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Abstract
The problemof estimating a parameter of a quantum system through a series ofmeasurements
performed sequentially on a quantumprobe is analyzed in the general settingwhere the underlying
statistics is explicitly non-i.i.d.We present a generalization of the central limit theorem in the present
context, which under fairly general assumptions shows that as the numberN ofmeasurement data
increases the probability distribution of functionals of the data (e.g., the average of the data) through
which the target parameter is estimated becomes asymptotically normal and independent of the initial
state of the probe. At variancewith the previous studies (GuţăM2011Phys. Rev.A 83 062324; van
HorssenMandGuţăM2015 J.Math. Phys. 56 022109)we take a diagrammatic approach, which
allows one to compute not only the leading orders inN of themoments of the average of the data but
also those of the correlations among subsequentmeasurement outcomes. In particular our analysis
points out that the latter, which are not available in usual i.i.d. data, can be exploited in order to
improve the accuracy of the parameter estimation. An explicit application of our scheme is discussed
by studying how the temperature of a thermal reservoir can be estimated via sequentialmeasurements
on a quantumprobe in contact with the reservoir.

1. Introduction

Seeking themost efficient way to recover the value of a parameter g encoded in the state gr of a quantum system

is the fundamental problemof a branch of quantum information technologies [1], which goes under the name of
quantummetrology [2, 3]. It goes withoutmentioning that this topic has applications in a variety of different
research areas, ranging e.g. from the interferometric estimation of the phase shifts induced by gravitational
waves [4], high-precision quantummagnetometry [5, 6], to remote probing of targets.

In the standard approach one typically focuses on the case where several (sayN) identical copies of gr are

available to experimentalists, who can hence rely on the statistical inference extracted from independent and
identically distributed (i.i.d.)measurement outcomes to estimate the value of g. This scenario is particularly well
formulated by those configurations where the unknown parameter g is associatedwith some black-box
transformation gL (say a phase shift induced in one armof an interferometric setup)which acts on the input
state 0r of a probing system (say the light beam injected into the interferometer) yielding g g 0( )r r= L as the

output densitymatrix to bemeasured, with such test repeatedN times to collect data s s, , .N1{ }¼ See figure 1(a).
In this context, the ultimate limits on the attainable precision in the estimation of g, optimizedwith respect to the
general detection strategy, can be computed, resulting in the so-called quantumCramér–Rao bound, which
exhibits the functional dependence upon gr via the quantumFisher information. See e.g. [2, 3, 7–12].

Inmany situations of physical interest, however, the possibility of reinitializing the setup to the same state is
not necessarily guaranteed. In the present studywe are going to consider a different scheme, inwhich a single
probing systemundergoesmultiple applications of gL while beingmonitored during the process without being
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reinitialized to the same input state. See figure 1(b). The data s s, , N1{ }¼ collected by such sequential
measurements will be non-i.i.d. in general. Still, we are able to estimate the target parameter g from the data
under certain conditions.Wewill see that the property of the channel describing the process is important. The
idea is to let the probing system forget about the past by themixing of the channel [13–16] (the channel being
intrinsicallymixing or designed to bemixing), which clusters the data and allows the central limit theorem to
hold for appropriately chosen functionals of the data. This sequential scheme is suited to account for estimation
procedures where one aims to recover g via a sequence of weakmeasurements that slightly perturb the probe. In
particular it can be adapted to study physical setupswhere the probing system is a proper subset of amany-body
quantum systemwhich is directly affected by the black-box generator gL (an explicit example of this scenario
will be analyzed in the final part of this paper).

Various schemes for quantumparameter estimation based on repetitive or continuousmeasurements have
been studied: see e.g. [17–25]. Among them, analogous setupswere analyzed in [19, 24], where the problemwas
formalized in terms of quantumMarkov chains. Specifically in [19] it has been shown that, under rather general
assumptions, the statistics of the associated estimation problem converges asymptotically to a normal one,
generalizing the similar results whichwere known to apply to purely classical settings [26–28]. In the present
paperwe first provide an independent derivation of the previous result [19] via a diagrammatic approach to
compute the leading-order contributions to themoments of the associated estimating functional of the data

s s, , ,N1{ }¼ i.e., themoments of the average S
N

s
1

.
i

N
i1å= =
This approach allows us to prove the central limit

theorem including other estimating functionals capturing the correlations among differentmeasurement

outcomes, e.g., C
N

s s
1

.
i

N
i i1ℓℓ

ℓ
ℓå=

- =
-

+ The asymptotic normality of the empiricalmeasure associated to

chains of subsequentmeasurement outcomes is proved in [24], but in contrast to this previous workwe provide
explicit formulas which allow us to evaluate the elements of the covariancematrix of the normal distribution of
the variables S and C .ℓ Moreover, we point out that the inclusion of the correlations Cℓ for estimation, which do
not contain any useful information in the usual i.i.d. data, can help improve the accuracy of the estimation. This
result, while not conclusive, is a preliminary (yet nontrivial) step towards the determination of the ultimate
accuracy limit attainable in the non-i.i.d. settings.

