuals were comparable to the barley consensus map (Close et al., 2009; IBGSC et al., 2012). However, the maps derived from the
segregation data within the F3 families derived from des10 F; individuals showed considerably less recombination, being only 45.9% of the length of the maps derived from WT families (excluding
chromosome 5H due to the selection at the HYMIh3 locus) (Figs 4, S2). There was little evidence to suggest that the reduction in recombination varied across the genome with similar reductions observed in
subtelomeric (44.2%) or centromere-proximal regions (51.4%) (Fig. S2) with the estimates of genetic to physical distance ratios in WT and des10 changing from 1.16 to 0.46 ctM Mb ! in distal subtelomeric
regions and from 0.06 to 0.03 cM Mb ™! in proximal regions. The reduction in recombination frequency was confirmed by comparisons at three specific intervals delineated by KASPar® SNP markers on a
larger number of individuals from F3 families (WT, n = 695 across 22 F families; des10, n = 556 across 24 F, families) that all showed significant differences in recombination with des10 lines, showed a

mean reduction to 39% WT recombination frequency (26.0-54.6% (P = 8.457870.01)) (Fig. S3). The reduction in recombination in these F3 families paralleled the reduction of chiasmata observed
cytogenetically in the mutant des10 compared with WT.

Figure 4. Genetic mapping in F; families. Alignment of the physical sequence (in Mbp) with consensus
genetic map (in cM) for barley (Hordeum vulgare) chromosome 1H with comparisons to the genetic maps
calculated from BW230 (des10) x Morex F; families derived from F individuals homozygous for either
the wild-type (WT) or des10 mutant allele at HvMIh3. Estimated centromere position on genetic map

/ marked in red.

Chromosome pairing is normal but the normal progression of synapsis appears compromised in
des10

Given the importance of the interplay between synapsis and recombination in CO formation (Santos, 1999; Zickler, 2006), we compared synapsis in des10
and WT using antibodies raised against AtZYP1 and the axial element associated protein AtASY1 (Higgins et al., 2012; Phillips et al., 2012; Barakate et
al., 2014) using structured illumination microscopy (SIM). Axis formation and the initiation of synapsis during leptotene were comparable in WT (Figs
5a,b, S4) and des10 (Figs 5g,h, S4). By mid-zygotene in WT most of the chromosomes were paired (Fig. 5¢,d) and the typical tri-partite structure of the
SC was visible (Fig. 5d, white arrow) with the ZYP1 signal suggesting new synapsis initiation sites, as shown previously (Phillips et al., 2012). The
tri-partite structure was also clearly visible at pachytene in WT with complete synapsis evident (Fig. 5e,f). Using confocal microscopy, synapsis appeared
to progress normally with the linearization of the ZYP1 signal during zygotene—pachytene (Fig. S5). However, with SIM there appeared to be a difference
in the relative positioning of ZYP1 compared with WT with a highly punctate ZYP1 signal observed in des10 at mid-zygotene (Fig. 5i,j) or later (Fig.
5k,I) that precluded the discernment of the SC tri-partite structure at mid-zygotene (Fig. 5j) or late zygotene/pachytene (Fig. 51). The problems of
homologue pairing were also indicated by unsynapsed ASY1 regions resembling the previously described ‘peg and coalescent’ process (Colas et al., 2008)
at early zygotene in des10 (Fig. 5j, arrows). However, the punctuated appearance of ZYP1 seen with SIM was not obvious when using confocal images,
where the ZYP1 signal appeared linear in des10 (Fig. S5). This suggests that the homologous chromosomes are aligned but that either the SC is not fully
mature in the mutant or that in des10 the chromatin structure is altered precluding binding of the ZYP1 antibody. Using Imaris we were able to track the
individual bivalents of the later zygotene/pachytene cells in des10 (Fig. 5k) and show that the distance between the ASY1 labelled homologues was
maintained at 0.1 um (Fig. 6), as previously reported at pachytene (Phillips et al., 2012), suggesting that despite the nonlinear ZYP1, these cells are fully
synapsed.

