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Abstract

The problem of estimating a parameter of a quantum system through a series of measurements
performed sequentially on a quantum probe is analyzed in the general setting where the underlying
statistics is explicitly non-i.i.d. We present a generalization of the central limit theorem in the present
context, which under fairly general assumptions shows that as the number N of measurement data
increases the probability distribution of functionals of the data (e.g., the average of the data) through
which the target parameter is estimated becomes asymptotically normal and independent of the initial
state of the probe. At variance with the previous studies (Gutd M 2011 Phys. Rev. A 83 062324; van
Horssen M and Guta M 2015 J. Math. Phys. 56 022109) we take a diagrammatic approach, which
allows one to compute not only the leading orders in N of the moments of the average of the data but
also those of the correlations among subsequent measurement outcomes. In particular our analysis
points out that the latter, which are not available in usual i.i.d. data, can be exploited in order to
improve the accuracy of the parameter estimation. An explicit application of our scheme is discussed
by studying how the temperature of a thermal reservoir can be estimated via sequential measurements
ona quantum probe in contact with the reservoir.

1. Introduction

Seeking the most efficient way to recover the value of a parameter gencoded in the state p, ofa quantum system
is the fundamental problem of a branch of quantum information technologies [ 1], which goes under the name of
quantum metrology [2, 3]. It goes without mentioning that this topic has applications in a variety of different
research areas, ranging e.g. from the interferometric estimation of the phase shifts induced by gravitational
waves [4], high-precision quantum magnetometry [5, 6], to remote probing of targets.

In the standard approach one typically focuses on the case where several (say N) identical copies of pg are
available to experimentalists, who can hence rely on the statistical inference extracted from independent and
identically distributed (i.i.d.) measurement outcomes to estimate the value of g. This scenario is particularly well
formulated by those configurations where the unknown parameter g is associated with some black-box
transformation A, (say a phase shift induced in one arm of an interferometric setup) which acts on the input
state p, of a probing system (say the light beam injected into the interferometer) yielding p, = A;(p,) as the
output density matrix to be measured, with such test repeated N times to collect data {s,, ..., sy }. See figure 1(a).
In this context, the ultimate limits on the attainable precision in the estimation of g, optimized with respect to the
general detection strategy, can be computed, resulting in the so-called quantum Cramér—Rao bound, which
exhibits the functional dependence upon p, via the quantum Fisher information. See e.g. [2, 3, 7-12].

In many situations of physical interest, however, the possibility of reinitializing the setup to the same state is
not necessarily guaranteed. In the present study we are going to consider a different scheme, in which a single
probing system undergoes multiple applications of A, while being monitored during the process without being

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/11/113055
mailto:yuasa@waseda.jp
http://dx.doi.org/10.1103/PhysRevA.83.062324
http://dx.doi.org/10.1063/1.4907995
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/11/113055&domain=pdf&date_stamp=2015-11-27
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/11/113055&domain=pdf&date_stamp=2015-11-27
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 113055 D Burgarth et al

(a)
o —@—~@

(b)
@000 —-B-®
Figure 1. (a) The standard strategy for estimating a parameter g of a quantum system, where measurement data {sy, ..., sy } are

collected by independent and identical experiments. Every time the experiment is performed, the system is reset to some specific
known initial state p,. (b) The sequential scheme for estimating a parameter g of a quantum system, where the measurements are
performed sequentially to collect data {s,, ..., sy } without resetting the state of the system every after the measurement and the initial
state p, can be arbitrary.

reinitialized to the same input state. See figure 1(b). The data {s;, ..., sy } collected by such sequential
measurements will be non-i.i.d. in general. Still, we are able to estimate the target parameter g from the data
under certain conditions. We will see that the property of the channel describing the process is important. The
idea is to let the probing system forget about the past by the mixing of the channel [13—16] (the channel being
intrinsically mixing or designed to be mixing), which clusters the data and allows the central limit theorem to
hold for appropriately chosen functionals of the data. This sequential scheme is suited to account for estimation
procedures where one aims to recover g via a sequence of weak measurements that slightly perturb the probe. In
particular it can be adapted to study physical setups where the probing system is a proper subset of a many-body
quantum system which is directly affected by the black-box generator A, (an explicit example of this scenario
will be analyzed in the final part of this paper).

Various schemes for quantum parameter estimation based on repetitive or continuous measurements have
been studied: see e.g. [17-25]. Among them, analogous setups were analyzed in [19, 24], where the problem was
formalized in terms of quantum Markov chains. Specifically in [19] it has been shown that, under rather general
assumptions, the statistics of the associated estimation problem converges asymptotically to a normal one,
generalizing the similar results which were known to apply to purely classical settings [26—28]. In the present
paper we first provide an independent derivation of the previous result [19] via a diagrammatic approach to
compute the leading-order contributions to the moments of the associated estimating functional of the data

. 1 N . ..
{si, ..., sv },1.e., the moments of the average S = I Zi:l s;. This approach allows us to prove the central limit

theorem including other estimating functionals capturing the correlations among different measurement
1

N-¢
chains of subsequent measurement outcomes is proved in [24], but in contrast to this previous work we provide

N-¢ . . . .
Zi:l s;Si1¢- The asymptotic normality of the empirical measure associated to

outcomes, e.g., Cy =
explicit formulas which allow us to evaluate the elements of the covariance matrix of the normal distribution of
the variables S and C,. Moreover, we point out that the inclusion of the correlations Cy for estimation, which do
not contain any useful information in the usual i.i.d. data, can help improve the accuracy of the estimation. This
result, while not conclusive, is a preliminary (yet nontrivial) step towards the determination of the ultimate
accuracy limit attainable in the non-i.i.d. settings.

This paper is organized as follows. In section 2 we introduce the notation and recall some basic mathematical
facts which will be used in the paper. The non-i.i.d. estimation model is then presented in section 3. In section 4
we focus on the simplest estimating functional S of the measurement data, and prove its asymptotic normality
under the assumption of mixing of the process. The central limit theorem is generalized to include the
correlations Cy and their role in the estimation problem is addressed in section 5. An explicit example is then
presented in section 6, where we discuss the estimation of the temperature of a thermal reservoir via local
measurements on a quantum probe in contact with the reservoir. Conclusions and perspectives are summarized
in section 7, while some technical elements are presented in the appendices.
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2. Notation and mathematical background
In this section we introduce the notation and recall some basics facts on the theory of quantum channels.

2.1. Quantum ergodic/mixing channels

Quantum channels are completely positive and trace-preserving (CPTP) maps, transforming density operators
to density operators [29-31]. Every CPTP map £ admits at least one fixed point [13, 14], namely, a stationary
state p,,

E(py) = Py (1)

which is hermitian, positive-semidefinite, and of unit trace. In other words, the fixed point p, is an eigenstate of
the map & belonging to its unit eigenvalue 1.
If the fixed point p, is unique, the quantum channel £ is called ergodic [14—16]. It implies

] N1

— ZE”(pO) — py (N — o00), V states p, )
N n=0

where £" = £o---0o& denotes n recursive applications of the channel &, and the convergence is in the
superoperator norm with corrections whose leading order scales as 1 /N. Moreover, if the fixed point p, is
unique and the unit eigenvalue 1 is the only peripheral eigenvalue (eigenvalue of unit magnitude), the quantum
channel £ is converging as

EN(py) — py (N — o0), V states py, 3)

and is called mixing, with the convergence being as in (2) [13-16]. Mixing implies ergodicity, but the converse is
not necessarily true.