This paper is organized as follows. In section 2we introduce the notation and recall some basicmathematical
facts whichwill be used in the paper. The non-i.i.d. estimationmodel is then presented in section 3. In section 4
we focus on the simplest estimating functional S of themeasurement data, and prove its asymptotic normality
under the assumption ofmixing of the process. The central limit theorem is generalized to include the
correlations Cℓ and their role in the estimation problem is addressed in section 5. An explicit example is then
presented in section 6, wherewe discuss the estimation of the temperature of a thermal reservoir via local
measurements on a quantumprobe in contact with the reservoir. Conclusions and perspectives are summarized
in section 7, while some technical elements are presented in the appendices.

Figure 1. (a)The standard strategy for estimating a parameter g of a quantum system,wheremeasurement data s s, , N1{ }¼ are
collected by independent and identical experiments. Every time the experiment is performed, the system is reset to some specific
known initial state .0r (b)The sequential scheme for estimating a parameter g of a quantum system,where themeasurements are
performed sequentially to collect data s s, , N1{ }¼ without resetting the state of the system every after themeasurement and the initial
state 0r can be arbitrary.
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2.Notation andmathematical background

In this sectionwe introduce the notation and recall some basics facts on the theory of quantum channels.

2.1.Quantum ergodic/mixing channels
Quantumchannels are completely positive and trace-preserving (CPTP)maps, transforming density operators
to density operators [29–31]. Every CPTPmap  admits at least one fixed point [13, 14], namely, a stationary
state ,

*
r

, 1( ) ( )
* *

 r r=

which is hermitian, positive-semidefinite, and of unit trace. In other words, the fixed point
*
r is an eigenstate of

themap  belonging to its unit eigenvalue 1.
If the fixed point

*
r is unique, the quantum channel  is called ergodic [14–16]. It implies

N
N

1
, states , 2

n

N
n

0

1

0 0( ) ( ) ( )
*

å r r r  ¥ "
=

-

where n ◦ ◦  =  denotes n recursive applications of the channel , and the convergence is in the
superoperator normwith correctionswhose leading order scales as N1 .Moreover, if the fixed point

*
r is

unique and the unit eigenvalue 1 is the only peripheral eigenvalue (eigenvalue of unitmagnitude), the quantum
channel  is converging as

N , states , 3N
0 0( ) ( ) ( )

*
 r r r  ¥ "

and is calledmixing, with the convergence being as in (2) [13–16].Mixing implies ergodicity, but the converse is
not necessarily true.

As commented above, the fixed point
*
r of a quantum channel  is an eigenstate of  belonging to its unit

eigenvalue 1. In amatrix representation of , it is a ‘right eigenvector.’The corresponding ‘left eigenvector’
belonging to the same eigenvalue can be different from the right eigenvector in general. For a quantum channel

, the trace Tr is a left eigenvector belonging to the unit eigenvalue 1, since the quantum channel  is trace-
preserving

Tr Tr . 4{ ( )} ( ) r r=

Let us hencewrite the fixed point
*
r and the trace Tr in the vectorized notation as

, Tr 1 , 5) ( ∣ ( )
* *
r r« «

respectively, and a couple of eigenvalue equations for the unit eigenvalue 1 read

, 1 1 . 6) ) ( ∣ ( ∣ ( )
* *

 r r= =

More explicitly, given any complete set of orthonormal basis states n n{∣ }ñ of the system, an operator
A A n n

n n nn,
∣ ∣å= ñá ¢

¢ ¢ is vectorized by A A n n
n n nn,

∣ ) ∣ ∣å= ñ Ä ¢ñ¢ ¢ [32]. The trace n n1
n

( ∣ ∣ ∣å= á Ä á is (the
hermitian conjugate of) the vectorized version of the identity operator: that is why it is denoted by 1 .( ∣ In
addition, the inner product A B A BTr( ∣ ) { }†= is theHilbert–Schmidt inner product. In this representation, the
quantum channel m m n n

m n m n mn m n, , , , ∣ ∣ ∣ ∣ å« ñá ¢ Ä ñá ¢
¢ ¢ ¢ ¢ is amatrix with thematrix elements

m m n nmn m n, ∣ (∣ ∣)∣ = á ¢ñá ¢ ñ¢ ¢ in the original representation, and the application of amap  is expressed by the
multiplication of the correspondingmatrix. By abuse of notationwe use the same symbol  for itsmatrix
representation.