Figure 5. Comparison of synapsis in wild-type (WT) and des10. Progression of synapsis in WT and
des10 demonstrated by the immunolocalization of AtASY1 (green) and AtZYP1 (magenta) on
formaldehyde fixed barley (Hordeum vulgare) meiocytes. Cells visualized by 3D structured
illumination microscopy (3D-SIM) show the progression of synapsis in (a—f) WT and (g—I) des10 at
(a, b, g, h) leptotene, (c, d, i, j) zygotene and (e, f, k, 1) pachytene together with detailed views of
white squared regions (squares in a, ¢, €, g, i, k) shown in (b, d, f, h, j, 1). Bars, 5 um.

Figure 6. Imaris modelling of des10 pachytene like cell. (a) 3D view from Imaris of des10 cell from Fig. 5(k) with
ASY1 labelling. (b) Individual barley (Hordeum vulgare) bivalent labelling in different colours using Imaris
tracking. (c) The distance between the two homologous chromosomes is 0.1 pm corresponding to the WT
synaptonemal complex distance. Bars: (a, b) 3 um; (c) 0.4 um.

des10 displays delayed synapsis

The observations of a perturbed synaptic progression were unexpected given that synapsis has been reported as normal in both Arabidopsis and mouse
knockout mlh3 mutants (Lipkin et al., 2002; Jackson et al., 2006), albeit that the former was analysed using confocal microscopy only. In order to better
understand how and when the mutation in des10 was having this effect, we conducted a time-course analysis using EdU labelling. After collecting spikes
of the same size in both WT and des10 for each time point, meiocytes were spread from the central spikelets (numbers 3—10). This enabled several stages
of meiosis to be studied for each spike with the EdU intensity/distribution and ASY1 linearity/intensity under confocal microscopy being used to classify
the cells. A total of 27, 163, 98 and 141 cells were counted in WT and 26, 172, 167 and 46 cells in des10, at 18, 24, 48 and 68 h, respectively. We
observed that early meiotic events in des10 were comparable to WT with the presence of the telomere bouquet, which produces a concentrated ASY1
signal at one side of the nucleus (Higgins et al., 2012), at 6 h (Fig. 7a—c) and 18 h (Fig. 7d—f). However, although by 48 h (Fig. 7j-I) in WT there were
roughly equal numbers of cells in zygotene and pachytene with 8% in later stages, in des10, 87% of the total cells were in zygotene with no cells found at



pachytene, although 5% were at later stages. This result corresponds to the apparent defect in synapsis described earlier, suggesting that in chromosome
condensation). At 68 h (Fig. 7m-o0), similar levels of metaphase | were found in WT and des10, cells appear suspended at zygotene with very few
exhibiting a mature pachytene (with a strong linear ZYP1 signal relating to, but although 100% of them are labelled in WT, 29% of the total metaphase |
cells were not labelled in gesio, indicating that in 1€510 they have lost synchronicity, potentially due to the delay in synapsis. Although this lack of synchronicity
made estimates difficult for the majority of the cells, the total length of prophase does not appear generally different between WT and des10. Thus, unlike
the 25-h delay in reaching metaphase | in knockout AtMIh3 mutants (Jackson et al., 2006), des10 cells exhibit no overall (or little) time delay compared
with WT. Moreover, a comparison of the stages of meiotic progression relative to changes in meiocyte size based on DNA staining (Fig. S6) revealed that
the expected chromosomal changes were delayed in des10 relative to WT (Kleckner et al., 2004; Jackson et al., 2006; Higgins et al., 2012).

A
|

o4 Figure 7. 5-ethynyl-2'-deoxyuridine time course in wild-type (WT) and des10. Percentage of barley (Hordeum
vulgare) cells in each meiotic stage category and 3D confocal optical sections of WT and des10 meiocytes at (a—
c) 6h, (d, f) 18 h, (g—i) 24 h, (j-1) 48 h and (m—o) 68 h. Bars, 5 um. PM, pre-meiotic; TB, telomere bouquet;
Lept, leptotene; Zyg, zygotene; Pach, pachytene; Dip, diplotene; MI, metaphase I; Al, anaphase I. The solid
vertical black line indicates the zygotene stage in all panels.