As commented above, the fixed point p, ofa quantum channel £ is an eigenstate of £ belonging to its unit
eigenvalue 1. In a matrix representation of &, itis a ‘right eigenvector.” The corresponding ‘left eigenvector’
belonging to the same eigenvalue can be different from the right eigenvector in general. For a quantum channel
&, thetrace Tr isaleft eigenvector belonging to the unit eigenvalue 1, since the quantum channel £ is trace-
preserving

Tr {E(p)} = Tr p. 4
Let us hence write the fixed point p, and the trace Tr in the vectorized notation as
P |pe)  Tre )

respectively, and a couple of eigenvalue equations for the unit eigenvalue 1 read
Elps) =ps)  alE=q. ®)

More explicitly, given any complete set of orthonormal basis states {|n) } ,, of the system, an operator
A= ZM, A, |n)(n'|is vectorized by |A) = Zn’n, A, |n) @ |n')[32]. Thetrace (1| = >, (1] © (n|is(the
hermitian conjugate of) the vectorized version of the identity operator: that is why it is denoted by (1|. In
addition, the inner product (A|B) = Tr {A"B} is the Hilbert-Schmidt inner product. In this representation, the
quantum channel € — Y~ Epyw |m) (m'| @ |n) (n'|is a matrix with the matrix elements
Emnmtnt = (m| E(m’) (n'|)|n) in the original representation, and the application of a map & is expressed by the
multiplication of the corresponding matrix. By abuse of notation we use the same symbol £ for its matrix
representation.

In this matrix representation, the eigenvalue equation for £ reads

£ un) =\, un), (v,1 E= )\n(vn . )

In particular, |uy) = |py)and (vy| = (1| with Ay = 1. The eigenvectors belonging to different eigenvalues are
orthogonal to each other and normalized as

(v

Note that the matrix £ might not be diagonalizable but is cast in the Jordan canonical form in general [13, 14].
In this paper, ergodic or mixing channels will play a central role. The unit eigenvalue 1 of such a channel £ is
not degenerated by definition, and the ergodic/mixing channel £ can always be decomposed as

E=PR+E, &)

un) =1, (vm‘un) =0 for A,= . (8)
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where
Pe=|pe) 1l = py Tr {+) (10)

is the eigenprojection belonging to the nondegenerate unit eigenvalue 1 of £, and the remaining part £ (which is
not CPTP) is built on the eigenvectors { |u,) },-0 and { (v, }, -0 belonging to the eigenvalues A, different from 1.
By construction &£’ is orthogonal to R, i.e., P&’ = £"P = 0. Moreover, since £ does not admit a unit
eigenvalue 1, theinverse (1 — & "y~1 exists, and we have

1 N2l 11— &N
NZS”ZP*JFNWQ*’ Qx=1-PR, (1)
n=0 -

which allows us to prove the convergence to the fixed point p,, in (2). If the channel £ is not only ergodic but also
mixing, the spectral radius of £’ is strictly smaller than 1, and we get

EN=P+ EN =P (N— o), (12)

which proves (3). If the channel £ is ergodic but not mixing, £’ admits a peripheral eigenvalue, and £~ does not
decay: we lose the convergence (3), but the averaged channel converges as (2).

Note again that £’ might not be diagonalizable if some of the eigenvalues ), of £ are degenerated, but it s
nota problem for the convergence: see [13-16].

2.2.Measurement and back-action

We recall that in quantum mechanics the most general detection scheme can be formalized in terms of positive
operator-valued measure (POVM). See e.g. [29]. Expressed in the superoperator language this accounts to
assigning a collection M = { M}, of trace-decreasing channels M describing the statistics of the
measurement and the back-action on the probed system. In particular, given p the density matrix of the system
before the measurement, the probability of getting outcome s by the measurement 1 is given by

pGlo) =T {M(p } = (1| M]p), (13)

with M, (p) being the conditional (not normalized) state immediately after the event. By construction the map

M=> M, (14)

obtained by summing over all possible values of s, is CPTP and describes the evolution of the system when no
record of the measurement outcome is kept. We also notice that given D and £ two CPTP maps, the set of
channels M, = EM,D defines a new POVM measurement 9’ = { M, },, where immediately before and after
the measurement 91 one transforms the state of the probed system through the actions of D and &, respectively.
Finally we observe that given 9 = { M, }, and M = {N,}, two POVMs, the operator (N;oM,)(p) represents
the conditional (not normalized) state obtained when the measurements 9t and 91 are performed on a system
in the state p yielding measurement outcomes r and s, respectively, the associated probability given

by p(r, slp) = (LINM, | p).

3. Sequential scheme

The problem we study is the following: we wish to recover an unknown parameter g of a quantum system, which
is encoded in the state of a quantum probe via the action of a quantum channel A,,

po— Ng(py). (15)

Here p, is the input state of the probe, which (possibly) is initialized by us, while A, (p, ) is the associated output
state, on which we are allowed to perform measurement in order to learn about g. In a standard i.i.d. approach
[10], one is supposed to perform the same experiment several times collecting i.i.d. outcomes {s, ..., sy }, from
which the value of gis to be extrapolated via some suitable data processing. See figure 1(a). More precisely, in
every experimental run of such an i.i.d. scheme the probe should be initialized in the same input state p, and the
same POVM measurement 9 = { M ), should be performed after A, has operated on the probe. On the
contrary, in the protocol we are going to discuss here, while we keep performing the same measurement 9t on
the probe, the probe is not reset to p, after each measurement step. Instead, we just repeat the application of A,
followed by a measurement many times to get a sequence of outcomes {5, ..., sy }, whose statistics is not
necessarily i.i.d. anymore. See figure 1(b). In this scenario, following the framework detailed in section 2, the
state of the probe undergoes a conditional evolution described by the (not necessarily normalized) density
matrix
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Py (ESNo-noé'sl)(po), & = Mol (16)
whose trace

EsrEy po) 17)

p(sl, U 5N|p0) = (1

defines the probability of the associated measurement event.

Itis worth observing that this mathematical setting includes the i.i.d. scenario as a special case, where A, is
identified with AgoP, with By = [p,) (1| = p, Tr {*} being the map resetting the state of the probe into p,.
Indeed, with this choice the probability (17) coincides with the one for the case where the measurements
M = {M;];are performed independently on N copies of A4 (p,), i.e.

p(sl, o sN‘po):(l Esn po)---(l Es, po)(l &, po)
= p{sl)- (sl (al). o
From (14) it follows that the map £ obtained by summing &; in (16) over all s,
E= Z & = MoAy, (19)

is CPTP, ensuring the proper normalization of the probability (17). As an additional constraint we will require it
to be mixing (in some cases, e.g., in section 4.1, however, we will weaken this requirement by imposing £ to be
just ergodic). This is not a strong assumption, as mixing channels actually form an open and dense set. Under
this condition we will be able to prove that the parameter g can be estimated from the single sequence of data

{s1, ..., sy } collected by the sequential measurements, irrespective of the initial state p, [19]. The rough idea is
that, thanks to the mixing (3), repeated applications of the channel force the quantum system to forget its initial
state and at the same time decorrelate the data separated beyond the correlation length, which clusters the data
and allows us to define self-averaging quantities as estimating functionals, whose fluctuations diminish as N
increases, i.e., the central limit theorem holds.

Inferring gfrom {s;, ---, sy }
A standard estimating functional of the measured data {s), ..., sy }, through which one tries to infer the value of
g isthe average

1 N
S=— Si. 20
N; (20)

In [19] it was noted that under the assumption that the average channel £ in (19) is mixing the central limit
theorem holds for S, and for large N the probability distribution P(S) of S asymptotically becomes a Gaussian
peaked at a value (S)y with a shrinking variance o2/ N, which are both independent of the input state p,, of the
probe, i.e.
2
Py~ L Q1)
2wo?/N

The explicit expressions for (S) and o will be provided in (27) and (35), respectively, in section 4 below. This
ensures that the quantity S evaluated from the single sequence of measurement outcomes is expected, with a high
probability, to be very close to its expectation value (S) with a vanishingly small variance o2/ N for large N.
Therefore, by comparing the observed value of S with the formula for the expectation value (S) as a function of
g one can infer the parameter g. It is worth stressing once more that in the sequential scheme the measurement
data are not independent of each other. Therefore, it is not trivial whether the central limit theorem holds, which
is usually based on i.i.d. data set. The mixing, however, is strong enough to kill the correlations between two data
if they are sufficiently far away from each other, and clusters the data, allowing the central limit theorem to hold.