In thismatrix representation, the eigenvalue equation for  reads

u u v v, . 7n n n n n n) ) ( ( ( ) l l= =

In particular, u0∣ ) ∣ )
*
r= and v 10( ∣ ( ∣= with 1.0l = The eigenvectors belonging to different eigenvalues are

orthogonal to each other and normalized as

v u v u1, 0 for . 8n n m n m n( ) ( ) ( )l l= = ¹

Note that thematrix  might not be diagonalizable but is cast in the Jordan canonical form in general [13, 14].
In this paper, ergodic ormixing channels will play a central role. The unit eigenvalue 1 of such a channel  is

not degenerated by definition, and the ergodic/mixing channel  can always be decomposed as

, 9( )*  = + ¢
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where

1 Tr • 10)( ∣ { } ( )* * *
 r r= =

is the eigenprojection belonging to the nondegenerate unit eigenvalue 1 of , and the remaining part  ¢ (which is
not CPTP) is built on the eigenvectors un n 0{∣ )} ¹ and vn n 0{( ∣} ¹ belonging to the eigenvalues nl different from1.
By construction  ¢ is orthogonal to ,* i.e., 0.* *   ¢ = ¢ = Moreover, since  ¢ does not admit a unit
eigenvalue 1, the inverse 1 1( )- ¢ - exists, andwe have

N N

1 1 1

1
, 1 , 11

n

N
n

N

0

1

( )* * * * 



  å = +

- ¢
- ¢

= -
=

-

which allows us to prove the convergence to thefixed point
*
r in (2). If the channel  is not only ergodic but also

mixing, the spectral radius of  ¢ is strictly smaller than 1, andwe get

N , 12N N ( ) ( )* *   = + ¢   ¥

which proves (3). If the channel  is ergodic but notmixing,  ¢ admits a peripheral eigenvalue, and N¢ does not
decay: we lose the convergence (3), but the averaged channel converges as (2).

Note again that  ¢might not be diagonalizable if some of the eigenvalues nl of  are degenerated, but it is
not a problem for the convergence: see [13–16].

2.2.Measurement and back-action
We recall that in quantummechanics themost general detection scheme can be formalized in terms of positive
operator-valuedmeasure (POVM). See e.g. [29]. Expressed in the superoperator language this accounts to
assigning a collection s sM { }= of trace-decreasing channels s describing the statistics of the
measurement and the back-action on the probed system. In particular, given ρ the densitymatrix of the system
before themeasurement, the probability of getting outcome s by themeasurementM is given by

p s Tr 1 , 13s s( ){ }( ∣ ) ( ) ( ) r r r= =

with s ( ) r being the conditional (not normalized) state immediately after the event. By construction themap

, 14
s

s ( ) å=

obtained by summing over all possible values of s, is CPTP and describes the evolution of the systemwhen no
record of themeasurement outcome is kept.We also notice that given  and  twoCPTPmaps, the set of
channels s s  ¢ = defines a newPOVMmeasurement ,s sM { }¢ = ¢ where immediately before and after
themeasurementM one transforms the state of the probed system through the actions of  and , respectively.
Finally we observe that given r rM { }= and s sN { }= two POVMs, the operator s r( ◦ )( )  r represents
the conditional (not normalized) state obtainedwhen themeasurementsM andN are performed on a system
in the state ρ yieldingmeasurement outcomes r and s, respectively, the associated probability given
by p r s, 1 .s r( ∣ ) ( ∣ ∣ )r r=

3. Sequential scheme

The problemwe study is the following: wewish to recover an unknownparameter g of a quantum system,which
is encoded in the state of a quantumprobe via the action of a quantum channel ,gL