L]

HvMLHS3 foci detectable in WT and des10

Using high-resolution immunocytology, we observed that the HYMLH3 antibody (Phillips et al., 2013) produced a punctate signal associated with the
nucleus at zygotene in WT barley with some MLH3 signal associated with chromatin and the forming SC (Fig. 8a—d). At late zygotene/early pachytene,
synapsis of the chromosomes in WT progressed via ZYP1 polymerization and although the MLH3 signals are detectable in the nucleus, a subset of more
distinct MLH3 foci become evident on the SC (Fig. 8e-h, triangles). At late pachytene, (Fig. 8i-I), polymerization of ZYP1 is complete and distinct
MLH3 foci are evident as described previously (Phillips et al., 2013). Using 3D stacks, the final MLH3 foci count (Figs 8j triangles, S7) averaged 20.8 (+
3.4, n =19) per cell (Table S1) for the WT, which corresponds closely to the average chiasma count of 18.4 at metaphase I.

Figure 8. Distribution of ZYP1 and HYMLH3 during prophase. (a—1) Wild-type (WT) and (m-x) des10
barley (Hordeum vulgare) meiotic progression monitored using antibodies raised against HvZYP1
(magenta) and HYMLH3 (green) using 3D structured illumination microscopy (3D-

SIM) with detailed views of white squared regions (squares in c, g, k, 0, s, w shown ind, h, 1, p, t, x).
At early zygotene in both (a—d) WT and (m-p) des10 MLH3 signal is abundant (b, n) in the nucleus
including associations with the chromosomes axes (d, p). This continues into early pachytene, in both
(e—h) WT and (g-t) des10. However, in the WT (g, h) a few foci with a stronger signal potentially
marking the finalized crossovers (COs) become evident (triangles) whereas it is difficult to
differentiate foci in des10 (s, t). At late pachytene (i—I, u—x), CO foci (triangles) are seen clearly in
WT as compared with weaker unassociated signals (circle) (k, I). Weaker synaptonemal complex
associated foci (w—x) are discernible in des10 (triangles) though considerable MLH3 signal remains in
the nucleus and on the axes. Bars, 5 pm.

The exonic deletion in Stage des10 almost entirely removes the functional HYMLH3 metal binding motif, but as the mutation leaves HvMIh3 in frame, it
potentially produces detectable protein that is endonuclease deficient and under the control des10 static of its native promoter. This was confirmed with
immunocytology with the HYMLH3 antibody in conjunction with HvZYP1 allowing the observation of the mutant protein in relation to the synaptonemal
complex formation. As the problems of synapsis in des10 that are evident when using 3D-SIM could complicate accurate staging when using the ZYP1
antibody without ASY1, the staging was also carried out using confocal images where the ZYP1 signal appears linear in des10 (Fig. S5).

At zygotene, we observed a similar MLH3 signal in the nucleus in des10 (Fig. 8m-p) as in the WT (Fig. 8a—d). However, at late zygotene/pachytene,
judged by the stage of ZYP1 polymerization, distinct foci were much less apparent in des10 (Fig. 8q-t) with a higher background MLH3 signal present in
the nucleus (Fig. 8t). At the pachytene-like stage in des10, distinct foci did form and the final number could be estimated using 3D image stacks (Figs 8v
triangles, S8) with the mean being 7.7 foci per cell (+ 1.6, n = 30) (Table S1) which is close to the observed average of 9.2 chiasmata per nucleus. The
distribution of the number of MLH3 foci per nucleus in des10 was significantly different from a Poisson distribution (P = 0.011), confirming our earlier
conclusion from chiasmata counts that the COs are not random (Jackson et al., 2006). Interestingly although the number of cells was limited and the count
subject to experimental error, the MLH3 foci distribution in des10 did, however, just fit a binomial distribution expected given the number of foci found in
the mutant and WT.