Thanks to (21) the uncertainty in the estimation of g through the quantity S can be evaluated via the Cramér-

Raoboundas [3,7-12, 33]
6g ~ 1 (22)

- JF

where F(g) is the Fisher information of the problem given by

2 2
Fig) = [das P(S)(%lnP(S)) ~ ﬁz(a@*). (23)

g
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Accordingly, as long as (S) exhibits a nontrivial functional dependence upon g, the Fisher information F(g)
increases linearly in N, yielding an estimation error (22) which diminishes as 6g ~ 1/ VN (in (23) we have
omitted the contribution from 0o /0g to the Fisher information F(g) since it does not grow with N).

It may happen however that the quantity (S)y does not depend upon g. In such a case F(g) nullifies,
signaling that it is impossible to recover g through S (a problem which cannot be fixed by properly choosing the
inputstate p, of the probe, the asymptotic distribution (21) being independent of p,,). Nonetheless, even in this
particular case, the sequence of data {s, ..., sy }, whichis noti.i.d. in general, can still contain some functional
dependence upon g, which can be exploited for the estimation of g. In particular, the aim of the present work is to
show that the correlations among the measurement data, which are absent in the usual i.i.d. data, can be used for
this purpose. It turns out that, under the same mixing assumption on the channel £ thatleads to the central limit
theorem for Sin (21), the correlations are also self-averaging and become asymptotically normal for large N,
enabling one to estimate g through them. See (67) and (68) in section 5 below. Even in the case where (S)x
depends upon g, looking also at the correlations help enhance the precision of the estimation of g, which will be
demonstrated in figure 9 with the example studied in section 6.

We first present an alternative derivation of the results of [ 19], i.e., the asymptotic normality of S, on the basis
of a diagrammatic approach in section 4. While our approach is more involved than the elegant perturbative
approach taken in [19], it allows us to generalize the scheme to include the correlations among the measurement
data in a straightforward manner to enhance the precision of the estimation. We shall indeed prove the
asymptotic normality of variables including the correlation functionals in section 5.

4, Statistical behavior of S

This section is devoted to provide an alternative derivation of the results of [ 19], which ultimately leads to the
asymptotic normality of Sin (21). We start in section 4.1 by proving that under the hypothesis that the average
channel £ in (19) is ergodic the quantity S is self-averaging, converging to a fixed value (S)4 independent of the
input state p,. Then in section 4.2 we introduce the mixing property and show that under this stronger condition
the distribution P (S), which rules the statistics of S, becomes asymptotically normal.

4.1. Law of large numbers by ergodicity

Consider the expectation value of the quantity S with respect to the probability (17) governing the statistical
distribution of the measurement outcomes, i.e.

(S)v = Z-nZSp(sl, s 5N|p0)
PN

&)

SN : 51
i=1 s
1 :
_ L ) ei-1
3Gl
where £V is defined by
EW=3"5sE. (25)
Assume here that the channel £ is ergodic with unique fixed point p,.: using (11), the right-hand side of (24) can
be written as
1
(Sn = (S)x + N[ ‘ gnl=¢c — g, Q* ) (26)
The first contribution

5= 1 Je0l) =S fe0) = 0 @

is the value of (S)y when the input state p, of the probe coincides with the fixed point p,, of £. As stressed by the
last identity, it also coincides with the expectation value associated with the i.i.d. measurement on p,, with the
POVM 901. The second contribution in (26) instead is a correction which scales at mostas 1/N for any other
choice of p,. Accordingly in the large Nlimit we get

(S)v — (S)x (N — 00), (28)

irrespectively of p,.
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In a similar way we can compute the variance of S, obtaining
(ASy = (S — (S

1 2 = D 20
=—(A9l+ 2|1 ‘5“)—*5(
N Bk N( 1-¢&

)

2 e ENT 4 a e 2
=1
where (S?)y is defined similarly to (S)y in (24), and
B =S 6)ME,  Ss=s— (s)s (30)
while
(A9)E = (D — (s)3 = (1 |g(2)‘p*) 31)

is the variance of s in the stationary state p, asin (27). Equation (29) shows that the variance shrinks as
(AS)y ~ 1/N,and the fluctuation of S around (S)y becomes smaller and smaller as we proceed with the
measurements. As a result, the probability of finding a single-shot value S close to its expectation value (S)y
becomes very high. Indeed, Chebyshev’s inequality bounds the probability of S deviating from (S)y as

Prob(‘S — (S| > K(AS)N) < % (32)

for any positive K. In this way, S is self-averaging: each single Sis very close to its expectation value with very high
probability. In addition, as shown in (28), (S)y becomes independent of the initial state p,,.

4.2. Beyond the law of large numbers: central limit theorem by mixing

We have so far assumed the ergodicity of the channel &: this is necessary and sufficient for the convergence
(S)N — (S)xin (28), and for the shrinking variance (AS)%, ~ 1/N in (29). If we further assume that £ is
mixing, we can say more. For instance, the third contribution to the variance (AS)3, in (29) decays as £&'N/N
(note that the sum over jaccumulates to O(N)), i.e., faster than 1/N (it is not guaranteed under the ergodicity,
since £'N does not decay), and the variance (AS)3 asymptotically becomes independent of the initial state p,.
This is because the mixing makes the system forget the initial state p,, as (3) without averaging along the time
trace.

Most importantly, if £ is mixing, one can prove that the probability distribution of S asymptotically becomes
normal, converging to the Gaussian distribution (21). The asymptotic normality of S under the mixing
condition was proved in [19]. Here we derive the same result by introducing a diagrammatic approach.
Specifically, in the following subsection we shall compute the moments of the variable S — (S)., showing that
for large N they admit the scaling

<(s _ <s>*)”>N ~ 0(1/1\7[%1), (33)

where [x] denotes the smallest integer not less than x. In particular for even n we shall see that the leading-order
term is given by

(5= 1)), = Grg+ oA o9

with

ol — (1 ‘5(2)‘p*) n 2(1 ‘ga)l?_*g/gm p*), (35)

where & and &? are defined as in (30). These results allow us to conclude that the characteristic function for
the scaled variable x = +/N (S — (S)x) becomes asymptotically normal in the limit N — co. Indeed by direct
substitution we have
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(k) = <eikW(S—<S)*)> .

(ikﬁ)”((s - <s>*)”>N

8
| —

S

n=0

!
1M

L(ika)zr (N — o0)
277!

= e K2, (36)

Accordingly the central limit theorem holds and in the limit N — oo the probability distribution P(x) of x
converges to a Gaussian peaked at x = 0 with variance o2, i.e., P (x) — e %/ 2‘72/ V27o?, which in the original
variable implies (21).