. 15g0 0( ) ( )r rL

Here 0r is the input state of the probe, which (possibly) is initialized by us, while g 0( )rL is the associated output
state, onwhichwe are allowed to performmeasurement in order to learn about g. In a standard i.i.d. approach
[10], one is supposed to perform the same experiment several times collecting i.i.d. outcomes s s, , ,N1{ }¼ from
which the value of g is to be extrapolated via some suitable data processing. See figure 1(a).More precisely, in
every experimental run of such an i.i.d. scheme the probe should be initialized in the same input state 0r and the
samePOVMmeasurement s sM { }= should be performed after gL has operated on the probe.On the
contrary, in the protocol we are going to discuss here, while we keep performing the samemeasurementM on
the probe, the probe is not reset to 0r after eachmeasurement step. Instead, we just repeat the application of gL
followed by ameasurementmany times to get a sequence of outcomes s s, , ,N1{ }¼ whose statistics is not
necessarily i.i.d. anymore. See figure 1(b). In this scenario, following the framework detailed in section 2, the
state of the probe undergoes a conditional evolution described by the (not necessarily normalized)density
matrix

4
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, , 16s s s s g0 0N 1( )◦ ◦ ( ) ◦ ( )   r r = L 

whose trace

p s s, , 1 17N s s1 0 0N 1( )( ) ( ) r r¼ = 

defines the probability of the associatedmeasurement event.
It is worth observing that thismathematical setting includes the i.i.d. scenario as a special case, where gL is

identifiedwith ,g 0◦L with 1 Tr •0 0 0∣ )( ∣ { } r r= = being themap resetting the state of the probe into .0r
Indeed, with this choice the probability (17) coincides with the one for the case where themeasurements

s sM { }= are performed independently onN copies of ,g 0( )rL i.e.

p s s

p s p s p s

, , 1 1 1

. 18

N s s s

N

1 0 0 0 0

0 2 0 1 0

N 2 1( ) ( )( )( )
( ) ( ) ( ) ( )

  r r r r

r r r

¼ =

=





From (14) it follows that themap  obtained by summing s in (16) over all s,

, 19
s

s g◦ ( )  å= = L

is CPTP, ensuring the proper normalization of the probability (17). As an additional constraint wewill require it
to bemixing (in some cases, e.g., in section 4.1, however, wewill weaken this requirement by imposing  to be
just ergodic). This is not a strong assumption, asmixing channels actually form an open and dense set. Under
this conditionwewill be able to prove that the parameter g can be estimated from the single sequence of data
s s, , N1{ }¼ collected by the sequentialmeasurements, irrespective of the initial state 0r [19]. The rough idea is
that, thanks to themixing (3), repeated applications of the channel force the quantum system to forget its initial
state and at the same time decorrelate the data separated beyond the correlation length, which clusters the data
and allows us to define self-averaging quantities as estimating functionals, whosefluctuations diminish asN
increases, i.e., the central limit theoremholds.

Inferring g from s s, , N1{ }
A standard estimating functional of themeasured data s s, , ,N1{ }¼ throughwhich one tries to infer the value of
g, is the average

S
N

s
1

. 20
i

N

i
1

( )å=
=

In [19] it was noted that under the assumption that the average channel  in (19) ismixing the central limit
theoremholds for S, and for largeN the probability distribution P(S) of S asymptotically becomes aGaussian
peaked at a value S *á ñ with a shrinking variance N ,2s which are both independent of the input state 0r of the
probe, i.e.

P S
N

1

2
e . 21

2

S S

N

2

2 2

( )
( ) ( )

*

ps
-

s

-á ñ



The explicit expressions for S *á ñ andσwill be provided in (27) and (35), respectively, in section 4 below. This
ensures that the quantity S evaluated from the single sequence ofmeasurement outcomes is expected, with a high
probability, to be very close to its expectation value S *á ñ with a vanishingly small variance N2s for largeN.
Therefore, by comparing the observed value of Swith the formula for the expectation value S *á ñ as a function of
g, one can infer the parameter g. It is worth stressing oncemore that in the sequential scheme themeasurement
data are not independent of each other. Therefore, it is not trivial whether the central limit theoremholds, which
is usually based on i.i.d. data set. Themixing, however, is strong enough to kill the correlations between two data
if they are sufficiently far away from each other, and clusters the data, allowing the central limit theorem to hold.