In addition, we found that DSB formation was not disturbed in des10 and progressively formed in both WT and des10 from the distal regions and localized
to the axial elements as previously described in barley (Figs S9, S10) (Higgins et al., 2012; Phillips et al., 2012; Barakate et al., 2014). However, higher
numbers of RAD51, DMC1 and MSH4 foci were found in des10, compared with WT, (Table 1; Figs S9, S10) suggesting that the mutation is either
affecting DSB numbers, as previously reported in ZMM mutants (Thacker et al., 2014), or the dynamics of DSB repair.

Table 1. Recombination foci in wild-type (WT) and des10 barley; table showing the mean number (with + SD) of AtDMC1, AtRADS51 and
AtMSHA4 foci in WT and des10 at the telomere bouquet, the stage of declustering of the telomere and the linear ASY1 stage



Stage Protein WT des10 TTEST static
Telomere bouquet RAD51 127.27 +55.38 1422 +49.3 2.46E-01
Declustering RAD51 164.96 + 63.12 240.8 £ 80.6 6.48E-04
Linear ASY1 RADS51 349.3+79.5 700.3 +128.2 1.721E-05
DMC1 361.3+62.9 766.8 + 147.35 4.4873E-06
MSH4 323.2+334 639.5+79.5 3.53682E-06
Discussion

des10 is a spontaneous mutation in HYMIh3

Using classical forward-genetics, we show that the spontaneous semi-sterile barley des10 mutant is the consequence of a deletion of exon 17 of
MutL-homolog 3 (HvMIh3) that contains most of the conserved C-terminal metal binding endonuclease domain. The des10 mutant showed a clear meiotic
phenotype with a reduction in chiasmata number relative to the wild-type (WT) that mirrors the reduction seen in the knockout mutants in Arabidopsis,
the only other plant for which mlh3 mutants have been characterized (Jackson et al., 2006). As in Arabidopsis, the presence of some univalents indicates
that the remaining crossovers (COs) are insufficient in number in some cells to ensure accurate chromosome segregation.

This similar level of reduction in chiasmata in the MLH3 mutants indicates that, as expected, the deletion of the majority of the conserved metal binding
motif essential for the endonuclease activity (Nishant et al., 2008) in des10 mimics the complete knockout of the gene. The effects observed were,
however, less severe than those found in classical ZMM mutants in Arabidopsis and Zyp1 knockdowns in barley (Higgins et al., 2004; Barakate et al.,
2014) which also corresponds with the phenotypes observed in Arabidopsis MLH1 and MLH3 mutants (Jackson et al., 2006; Dion et al., 2007).
Importantly, given the nature of the mutation, we were able to count the MLH3 foci directly in both WT and in des10 unlike in the Arabidopsis and mouse
knockout studies. These MLH3 foci counts confirmed the reduction observed with chiasmata counts, showing a reduction to 37% (7.7/20.8) compared
with WT that mirrored the estimates of chiasmata counts (50%: 9.2/18.4) and interestingly that were close to the ratio found with chiasmata counts in
Avrabidopsis (39%) (Jackson et al., 2006).

This mutant phenotype in both species is consistent with a post-ZMM role for MLH3 in the resolution of predetermined CO sites (Jackson et al., 2006;
Zakharyevich et al., 2010). This interpretation was supported in Arabidopsis by the fit of the mutant cell chiasmata frequencies to a binomial distribution
that modelled the probability (P) of the independent resolution of double Holliday junction (dHj) as COs at each of a preselected set of (k) recombination
intermediates. However, in Arabidopsis, the chiasmata frequencies also fitted a simpler discrete Poisson distribution about the mean, potentially indicative
of the random nature of the remaining COs. Importantly this simpler random distribution was not supported in this study, with both the counts of
chiasmata and MLH3 foci in des10 being significantly different from the expected Poisson distributions whereas the MLH3 foci distribution in des10 did
only just fit a binomial distribution expected given the number of foci found in the mutant and WT.

The effect of des10 was observed genetically on recombination frequency with the F; map length of families derived from F, individuals homozygous for
the des10 allele at HYMIh3 being 45.9% the map length of WT. Interestingly there was little evidence to suggest that the reduction in recombination varied
across the genome despite the known temporal-spatial control of recombination in barley (Higgins et al., 2012). This observation corresponds well with
the assumption that MLH3 is involved in the resolution of predefined CO intermediates derived from the ZMM pathway and thus des10 should not affect
the distribution of designated CO events but will affect the proportion of these that are resolved as CO, that is will affect recombination frequency but not
recombination distribution.