Diagrammatic approach to evaluate the moments of S
The expression for the first moment of S — (S)x follows from (26) and is equal to

1
(s- ), = [
which scalesas 1 /N asanticipated. Analogously the second moment is readily obtained from (29) by noticing that
2 2
@8 = (5= 1))~ (1Sl = ()" (38)
N

For future reference we find it useful to rederive it:

< (s - <s>*)2> = ZZ(S — (81)2 (50 - 5] o)

1 — ELN
5(1)
— Qx

Po)’ (37)

1 N N
= F; ;;; 8si 55]‘(1 EoprEs Po)
- %i (1[e¥en) + % f}z Jiji(l |EVei-mEW e py). (39)
= i

To simplify this we insert the decomposition of the ergodic channel £ given in (9), namely, we insert
Pe = lpe)(]or & "in place of £. Notice however that

(o) = (1|87 ps) = 0. (40)

Due to this condition, the places in which we can insert B, are limited. The nonvanishing contributions to the
second moment hence read

<(S B <S>*)2>N$§:(l |g(2)|p*)(1‘00) + #izl@ ‘€<z>g/i71Q*|po)

i=1

2 L 120 miiiiny 20
+FZ (1|5 ENTIQLE |P*)(1‘P0)
j=21i=1
2 SN (120 e ie1y, 70 g
+FZ (1|5 ENTIQLE 5”_1Q*|Po): (41)
i=2i=1

and the direct computation of the summations yields (A.1) and (29).
It is now clear why the second moment (AS)%; in (29) as well as the second moment ((S — (S),)?)y scales as
1/N. There are two cases, as we saw in (39): (i) two points és; and s; coincide (i = j) and we have a single

. 1 .. . . . . 1
summation N2 Zi; (ii) two points és; and és; do not coincide (i = j) and we have double summations ﬁzzii i
In any case, once E¥ with some powerk (= j — i — lori — 1in theabove formula for the second moment) is

. . 1 . N
substituted by P, a summation accumulates as NZ — O(1), while the contribution from £ does not: recall the

geometric series in (11), where the contribution from £’ remains O (1/N). Thus, the substitution rules for
estimating the scaling are:

%27’* —O0(l) and %25”‘ — O(1/N). (42)

Dueto (1|€ ) |ps) = 0and the coincidence of és; and s, we can insert at most one P in place of £ for the
second moment ((S — (S)x)?)n: see (41). Therefore, the second moment {(S — (S)x)?)y isat most O (1/N),

8
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(VA7)
lipi1—1p—1
— & Qs
P
& --@--- ---- -—--@ g(m)
Figure 2. (a) The n points {0s;, ..., 0s;, } in the nth moment ((S — (S)x)")y are labeled in chronological order

1 <4 < -+ < iy < N andrepresented by 7 dots *’ lined up from right to left. The right most ‘o’ represents the initial state | p, ). (b)
The basic elements for the diagrammatic representation of the contributions to the moments.

and so is the variance (AS)3. Note that the second substitution rule in (42) is not valid if the channel & is ergodic
but not mixing. Indeed, in such a case, the last term in (41) yields O (1/N), as mentioned in the beginning of this
subsection. The rule is safe if £ is mixing.

We can generalize the above way of estimating the scaling to higher central moments, but a bit more
sophisticated rules are required to check the asymptotic normality: we need to care about not only the scalings
but also their coefficients. Anyway, the basic strategy to collect the leading-order contributions is to try to insert
P, as many times as possible in place of £ avoiding (1| £ M | py) = 0. Another important observation is that the
insertion of R = |p, ) (1] ‘breaks’ the process into pieces. Recognizing these points, we introduce a
diagrammatic way of representing the contributions to the moments.

The nth moment is given by

<(S B <S>*)”>N _ ;n %"'izmz&ir“&in(l ‘&N...gsl Po)' (43)

h=1 i,=1s SN

Within the summations over {i, ..., i, } we relabel the n points {és;, ..., s;, } in chronological order

1 <4 < -+ < iy < Nandrepresent them by n2dots ’ lined up in chronological order from right to left. See
figure 2(a). The right most ‘o’ represents the initial state | p,), and a trace (1] is supposed to be at the left end. The
points can coincide (iy = iz, 1, as in the case i = j for the second moment: see (39)), while between
nondegenerate points (iy < iz ) thereare +17#~1 (with a convention i, = 0), which are to be substituted by
Py or Eex1—ie=1Q as we did for the second moment (we need Qy to remove B from £'##+1~i#~1when

ig 1 — ip — 1 = 0:see(41)). Now,

(i) When &¥+1~i~ I between two points is substituted by £*+1~*~1Q,, we connect the two points by a solid line.
(ii) When &7+~ "#~! between two points is substituted by 7, we leave the two points disconnected.
(iil) In the case where two or more points coincide, we connect the points by dashed lines. (Note that ‘o’ cannot
be connected by a dashed line.)
See figure 2(b). There are two constraints due to (1| W lpy) = 0:
(a) The left most two points are surely connected either by a solid line or by a dashed line, since we cannot
insert 7 between them dueto (1| £ W | py) = 0 with the left most trace (1].
(b) Each point (except for ‘o’) must be connected with at least one adjacent point either by a solid line or by a

dashed line, since we cannot insert 7 on both sides of a point due to (1] gw lpy) = 0.

Then, itis easy to draw the diagrams relevant to the leading-order contributions, with the largest possible
number of P inserted. The relevant diagrams for n = 2, 3, 4 are shown in figure 3 (see how the two diagrams
for n =2 correspond to the two leading-order terms in (41)). For each diagram contributing to the nth moment:

9
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n=2 n=23 n=4
®--9 (o] ®o--0--0 (o] ®--0 ®o--0 (o]
+ + +
*—o o & --0—0 o ®*--0 *—0 o
+ +
®o--0 —O *—0 ®o--0 o
+ +
*—--0 o *——o *—0 [e]
+
*—o—0 o
+
*—o ——O
Figure 3. The leading-order diagrams for a few lowest moments ((S — (S)x)")n .

(1) Assign E"'+1=1#=1Q, to each solid line.

(2) Insert R = |py, ) (1| for each space between disconnected points.

(3) Turn each (group of) dot(s) ’ (connected by dashed lines) into gm (where m is the number of connected
dots) while ‘o’ into | p).

(4) Close each diagram with a trace (1] at the left end.

1 o . . . .
(5) Put WZ- -+>_ to sum the contributions over all possible distances between nondegenerate points respecting
the chronological ordering of the points, with an appropriate coefficient counting how many times such a
diagram (the specific ordering of the points) appears in the original full range summation NG Yoy

exploring all possible orderings of the points. The right coefficient reads n!/m; | m,!---, where m; are the
numbers of coincident points connected by dashed lines in the relevant diagram and the factors m; ! are to
disregard the orderings among the coincident points.

Itis easily recognized from figure 3 that the maximum number of B, we can insert for the nth moment is

given by [g J (where now | x | denotes the largest integer not greater than x). Therefore, the substitution rules in

(42) tell us that the nth moment scales as anticipated in (33) (the power of Nis obtained by n — [g J = [%—I) As

discussed in the beginning of this subsection, this is the right scaling for the central limit theorem, and only the
even moments (n = 2, 4, 6, ...)arerelevant. An important observation is that the leading-order contributions
to the even moments are independent of the initial state p,, since ‘o’ representing the initial state | p, ) is always
disconnected from the first *’. See figure 3.

Let uslook more carefully at the fourth moment. The leading-order contributions represented by the
diagrams in figure 3 read

¢ 41 A @ 20
s 2)) =2 L8], (1]22]0,)
<( < >*) >N (2|)2 N4 bt ‘ ‘p* ‘ ‘p*
4t 1 irl’rl( ) () gy Z()
[ 1€ o )(1 & 6/1271171Q g p )
2! N* i3=3i=2 ij=1 ‘ ’ ¥ ‘ * ‘ *
N ig—1li3—1
A ST (1[0, ) (1]27) )
: iy=3i5=2ij=1
' 1 N iy—1liz—1i—1 g‘(l)g/ﬂﬁirl g(l) g(l)g’iZ*iI*I 5(1) 3
a2 2 (1] 0.8p) (1] Q.E%5,) + 0(1/N°)
ij=4 =3 iy=2 ij=1

10
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= GV (1 [#0.)(1]2]e:)
+‘21_:F_N(N 1)( 5(2)‘ )( ‘E(D Qx« 20, )
PNV - 1)( A p*)(l 7] 0)

+4!——N(N—1) 1 E,‘(” Q* &V p
N*2

)(1 ‘5(1) Qx 20
1-¢&

,o*) + 0(1/N3). (44)

This suggests that by the summations each of the leading-order contributions to an even moment
((S — (S)x)")y acquires a common factor (binomial coefficient) N!/(1/2) (N — n/2)!while each £ir+1ic~1
is transformed into (1 — &’)~!. Indeed, each leading-order diagram for an even moment consists of pairs of
points (ip,—y, i) (r = 1, ..., n/2) connected by dashed or solid lines (see figure 3), and its evaluation proceeds
two points by two points with the help of the following formulas for r = 1, ..., n/2 (with a convention
i,+1 = N + 1):for pairs of coincident points connected by dashed lines

i1 (iZH - 1)! (iz,+1 - 1)!