Thanks to (21) the uncertainty in the estimation of g through the quantity S can be evaluated via theCramér-
Rao bound as [3, 7–12, 33]

g
g

1
, 22

( )
( )


d 

where g( ) is the Fisher information of the problem given by

g S P S
g

P S
N S

g
d ln . 23

2

2

2

( ) ( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
* ò s

=
¶
¶

¶á ñ
¶


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Accordingly, as long as S *á ñ exhibits a nontrivial functional dependence upon g, the Fisher information g( )
increases linearly inN, yielding an estimation error (22)which diminishes as g N1d  (in (23)wehave
omitted the contribution from gs¶ ¶ to the Fisher information g( ) since it does not growwithN).

Itmay happen however that the quantity S *á ñ does not depend upon g. In such a case g( ) nullifies,
signaling that it is impossible to recover g through S (a problemwhich cannot befixed by properly choosing the
input state 0r of the probe, the asymptotic distribution (21) being independent of 0r ). Nonetheless, even in this
particular case, the sequence of data s s, , ,N1{ }¼ which is not i.i.d. in general, can still contain some functional
dependence upon g, which can be exploited for the estimation of g. In particular, the aimof the present work is to
show that the correlations among themeasurement data, which are absent in the usual i.i.d. data, can be used for
this purpose. It turns out that, under the samemixing assumption on the channel  that leads to the central limit
theorem for S in (21), the correlations are also self-averaging and become asymptotically normal for largeN,
enabling one to estimate g through them. See (67) and (68) in section 5 below. Even in the case where S *á ñ
depends upon g, looking also at the correlations help enhance the precision of the estimation of g, whichwill be
demonstrated infigure 9with the example studied in section 6.

Wefirst present an alternative derivation of the results of [19], i.e., the asymptotic normality of S, on the basis
of a diagrammatic approach in section 4.While our approach ismore involved than the elegant perturbative
approach taken in [19], it allows us to generalize the scheme to include the correlations among themeasurement
data in a straightforwardmanner to enhance the precision of the estimation.We shall indeed prove the
asymptotic normality of variables including the correlation functionals in section 5.

4. Statistical behavior of S

This section is devoted to provide an alternative derivation of the results of [19], which ultimately leads to the
asymptotic normality of S in (21).We start in section 4.1 by proving that under the hypothesis that the average
channel  in (19) is ergodic the quantity S is self-averaging, converging to afixed value S *á ñ independent of the
input state .0r Then in section 4.2we introduce themixing property and show that under this stronger condition
the distribution P S ,( ) which rules the statistics of S, becomes asymptotically normal.

4.1. Lawof large numbers by ergodicity
Consider the expectation value of the quantity Swith respect to the probability (17) governing the statistical
distribution of themeasurement outcomes, i.e.

S S p s s

N
s

N

, ,

1
1

1
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N
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i
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s s
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i

N
i
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1
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1 1
0
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 

å å

åå å
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=

=

=

=
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
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where 1( ) is defined by

s . 25
s

s
1 ( )( ) å=

Assume here that the channel  is ergodic with unique fixed point :
*
r using (11), the right-hand side of (24) can

bewritten as

S S
N

1
1

1

1
. 26N

N
1

0 ( )( )
⎛
⎝⎜

⎞
⎠⎟* *




 rá ñ = á ñ +

- ¢
- ¢

Thefirst contribution

S s s1 Tr 27
s

s
1( ) { }( ) ( )( )

* * * * år rá ñ = = = á ñ

is the value of S Ná ñ when the input state 0r of the probe coincides with the fixed point
*
r of . As stressed by the

last identity, it also coincides with the expectation value associatedwith the i.i.d.measurement on
*
r with the

POVM .M The second contribution in (26) instead is a correctionwhich scales atmost as N1 for any other
choice of .0r Accordingly in the largeN limit we get

S S N , 28N ( ) ( )*á ñ  á ñ  ¥

irrespectively of .0r
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In a similar waywe can compute the variance of S, obtaining

S S S
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= D +
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-
¢
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where S N
2á ñ is defined similarly to S Ná ñ in (24), and

s s s s, , 30m

s

m
s

˜ ( ) ( )( )
* å d d= = - á ñ

while

s s s 1 312 2 2 2( )( ) ˜ ( )( )
* * * *

 rD = á ñ - á ñ =

is the variance of s in the stationary state
*
r as in (27). Equation (29) shows that the variance shrinks as

S N1 ,N
2( )D ~ and thefluctuation of S around S Ná ñ becomes smaller and smaller as we proceedwith the

measurements. As a result, the probability offinding a single-shot value S close to its expectation value S Ná ñ
becomes very high. Indeed, Chebyshev’s inequality bounds the probability of S deviating from S Ná ñ as