Intriguingly a similar proportion of WT CO was observed in des10 (37%) as in AtMLH3 knockouts (39%). Although the mechanism by which the dHJs
are resolved in the absence of a functional MLH3 is unclear (Jackson et al., 2006), the involvement of other complexes such as MLH1-PMS2 have been
suggested (Lipkin et al., 2002). Considering the interaction between the MLH1-MLH3 complex and MMS4-MUS81 in yeast (Wang & Kung, 2002; Fabre
et al., 2003; de los Santos et al., 2003), and the known involvement of MUS81 in mammalian (Holloway et al., 2008) and plant CO resolution (Higgins et
al., 2008), it is possible that the resolution of the Class | COs in MLH3 mutants is mediated via the Class 1l machinery while maintaining the ZMM CO
designations and interference (Zakharyevich et al., 2010).

HvMLH3 foci evident at zygotene

The development of MLH3 foci with the developing synaptonemal complex (SC) at zygotene is earlier than the classical expectation, where SC associated
foci are generally observed at pachytene on completion of synapsis (Lipkin et al.,2002). However, this early development of MLH3 foci during zygotene
is supported by observations in mouse and Arabidopsis (Kolas et al., 2005; Jackson et al., 2006) and of other MutL homologues in other species (Baker et
al., 1995; Storlazzi et al., 2010). The earlier association of MLH3 signal with the nucleus at zygotene before the appearance of clear foci was surprising
but showed a punctate but regular organization of stretches of ZYP1 signal separated by MLH3 foci (Fig. 7d). This would suggest that our observations
are unlike the association with heterochromatic repeats found in mouse (Baker et al., 1995) or with chromatin organization suggested during chromosome
segregation in humans (Roesner et al., 2014). This would therefore indicate that MLH3 is recruited earlier to the newly formed axes potentially during
synapsis, rather than on mature chromosomes axes, as suggested by animal studies reporting the presence of MLH3 at pachynema.

In des10, the mutation affects the dimerization domain of HYMLH3 that would potentially cause a change in the conformation of the C-terminal domain
and, thus, possible difficulties in forming the heterodimer with MLH1 that is required for the resolution of dHJs (Guarne et al., 2004; Ranjha et al., 2014;
Rogacheva et al., 2014). However, the capacity of the complex to bind to chromatin would likely be unaffected given the intact DNA binding domain, and




as HYMLHS3 is still recruited to the axis, its DNA binding activity appears to remain effective. This would parallel the behaviour of the yeast mutant
MLH3A7 that also lacks the endonuclease motif, but is normally recruited to the DNA (Roesner et al., 2013). Interestingly the MLH3A7 studies also
showed a higher turnover of the protein in the mutant that could tally with the higher background and staining of the nucleolus in this study. The early
meiotic effects seen in des10 may therefore be a manifestation of the timing of the binding of MLH3 with the continued presence of the defective protein
on the axis generating a phenotype not detected in a knockout (Lipkin et al., 2002; Jackson et al., 2006).

des10 displays altered synapsis progression

The barley des10 phenotype revealed a perturbation in the progression of synapsis compared with the WT that became evident at zygotene. This
unexpected effect on synapsis and the associated delay in meiotic progression is broadly similar to phenotypes observed for ZMM mutants (Novak et al.,
2001; Higgins et al., 2004; Barakate et al., 2014) although not as severe. Assembled ZYP1 appears to be fairly linear under confocal microscopy and
subsequent meiotic progression indicates that the chromosomes are sufficiently aligned to allow some crossover resolution. However, with structured
illumination microscopy ZYP1 did show a less continous signal than WT and was associated with a longer zygotene/pachytene transition in des10.
Although the observed differences in synapsis could have been exacerbated by an increased sensitivity of the mutant protein containing complexes to the
cytological procedures, such effects would de facto imply a change in structure. The observed perturbation of synapsis was consistent with the timing of
the appearance of MLH3 signal and potentially relates to the changed binding dynamics of the mutant protein. Similarly the delay at zygotene observed in
des10 cells would be concomitent with the observed changes in structure associated with ZYP1 signal and the difficulty in observing cells with a classic
pachytene appearance given the apparent problems of synapsis. It is thus unclear whether full synapsis is achieved in this desynaptic mutant or how many
cells achieve full synapsis although cells clearly do progress through to diplotene.