= (45)
er (= D iy = 1)1 (g = = 1)

(we have a single sum for each coincident pair: see (44)), while for pairs of nondegenerate points connected by
solid lines

=1 =1 (llzr,] — 1)'
Z Eliar—izr1—1

iyy=r+1iy_1=r (T’ — 1) ! (i2r—1 — r)'

=l ] glii—in 11 (izr_l — 1)!
b 1-¢& (r — 1)!(1'2,_1 - r)!
(2re1 = 1)! ] N
N r!(i2r+1 —r— 1)! 1-¢& N O(IEH}I)' (46)

(The actual ranges of the summations in the leading-order contributions to the even moments are slightly
different from these in (45) and (46), but the corrections are finite and become negligible in the asymptotic
regime N >> n.) In this way, each leading-order diagram for an even moment acquires the binomial coefficient
N!/(n/2)! (N — n/2)!with £+ ~~!being transformed into (1 — £’)~'. This leads us to the following recipe
for obtaining the expressions for the leading-order contributions to any even moment directly from the relevant
diagrams:

(") Assign (1] o |p4) / 2 to each pair of points connected by a dashed line.
(2") Assign (1] (Z,'(l)(l — 8’)*1Q*5(1) | p4) to each pair of points connected by a solid line.

(3") Giveacommon factor n!N!/N"(n/2)!(N — n/2)! ~ n!/N"/2(n/2)!to each diagram.

Then, the leading-order contributions to the even moments factorize as shown in figure 4 and yield (34).

5. Use of correlations

An important difference from the standard strategy for parameter estimation, where independent identical
experiments are performed to collect data, is that in the present sequential scheme the correlations among the
measurement data are available for estimation. Combining the information attainable from the correlations
with that from the average S, the precision of the estimation can be enhanced. The primary motivation of the
present paper is to explore this possibility.

For instance, one can compute

, 47
foll (47)

from a single sequence of N measurement outcomes {5, ..., sy }, which captures the correlation between two
data separated by a distance ¢. In the presence of the correlations among the data, C, may depend on the target

11
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1 1 1
—e--e S je--e
+ +
—e e o 1 2
—e--o
+ = +
1
*——o 5 ®--0 o °
+
*—0 *—o
Figure 4. The leading-order contributions to the even moments factorize.

parameter gin a way that cannot be deduced solely from S. This might provide additional knowledge on how the
parameter gis encoded in the process and can enhance the precision of the estimation of g.

In principle, £ranges £ = 1, ..., N — 1, butrecall that the correlation between two data are expected to
decay exponentially as £ increases under a mixing channel: C, with ¢ greater than the correlation length would
not contain useful information. In addition, N should be much greater than £ so that the number N — # of data
used to evaluate C is large enough. Therefore, we will require N >> L > £, with L being the maximum £ we
take to estimate the parameter g.

The correlations C, are also self-averaging quantities. Moreover, we are able to prove that the central
limit theorem holds for the set of quantities X = (S, G, ..., Cp). First, the expectation value of Cy is
evaluated as

()

ZZ Cgp(sl, s sN‘po)

1 N-¢
o zzzf(l €084 20)

S/fo

1 1—
M gl—1£M)
<cf>*+N_f(1‘5 gle — Qx

)

— <Cf>* (N — 0), (48)

which approaches
(), (1| 0]) = (ss.), ®

under the ergodicity of the channel £. Then, let us look at the nth moment

HOE <(ko(5 —(S)e) + fikf(cf - <cf>*)]n> : (50)

Itis an nth-order polynomial of k = (k, ..., k), and is a collection of all the nth moments among

X =(S, G, ..., (p)asits coefficients. Since we are interested in the asymptotic limit N — oo, we collect the
leading-order contributions to s, (k) for large N. The idea to do that is basically the same as that for S: we try to
insert 7 as many times as possible in place of £ between points s; from S — (S)4 and pairs of points

6(5i5i+1,’)£ = SiSiys — <sz’>* (51)

12
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0si 0(sjsje) 0(sisive) 6(sj8540) 0(siSite) O(sjsjver)

®o--0 ®o--0 ®o--0
[l [l [l
.0 e, Lo,
+ + +
+ + +
+ +
+ +
+
+

Figure 5. Each pair of points 6 (s;s;. )¢ is also represented by a dot **’, and if the pair overlaps with another pair or a point ds;, we

connect the couple of dots ‘’ by a dashed line. Several terms are involved in such a single connected diagram as shown here. These

diagrams represent & (,2) and & (;;/ in (58) and (59).

from C, — (Cp)x. Since we have (6s;)y = (llg‘(l)lp*) = 0 (equation (40)) and
<6(5i5i+f)f>* = (1 |E;}>|p*) =0, (52)

where
> ! r—1¢,
fopag 253%36(55 )f EEE, (53)

there should be at least two pieces (points és; and/or pairs of points  (s;s; 2 )¢) between two Px. We just have to
generalize the diagrammatic rules in figure 2: we represent each pair of points ¢ (s;s; ), byadot “’, too, and if
the pair overlaps with another pair or a point és; we connect the couple of dots ‘’ by a dashed line (see figure 5),
while if it does not we leave it disconnected from or connect it with its adjacent dot by a solid line depending on
whether 7 is inserted between them or not. The ranges of the summations }_---> exploring all possible
distances between dots ‘’ should be carefully arranged depending on whether the dots represent points ds; or
pairs of points 6 (s;s;1 ¢ )¢, and some of the prefactorsin 1/N" are replaced by 1/(N — ), but such details
become irrelevant in the asymptotic regime N >> n, L. Then, the analysis goes in the same way as before, the
leading-order diagrams are again given by figure 3, and the nth moment (., (k) for an even n asymptotically
factorizes pairwise as figure 4, where the pair of dots ‘> connected by a dashed line or a solid line represents the
collection of all pairwise combinations among és; and 6 (s;s;1¢)¢ (£ = 1, ..., L), with some care on the
coefficients to distinguish different orderings of the pieces, i.e., give a coefficient 1/2 to the pair connected by the
solid line in figure 4 and collect contributions with different orderings of the pieces (see the second and third
terms in X9, 2oz, and Xz in (55)—(57) below). We get

L L }’l/2
! (Z Zkfsz’kf’) + O(l/Ngﬂ) (n even),

p, (k) = 3 @NY2(n/2) 1\ /= 72 (54)
o(1/NT1) (n odd),
where
_ 22) 20 Q% a0 _

13
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Sor = S0 = ( ‘5(2)‘;)*) + ( ‘5“) Q*E EY p*) + (1 ‘S}”—l ?*5, gv p*), (56)

) 0 Qx 2 Qs 2
Emz(\&Ww)+@‘@;j%ﬂ?pJ+(lﬂ“ Al ) (57)

with &™ and & S) defined in (30) and (53), respectively,

(2) Z 2(652 + 651) (5251) gszgf 1551 + Z Z Z 2652 (S3S])f 5535"_15528“]“155] (58)

SIS k=1 s s3 53

and
» min(#,¢')~1
Eor =80+ Y B+ 8w+ (1 - 5%’)(5%’ + & + 5ff’) (59)
k=1
composed of

& = ZZ[ (5251) ] ELECTIE,, (60)

S1%2

Err =200 008(5552), 8(251) , £ TIEETTIE + (¢ = &), (61)

Ei =200 8(s42) 6 (5331) 7 THIEETIEENTTIE 4 (€ = 7)), (62)
& = SZ SZ ;6( )mm o )6(5351)max(f’f/) 553gmin(f’f/)715525’#{[”1551, 63)
E‘;;, = Z Z 26( ) (et )6(5251)min(f’ﬂ)5535|f*f'|7lgszgmin(f,f’)_1551, (64)

~s00¢ |f f/| ! . / /
BT = X TEET(552) ) (55 B8 BLT L, 65

St S 0N

corresponding to the diagrams in figure 5. We provide the complete expressions for the covariances among S
and Cy valid for any (even small) N in appendix A, whose asymptotic forms coincide with the covariances (55)—
(57) divided by N.