S S K S
K

Prob
1

32N N 2( )( ) ( )- á ñ > D <

for any positiveK. In this way, S is self-averaging: each single S is very close to its expectation valuewith very high
probability. In addition, as shown in (28), S Ná ñ becomes independent of the initial state .0r

4.2. Beyond the law of large numbers: central limit theorembymixing
Wehave so far assumed the ergodicity of the channel : this is necessary and sufficient for the convergence
S SN *á ñ  á ñ in (28), and for the shrinking variance S N1N

2( )D ~ in (29). If we further assume that  is
mixing, we can saymore. For instance, the third contribution to the variance S N

2( )D in (29) decays as NN¢
(note that the sumover j accumulates toO(N)), i.e., faster than N1 (it is not guaranteed under the ergodicity,
since N¢ does not decay), and the variance S N

2( )D asymptotically becomes independent of the initial state .0r
This is because themixingmakes the system forget the initial state 0r as (3)without averaging along the time
trace.

Most importantly, if  ismixing, one can prove that the probability distribution of S asymptotically becomes
normal, converging to theGaussian distribution (21). The asymptotic normality of S under themixing
conditionwas proved in [19]. Here we derive the same result by introducing a diagrammatic approach.
Specifically, in the following subsectionwe shall compute themoments of the variable S S ,*- á ñ showing that
for largeN they admit the scaling

S S O N1 , 33
n

N

n
2( )( ) ( )⎡⎢ ⎤⎥

*- á ñ ~

where x⌈ ⌉denotes the smallest integer not less than x. In particular for even nwe shall see that the leading-order
term is given by

S S
n

N n
O N

2 2
1 34

n

N n
n n

2
2 1( ) ( )!

( ) ( )!
( )* s- á ñ = + +

with

1 2 1
1

, 352 2 1 1( )˜ ˜ ˜ ( )( ) ( ) ( )⎛
⎝⎜

⎞
⎠⎟*

*
*

 



s r r= +

- ¢

where
1˜ ( ) and

2˜ ( ) are defined as in (30). These results allowus to conclude that the characteristic function for
the scaled variable x N S S( )*= - á ñ becomes asymptotically normal in the limit N . ¥ Indeed by direct
substitutionwe have
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Accordingly the central limit theoremholds and in the limit N  ¥ the probability distribution P(x) of x
converges to aGaussian peaked at x=0with variance ,2s i.e., P x e 2 ,x 2 22 2( ) ps s- which in the original
variable implies (21).

Diagrammatic approach to evaluate themoments of S
The expression for the firstmoment of S S *- á ñ follows from (26) and is equal to

S S
N

1
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1
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which scales as N1 as anticipated. Analogously the secondmoment is readily obtained from (29)bynoticing that

S S S S S . 38N
N

N
2 2 2( ) ( )( ) ( )* *D = - á ñ - á ñ - á ñ

For future reference wefind it useful to rederive it:
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To simplify this we insert the decomposition of the ergodic channel  given in (9), namely, we insert
1∣ )( ∣* *

 r= or  ¢ in place of . Notice however that

s 1 0. 401( )˜ ( )( )
* *

d rá ñ = =

Due to this condition, the places inwhichwe can insert * are limited. The nonvanishing contributions to the
secondmoment hence read
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and the direct computation of the summations yields (A.1) and (29).
It is nowclearwhy the secondmoment S N

2( )D in (29) aswell as the secondmoment S S N
2( )*á - á ñ ñ scales as

N1 .There are twocases, aswe saw in (39): (i) twopoints sid and sjd coincide (i= j) andwehave a single

summation
N

1
;

i2 å (ii) twopoints sid and sjd donot coincide (i j¹ ) andwehave double summations
N

1
.i j2åå ¹

In any case, once k with somepower k ( j i 1= - - or i 1- in the above formula for the secondmoment) is

substituted by ,* a summation accumulates as
N

O
1

1 ,( )å  while the contribution from  ¢ does not: recall the

geometric series in (11), where the contribution from  ¢ remains O N1 .( ) Thus, the substitution rules for
estimating the scaling are:

N
O

N
O N

1
1 and

1
1 . 42k( ) ( ) ( )* å å ¢ 

Due to 1 01( ∣ ˜ ∣ )( )
*

 r = and the coincidence of sid and s ,jd we can insert atmost one * in place of  for the
secondmoment S S :N

2( )*á - á ñ ñ see (41). Therefore, the secondmoment S S N
2( )*á - á ñ ñ is atmost O N1 ,( )
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and so is the variance S .N
2( )D Note that the second substitution rule in (42) is not valid if the channel  is ergodic

but notmixing. Indeed, in such a case, the last term in (41) yields O N1 ,( ) asmentioned in the beginning of this
subsection. The rule is safe if  ismixing.