The interplay between recombination and synapsis is a standard feature of meiotic mutant studies and is inherent in the grouping of ZIP1 (ZYP1) and
mismatch repair genes in the ZMM pathway (Osman et al., 2011; Mercier et al., 2014). However, the processes of recombination and synapsis are not
inseparable, with DSB formation and CO imposition known to occur before synapsis in some species (Santos, 1999; Fung et al., 2004; Thacker et al.,
2014). Although our data show that CO imposition is retained in des10, it also suggests that SC progression is dependent on accurate CO resolution.
Synapsis would therefore appear to involve different stages; with chromosome engagement, alignment and initiation being ZMM dependent (Thacker et
al., 2014) but progression and maturation also being dependent on subsequent CO resolution by MLH3. We noted that RAD51/DMC1 counts were higher
in des10 and attribute this to the concomitant change in the observed timing of meiotic progression rather than a direct effect on DSB formation, as seen in
ZMM mutants (Thacker et al., 2014). The observed difference in timing of MLH3 action compared with

Avrabidopsis could reflect the specific nature of the des10 mutation combined with the advantages of visualizing in a large genome with high-resolution
microscopy. Whether our observations reflect an earlier role for MLH3 in plants in general or specifically in barley, they are consistent with the known
spatiotemporal difference between barley and Arabidopsis in early meiosis. In barley, the distal and interstitial chromosomal regions exhibit temporal
differentiation in recombination initiation that corresponds to the relative timing of replication and the differentiation of the genome by chromatin
modifications (Higgins et al., 2012; Baker et al., 2015). This temporal separation of events along the chromosomes is in contrast to Arabidopsis where

the formation of chromosome axes is very rapid and recombination initiation appears essentially synchronous throughout the chromosomes (Higgins et
al., 2012). This potentially relates to the smaller genome size and distribution of heterochromatin, as well as the differing meiotic chromosome dynamics
in the model species (Armstrong et al., 2001). In summary, we have taken advantage of genetic and genomic resources in barley to identify an exonic
deletion in the orthologue of MutL-Homolog 3 (MIh3) as the causal lesion in a natural semi-sterile DESYNAPTIC 10 (des10) mutant.

des10 exhibits reduced recombination and fewer chiasmata than the WT, congruent with our expectations for the post-ZMM role of HYMLH3 in the
resolution of predetermined CO sites. The reduction in chiasmata resulted in the loss of obligate crossing-over leading to chromosome mis-segregation and
the semi-sterile phenotype. This study thus confirms the conserved role of MLH3 in barley previously assumed in earlier studies (Phillips et al., 2013) and
the non-random nature of the CO distribution in the mutant as postulated but not demonstrated in Arabidopsis (Jackson et al., 2006). Importantly, in barley
MLH3 foci are evident at zygotene, earlier than expected, although this has been observed in other systems (Kolas et al., 2005); using 3D structured
illumination microscopy (3D-SIM) super-resolution microscopy we were able to observe that des10 also exhibited aberrant synaptonemal complex
progression at this stage, associated with a meiotic delay. We interpret this as meaning that the resolution of CO is initiated early in barley and that its
disruption in des10 compromises synapsis progression with the associated change in the dynamics of the mutant MLH3 protein. Thus, in barley both
crossover imposition and crossover resolution occur before full synapsis, affirming the importance of the early stages of prophase | for the control of
recombination. The integration of genetic and cytological approaches to dissect the mutant phenotype of Hvmlh3 establishes the tractability of studying
meiosis in large genome cereals. The size of the genome facilitates cytological discrimination of the profound changes in chromosome structure during
prophase | and is potentially associated with specific changes in timing of meiotic processes when compared with physically smaller model systems.
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