This result shows that the set of scaled variables N (S — (S)x)and v'N (C, — (Cy)x) asymptotically
become normal in the limit N — 0. The characteristic function reads

Mm=<JW§”W<MJ>
N

~ (VN 1, K

|
o n-

1 L

1 L '
'(_E > Zkfsz/kf/) (N — 00)

NE

n

—

K

3

r=0 £=0¢'=0

_ efkTZk/Z, (66)

where Yisthe (L 4+ 1) x (L 4+ 1) matrix with its matrix elements given by the covariances in (55)—(57). The
central limit theorem holds, and the probability distribution P (X) of X = (S, C,, ..., C;) becomes
asymptotically Gaussian

P(X) = . e 2N XTI K-, (67)
J@r/N)Hldet &

peaked at X = (X), with a shrinking covariance ¥ /N. This ensures that the single-shot values X computed
from a single sequence of measurement data well represent their expectation values (X )., through which we can
estimate a parameter g. The uncertainty 6g in the estimation of gis given by (22) with the Fisher information
I(X)y  0(X
< >* 2—1 < >* , (68)
g g
which increases linearly in N, and the uncertainty §g diminishes as 6 ~ 1/+/N (in (68) we have omitted the
contribution from 0% /0g to the Fisher information F;(g) since it does not grow with N). Moreover, this

2
Fi(g) = de“X P(X)(% lnP(X)) ~N

14
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~

reservoir probe qubit

1)
1 = 1)
q y

Figure 6. We estimate the temperature of a thermal reservoir though measurements performed on a probe qubit in contact with the
reservoir.

Fisher information F;(g) for the estimation of g through a set of quantities X = (S, G, ..., Cp) can be
greater than the Fisher information F(g) = Fy(g) given in (23) for the estimation of the same g but solely
through S. The precision of the estimation can be enhanced by looking at the correlation data C, in addition
to the average S.

Here we have considered the two-point correlations C, as well as the average S. If we incorporate higher-
order correlations with more points, the precision of the estimation can be further improved. On the other
hand, correlations with too many points would not be helpful, since the number of data used to evaluate
such correlations is reduced, and some of the points involved in the correlations are separated beyond the
correlation length of the mixing channel supplying no more information than lower-order correlations. It is
currently not clear to what extent we can improve the precision of the estimation by looking at higher-order
correlations.

6. Example: estimation of the temperature of a reservoir

In this section we analyze an explicit example, where the correlations among the data collected by the sequential
measurements would be useful for improving the estimation of a parameter. The setting we consider is related to
quantum thermometry, which aims to use low-dimensional quantum systems (say qubits) as temperature
probes to minimize the undesired disturbance on the sample (see e.g. [34, 35] and references therein).
Specifically we focus on the paradigmatic example with a qubit probe in contact with a thermal reservoir ata
finite temperature T. Our goal is to estimate the temperature T of the reservoir by monitoring the relaxation
dynamics induced on the qubit, which effectively plays the role of alocal ‘thermometer’ (figure 6). In our
approach we describe the probe-reservoir coupling in terms of the resulting Markovian master equation [30, 36—
39] operating on the probe, i.e.

d i 1
2P0 =20 p®] = Zu[e0p® + p010~20p(1),]

- %7,[0,@;)(0 + p(oy — 200p(D0 |, (69)

where p (t) represents the state of the qubit, 7 (2 is the energy gap between the excited | 1 )and ground| | )
states of the qubit, and

oe=1T)TI=1{L o =11)(L1 o =1){TI (70)

The two relaxation constants «y, (for decay) and +_ (for excitation) are related to the temperature of
the reservoir T, respecting the detailed balance condition. For a bosonic thermal reservoir, they are given by
[36-39]

1
Y+ = (1 + nth)% V- = N> Nth = m: (71)

with kg being the Boltzmann constant. We assume that the parameters €2 and y (i.e., the characteristics of the
thermometer) are known. Estimating the temperature T'is then equivalent to estimating

70
3= Y. + Y~ = 7 coth , 72
B=1tr=7 YT (72)

while v = 7, — 7_isaknown constantindependent of the temperature T. The higher is the temperature, the
larger is the decay rate ;.
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6.1. Standard strategy

The information about the temperature T, namely, the parameter ~;, is imprinted in the state of the qubit
through the dynamics under the influence of the thermal reservoir, i.e., by the action of the quantum channel A,
which is the solution to the master equation (69). Then, the standard strategy to estimate the parameter ; is

(i) to prepare the qubit in a specific initial state p,,
(ii) toletthe qubitevolve p(T) = A, (p,) fora certain time 7in contact with the thermal reservoir, and

(iii) to measure a specific observable in the state p (7).

We repeat this process N times to collect measurement results, from which we estimate the parameter ;.

For instance, we prepare the qubit in a specific initial state p,, say in the excited state | T ), and after a fixed
waiting time 7 we measure the qubit to check whether it is in the excited state| T ) or in the ground state| | ).
We repeat this process N times, and we estimate -, from the survival probability of the initial state | T ) after
time 7. Our measurement however can be weak and unsharp: here we consider the measurement which
provokes the following back-action on the qubit

p— M(p) = MipM] (s = +1) (73)
with

74
Moy =sinn | T)(T]1+cosn|)(l] w

depending on the outcome of the measurement s. This measurement process can be simulated with a cxoT gate
[40, 41]. The parameter 7) controls the precision and the strength of the measurement: 7 = 0 provides the

projective measurement, while with = /4 the measurement gives totally random results with no disturbance
on the measured system. The probability of obtaining the measurement outcome s in the state p (7) is then given by

{M+1—COSTIIT><T|+Sin77|l><l|>

2, (s|po) = Te { Moo } = Tr {TLp(m) (75)
where
HSZM;MS:{cQsm TYCT I +sin?n | L)L =+ 1, 6
sin n | T)( 1| +cos?n| L )(L] (s=~1

are the POVM elements of this measurement. The uncertainty in the estimation is then bounded by the Cramér—
Rao inequality [3, 7-12, 33]

5’Yﬂ > ; (77)

=~ INF(p)

with the Fisher information given by

2
P = Sfela) 2 me(n) o
s

s==+1

For the present model, the Bloch vector of the qubit evolves as

r<0‘x> = e‘Wi9t/2(<0x> , €08 Qr — <Uy> . sin Qt),
) <Uy>t = e77(jf/2<<0'x> . sin Qt + <oy> , €08 Qt), (79)
(o), (o), 2 - 2
where oy = 0y + o-and 0, = —i(0y — o). The equilibrium state p, is characterized by
()= () =0 () =2, o
namely
—B/iQ0,/2
Peq = %[1 - %a] = W (81)
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Figure 7. The dependence of the quantum Fisher information Fg, (7;) given in (84) on the polar angle 6 of a generic pure initial state
[0y = e7/2cos(0/2)| 1) + €i¥/2sin(6/2)| | )and on the waiting time 7, for different values of wﬂ/'y, i.e., for different
temperatures. Note that Fg () is symmetric around the polar axis and is independent of the azimuthal angle .