We can generalize the aboveway of estimating the scaling to higher centralmoments, but a bitmore
sophisticated rules are required to check the asymptotic normality: we need to care about not only the scalings
but also their coefficients. Anyway, the basic strategy to collect the leading-order contributions is to try to insert

* asmany times as possible in place of  avoiding 1 0.1( ∣ ˜ ∣ )( )
*

 r = Another important observation is that the
insertion of 1∣ )( ∣* *

 r= ‘breaks’ the process into pieces. Recognizing these points, we introduce a
diagrammatic way of representing the contributions to themoments.

The nthmoment is given by

S S
N

s s
1

1 . 43
n

N n
i

N

i

N

s s
i i s s

1 1
0

n N

n N

1 1

1 1( )( ) ( )*  å åå åd d r- á ñ =
= =

   

Within the summations over i i, , n1{ }¼ we relabel the n points s s, ,i in1
{ }d d¼ in chronological order

i i N1 N1    and represent themby n dots ‘•’ lined up in chronological order from right to left. See
figure 2(a). The rightmost ‘◦’ represents the initial state ,0∣ )r and a trace 1( ∣ is supposed to be at the left end. The
points can coincide (i i ,1ℓ ℓ= + as in the case i= j for the secondmoment: see (39)), while between
nondegenerate points (i i 1ℓ ℓ< + ) there are i i 11ℓ ℓ - -+ (with a convention i 00 = ), which are to be substituted by

* or ,i i 11ℓ ℓ
* ¢ - -+ aswe did for the secondmoment (weneed * to remove * from i i 11ℓ ℓ¢ - -+ when

i i 1 0:1ℓ ℓ- - =+ see (41)). Now,

(i) When i i 11ℓ ℓ - -+ between twopoints is substituted by ,i i 11ℓ ℓ
* ¢ - -+ weconnect the twopoints by a solid line.

(ii) When i i 11ℓ ℓ - -+ between two points is substituted by ,* we leave the two points disconnected.

(iii) In the case where two ormore points coincide, we connect the points by dashed lines. (Note that ‘◦’ cannot
be connected by a dashed line.)

See figure 2(b). There are two constraints due to 1 0:1( ∣ ˜ ∣ )( )
*

 r =

(a) The left most two points are surely connected either by a solid line or by a dashed line, since we cannot

insert * between themdue to 1 01( ∣ ˜ ∣ )( )
*

 r = with the leftmost trace 1 .( ∣

(b) Each point (except for ‘◦’)must be connected with at least one adjacent point either by a solid line or by a

dashed line, sincewe cannot insert * on both sides of a point due to 1 0.1( ∣ ˜ ∣ )( )
*

 r =

Then, it is easy to draw the diagrams relevant to the leading-order contributions, with the largest possible
number of * inserted. The relevant diagrams for n 2, 3, 4= are shown infigure 3 (see how the two diagrams
for n= 2 correspond to the two leading-order terms in (41)). For each diagram contributing to the nthmoment:

Figure 2. (a)The n points s s, ,i in1{ }d d¼ in the nthmoment S S n
N( )*á - á ñ ñ are labeled in chronological order

i i N1 N1    and represented by n dots ‘•’ lined up from right to left. The rightmost ‘◦’ represents the initial state .0∣ )r (b)
The basic elements for the diagrammatic representation of the contributions to themoments.
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(1)Assign i i 11ℓ ℓ
* ¢ - -+ to each solid line.

(2) Insert 1∣ )( ∣* *
 r= for each space between disconnected points.

(3)Turn each (group of) dot(s) ‘•’ (connected by dashed lines) into m˜ ( ) (where m is the number of connected
dots)while ‘◦’ into .0∣ )r

(4)Close each diagramwith a trace 1( ∣ at the left end.

(5) Put
N

1
nå å to sum the contributions over all possible distances between nondegenerate points respecting

the chronological ordering of the points, with an appropriate coefficient counting howmany times such a

diagram (the specific ordering of the points) appears in the original full range summation
N

1
n å å

exploring all possible orderings of the points. The right coefficient reads n m m ,1 2! ! ! wheremi are the
numbers of coincident points connected by dashed lines in the relevant diagram and the factors mi !are to
disregard the orderings among the coincident points.