The probability distribution of the outcomes of the measurement (75) at time 7 reads
1
pT(:H|p0):E(1 + <O’Z>TC05277), (82)

and the Fisher information F () in (78) is estimated to be

cos? 2n 8<UZ>T 2.

F(yp) = L <O'z>j_5052 2 03

(83)

Alarger Fisher information would be attainable by measuring a different observable. The maximum Fisher
information one can reach with the optimal measurement is given by the quantum Fisher information [2, 3, 7—
12],

(e d(o),
Fo() = Tr { p(L] | = ——TV '—=, (84)
{ 3 & s
with the symmetric logarithmic derivative
(o),

L, =—"v o - (g)) 85
"= (o - (o)) (85)

where Visa3 x 3 matrix whose matrix elements are given by
Vi=8;—(a) (o) Gji=xy 2. (86)

Notice here that both the Fisher information F (75)In(83) and the quantum Fisher information F, (75)in
(84) depend on the choice of the initial state p,. Because of the convexity of the quantum Fisher information, the
maximum of the quantum Fisher information (the best estimation) is always achieved by choosing a pure input
state p, = o) (¥o| [3,42]. Moreover, for the present problem, the ground state of the qubit [1)g) = | | )isthe
optimal choice, in the sense that the maximum of F (v;) for a given temperature is achieved with [1g) = | | ):
see figure 7, and the temporal behavior of F, () for |1/10> = | | )isplotted in figure 8(a). For this specific initial
state p, = | | )( | |, the Fisher information F (75)in (83) with 7 = 0 coincides with the quantum Fisher
information Fy (7;) in (84), for any time 7 and for any ;: the projective measurement to discriminate | T )and
| | )is the optimal measurement. For nonvanishing 77 > 0 the Fisher information F (v;) isreduced, and the
weaker is the measurement, the smaller is the Fisher information F (), as shown in figure 8(b).

6.2. Sequential scheme
Let us now turn our attention to the sequential scheme. First, it is important to check whether the channel £
defined in (19) with &; in (16) is mixing. For the present model, the spectrum of £ is given by

{ 1, e, e*(va/Ziiﬂ)T}, (87)

and therefore, £ is mixing for any 7 > 0 with a unique fixed point (the eigenstate belonging to the eigenvalue 1)

Px = peq’ (88)
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Figure 8. (a) The temporal behavior of the quantum Fisher information Fq (v,) givenin (84) for p, = | | ){ | land for different -y,
(for different temperatures). (b) The temporal behavior of the Fisher information F (75) givenin (83) forp,=11)(/ |and
73/7 = 1.5 with different strengths of the measurement 7). In the case of projective measurement 7 = 0, the Fisher information
F (73 coincides with the quantum Fisher information Fq (y;) given in (84) and plotted in (a).

which coincides with the equilibrium state p, qin(81) of the free relaxation process. This mixing is apparently a
direct consequence of the irreversibility of the relaxation process A, of the probe qubit. Since £ is mixing, the
sequential scheme works for the present problem.

Let us take the average of the outcomes of a sequence of N measurements, S defined in (20), as a quantity
through which we estimate ;. For the present model, its expectation value is computed to be

v 11— e Nwr ol
Sn=—|————1(0;) +—|]|cos2 N>1 89
(S [% (%), > N (N=1 (89)

and the variance to be

(AS=(8?)  — (%

1| . 1 T 21— e Nur 2
= — Sll’l2 277 + Te _ — € e BT [1 — lz] COSZ 277
N

L= N(1—ew) 75
—NyT —T _ e NyT
_i 76 ’ _L1+e g 1 e B <UZ> +l lcoszzn
Nl1—e™s™ 2N1—e %) eu™ —1 o )
11— e ?
_ |l kd -
Nzl P [(az)o + %)cos 2n] (N>1) (90)

As Nincreases, both become independent of the initial state p,, and the variance (AS )% shrinksas 1/N,

(S)y — ——L cos 21, o1
B
—Y3T 2
(AS)%, — 1 sin? 2n + 1re ™ 1 — 2 |cos? 2n|. (92)
N 1—e | 43

In other words, S evaluated from a single sequence of measurements almost certainly exhibits a value very close
to its expectation value (S)y , which is a function of ;. Therefore, by comparing S (obtained via a single
experimental run) with its expectation value (S)y (given by the formula (91)), the parameter +; is estimated with
the uncertainty regulated by the variance (AS)% in (92), i.e., with the precision given by the Fisher information
-7:(73) = -7‘-0(75) in(23),
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Figure 9. The Fisher informations J7(y;) /N per measurement by the sequential scheme (solid lines) are compared with the Fisher
information F () by the standard strategy with p, = | | (| | (dashed lines) for (a) projective measurements 7 = 0 and for (c)
weak measurements 77 > 0. The gains [F;(7;) — F-1(73)] /]—})('yﬁ) by incorporating the correlation Cy are shown in (b) for
projective measurements 77 = 0 and in (d) for weak measurements 1 > 0.

2
lz cos? 2n
N Y
Fol) — 22 - 2 ’ ©
o
ﬁsin2277—|— Iremfy, 2 cos? 27
1 — e W7 2
e ’}/ﬂ

which is to be compared with the Fisher information NF () with (83) by the standard strategy (see figure 9).
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As stressed above, the correlations among the acquired data are also available for the estimation in the
sequential scheme. For instance, the two-point correlations C, defined in (47) can be used to estimate -y,. Their
expectation values (for a generic initial state p)) are given by

<Cf> N [::_22 T efﬁw[l - lj] N : fl —e:;N—?%T (1 - efWL%T)[<UZ>0 + l)l} cos? 2
Z _ T ,

VB Y ) B
C>20N>7¢+1),
(94)

and their covariances (in the stationary state p, = p,) by

(CeCo)y=(C)lC)y

= 6”'% sin* 21 + %( <Cf,f/> . + <Cf+f’> >l<)sin2 2n

2
’ —2pT ’ ’ 2
- i[f’e(“”)”fﬂ — %(f -+ 1_|_;j)(e(ff)°’f - e(f+f)7riT)] (1 - l] cos* 2n

N 1 — e72'yd‘r ,yé
_ %[ﬂ(e*fvﬂ + e*f’vfs,r) _ %(1 — ef’wur)](l "yy_é] ::d cost 21 + O(I/Nz)
(626 21N>0),
(95)
(sc/) —isw(c)
1+e 1 1= e W™=y

:% <S>*{ Sinz 277 - feiﬂy‘ﬂ— - e (1 - eif’m‘r)

1 —e W7 N-7¢ (1 _ e—'w)z

2
% [1 _ lz]coszzn} >2LN=26+1) (96)
s

(the complete expression for the covariance (C,C /)y — (Cz)y (C,/)y validforany £, #' > 1and
N > max(¢, £') + 1(butfor p, = p,)is given in appendix B). All the covariances scale as 1/N, and the Fisher
information (68) increases linearly in N. This ensures that, by comparing the set of quantities (S, C, ..., C;)
evaluated from a single sequence of measurement data with the set of their expectation values
({S)n> (C)n> ---> {(C)n ), one can estimate Vs with the precision given by the Fisher information 7 (v;)
computed by the formula (68), which increases linearly in N. It is reasonable to expect that the estimation with
the multiple quantities (S, G, ..., Cp) is better in precision than the estimation solely through the average S,
namely, the Fisher information ]-"L('y ) (L > 0) is larger than the Fisher information fo('yﬂ), and the more
correlations are incorporated (the larger is the number L), the larger is the Fisher information (-

Let us look at two different regimes.

6.2.1. Projective measurement ) = 0

The Fisher informations 7, () L =0,1,2) by the sequential scheme are plotted in the five panels in

figure 9(a) and are compared with the Fisher information F (7;) by the standard strategy with p, = | | YL
for the case of projective measurements 77 = 0. In this case, the Fisher information F (y;) coincides with the
quantum Fisher information F, () in the standard strategy. ‘

Compare first F () and Fy(7;) /N (per measurement). We observe that the standard strategy provides
better estimation than the sequential scheme. Recall here that the input state py = | | ) ( | |for F(y;)isthe
optimal for the standard strategy. On the other hand, in the sequential scheme, the state of the qubit is projected
into| 7 Yor| | )depending on the outcome of the projective measurement. Ifitis projectedinto | 1 )bya
measurement, it restarts to evolve from this non-optimal state for the next measurement. Not all the steps in the
sequential measurements are optimal for the estimation. That is why the sequential scheme cannot beat the
standard strategy, in the case of projective measurement.

One can improve the performance of the sequential scheme, by incorporating C; for the estimation. Indeed,
as is clear from figure 9(a), the Fisher information F;(;) for the estimation through (S, ) is greater than the
Fisher information Fo() solely through S. Note that no additional resources or experiments are required to
incorporate C;: one simply needs to carry out additional data analysis to compute C; from the data used to

20



10P Publishing

NewJ. Phys. 17 (2015) 113055 D Burgarth et al

evaluate S. In figure 9(b), the gain in the Fisher information by incorporating C, is shown for different
temperatures.

On the other hand, incorporating more correlation data, i.e., C, with # > 1, does not help improve the
estimation. See figure 9(a) again. This is because every time one performs measurement the system is reset to a
pure state by the projective measurement: there is no correlation between the measurement results separated
over two steps. The system simply repeats the same dynamics, jumping between pure states| T Yand| | ), and
the measurement after multiple steps gains no more information than that attainable by the measurement after a
single step.

6.2.2. Weak measurement n > 0

Let us next look at the cases with weak measurements 77 > 0. As is clear from figure 9(c), the sequential scheme
can be better than the standard strategy. In particular, atlow temperatures, the Fisher informations 7 () /N
(L > 0) by the sequential scheme exceed the Fisher information F (vy;) by the standard strategy.

The reason is the following. In the standard strategy, the weak measurement is performed only once, and the
system is reset to the specific initial state p, for the next measurement. The single weak measurement can acquire
less information than a projective measurement, but if it is repeated many times, as in the sequential scheme, the
information is accumulated, and better information is gained in our hands. At the same time, the system is
gradually projected to one of the eigenstates of the measured observable by the repeated weak measurements
[43]. In other words, the repetition of the weak measurements mimics a stronger measurement (closer to a
projective measurement). That is why the sequential scheme can be better than the standard strategy, in the case
of weak measurement.

Itis also clear from figure 9(c) that the precision of the estimation is improved by incorporating the
correlation data C. The gain in the Fisher information [F; () — F7— 1)1 /Fo byaddinga correlation C; to
S, G, ..., G _1)isshownin figure 9(d). The enhancement is reminiscent when the time interval between
measurements 7 is short, i.e., 7,7 < 1. Moreover, the gain exhibits a peak at a smaller 7 for alarger L. This is
because the two points of each two-point correlation Cy, separated by £ steps, should be within the correlation

time 7. ~ 2 /75 (which s ruled by the second largest eigenvalues e~ (/2%19)7 of the mixing channel (87)), in
order for the correlation Cy to bear useful information.

Itappears that the sequential scheme can beat the standard strategy only at low temperatures (small ;), but
it should be noted that the standard strategy in figure 9 assumes the optimal initial state p, = | | )( | |, whilein
the sequential scheme the system is around the stationary state p,, of the mixing channel &, which is the thermal
equilibrium state Peq (see (88)). It would be more appropriate to compare the Fisher informations F7(v;)/N by
the sequential scheme with the Fisher information F (v;) by the standard strategy in the large 7 limit (which
gives the Fisher information with the initial thermal state Po = Peg)-

7. Conclusions

The estimation of a parameter encoded in a quantum probe, through a series of measurements performed
sequentially on the probe, has been analyzed in a general non-i.i.d. setting. On the basis of a diagrammatic
approach we have discussed the conditions under which the central limit theorem holds as the number of
measurements increases, reproducing the previous results [19] and generalizing them to the case where the
correlations among the measurement data are also taken into account in the estimation strategy. Our analysis
explicitly shows that the latter strategy can yield a significant advantage over the standard procedure where only
the average of the acquired data is considered.

Atpresent however it is not clear whether this is the best strategy one can do: it is indeed possible that
different data processing (including the evaluation of higher-order correlations commented at the end of
section 5) can improve further the attainable accuracy. In the example studied in section 6, the sequential
scheme surpassed the standard i.i.d. procedure when we are able to perform only weak measurements, but could
not beat the standard procedure when we are allowed to perform strong measurements. A better strategy for the
sequential scheme could beat the ultimate precision achievable by the standard strategy. The optimal strategy
would require different measurements step by step, or moreover would require quantum-correlated
measurements over different measurement probings. The use of entanglement is also an interesting possibility
[44]. Ttis yet to be clarified what is the ultimate accuracy attainable in the sequential scheme for parameter
estimation”.

In [19] a concise formula for the quantum Fisher information providing the maximum Fisher information attainable by the optimal
measurement strategy applied on the target system plus probing systems in the sequential scheme is derived. It is however valid only when
each probing process is unitary. Moreover, it is not applicable if one can measure the target system only through the probes.
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Recently, quantum metrology in the presence of noise is under intense study [44—47]. The mixing property
required for the sequential scheme is relevant to noisy channels, and connections with such issue would be
interesting to be explored.
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Appendix A. Complete expressions for the covariances
In section 5, we derived the asymptotic expression (54) for the even moments among S and Cy. Here we provide

the complete expressions for the covariances among S and C valid for any (even small) N. Under the
assumption that the quantum channel £ is ergodic (not necessarily mixing), they read

(5= ©)) =9+ %(1 e go

2 =1 1 — &N o
p*) B g(l)—Q*g(l) Dy

1-& N2 (1 _ 5’)2
el e = =
(e (e e {en))),
_(Z(Nf)(’;v "’2) e N (‘15_ Ng;f/ Q&Y | pu |+ (¢ = ¢)

)

+(N=2- f’)(l %

1 min(#,¢')—1
o
(N — f)(N — ,,ﬂ’) k_max(1§+f/N,l)(N c-0+ k)(l ‘5&” g ,0*)
' W(l [s0r87" 4 (1 = b ) (855 4+ £+ E17) o)
(Po =ps ' >1; N> max(f, f’) + 1), (A2)
and
(5= (e {er)),
L1z 1 | N—¢ 1N
:N(l ‘5?)‘p*>+m 1 g(l) — _ (1_8/)2 Q*ES) D
! | N—2 1= &N
+ N(Nf f) 1 55» - 5/ — (1 — 5/)2 Q*E(l) Py
(Po=rPu = 1N2C+1), (A3)
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where £ and (As)Z are defined in (30) and (31), respectively, E }m) arein (53) and (58), and the other
components are given in (60)—(65).

Appendix B. Covariances among C, for the model
In (95) in section 6 we showed the asymptotic expression for the covariance between C, and C, for large N for

the model. Here we provide its complete expression valid for any (even small) N. In the stationary state p, = p,,
the covariances between C,and Cp/ (¢ 2> ¢ "> Dare givenfor N > ¢ + ¢ ! by

(Cecr)y = (G ey

_ 1, 2 / 4 R
= bpp N7 sin* 27 + ml:<Cff>*+(l — N f)<Cf+f>*]sm 2n

/ 2T /
_ 1 ' 2 — 4 )e(ﬁrﬁl)%w o I + e 27‘_3 [e(ff/)vs‘r _ (1 — ¢ )e(”ﬂ)ﬁ’ﬂ]

N-/¢ N-?¢ 1 — e 2w N-?¢
2 27, 2 2
=BT / /
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