It is easily recognized fromfigure 3 that themaximumnumber of * we can insert for the nthmoment is

given by n

2
⎢⎣ ⎥⎦ (where now x⌊ ⌋denotes the largest integer not greater than x). Therefore, the substitution rules in

(42) tell us that the nthmoment scales as anticipated in (33) (the power ofN is obtained by n n n

2 2
⎢⎣ ⎥⎦ ⎡⎢ ⎤⎥- = ). As

discussed in the beginning of this subsection, this is the right scaling for the central limit theorem, and only the
evenmoments (n 2, 4, 6,= ¼) are relevant. An important observation is that the leading-order contributions
to the evenmoments are independent of the initial state ,0r since ‘◦’ representing the initial state 0∣ )r is always
disconnected from thefirst ‘•’. See figure 3.

Let us lookmore carefully at the fourthmoment. The leading-order contributions represented by the
diagrams infigure 3 read
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Figure 3.The leading-order diagrams for a few lowestmoments S S .n
N( )*á - á ñ ñ
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This suggests that by the summations each of the leading-order contributions to an evenmoment
S S n

N( )*á - á ñ ñ acquires a common factor (binomial coefficient) N n N n2 2! ( ) ! ( )!- while each i i 11ℓ ℓ¢ - -+

is transformed into 1 .1( )- ¢ - Indeed, each leading-order diagram for an evenmoment consists of pairs of
points i i,r r2 1 2( )- (r n1, , 2= ¼ ) connected by dashed or solid lines (see figure 3), and its evaluation proceeds
two points by two points with the help of the following formulas for r n1, , 2= ¼ (with a convention
i N 1n 1 = ++ ): for pairs of coincident points connected by dashed lines
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(we have a single sum for each coincident pair: see (44)), while for pairs of nondegenerate points connected by
solid lines
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(The actual ranges of the summations in the leading-order contributions to the evenmoments are slightly
different from these in (45) and (46), but the corrections are finite and become negligible in the asymptotic
regime N n .) In this way, each leading-order diagram for an evenmoment acquires the binomial coefficient
N n N n2 2! ( ) ! ( )!- with i i 11ℓ ℓ¢ - -+ being transformed into 1 .1( )- ¢ - This leads us to the following recipe
for obtaining the expressions for the leading-order contributions to any evenmoment directly from the relevant
diagrams:

(1′) Assign 1 22( ∣ ˜ ∣ )( )
*

 r to each pair of points connected by a dashed line.

(2′) Assign 1 11 1 1( ∣ ˜ ( ) ˜ ∣ )( ) ( )
* *

    r- ¢ - to each pair of points connected by a solid line.

(3′) Give a common factor n N N n N n n N n2 2 2n n 2! ! ( ) ! ( ) ! ! ( )!- ~ to each diagram.

Then, the leading-order contributions to the evenmoments factorize as shown infigure 4 and yield (34).

5.Use of correlations

An important difference from the standard strategy for parameter estimation, where independent identical
experiments are performed to collect data, is that in the present sequential scheme the correlations among the
measurement data are available for estimation. Combining the information attainable from the correlations
with that from the average S, the precision of the estimation can be enhanced. The primarymotivation of the
present paper is to explore this possibility.

For instance, one can compute

C
N

s s
1

47
i

N

i i
1ℓ

( )ℓ

ℓ

ℓå=
- =

-

+

from a single sequence ofNmeasurement outcomes s s, , ,N1{ }¼ which captures the correlation between two
data separated by a distance .ℓ In the presence of the correlations among the data, Cℓ may depend on the target
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parameter g in away that cannot be deduced solely from S. Thismight provide additional knowledge on how the
parameter g is encoded in the process and can enhance the precision of the estimation of g.

In principle,ℓ ranges N1, , 1,ℓ = ¼ - but recall that the correlation between two data are expected to
decay exponentially asℓ increases under amixing channel: Cℓ withℓ greater than the correlation lengthwould
not contain useful information. In addition,N should bemuch greater thanℓ so that the numberN−ℓ of data
used to evaluate Cℓ is large enough. Therefore, wewill require N L ,ℓ with L being themaximumℓwe
take to estimate the parameter g.

The correlations Cℓ are also self-averaging quantities.Moreover, we are able to prove that the central
limit theoremholds for the set of quantities X S C C, , , .L1( )= ¼ First, the expectation value of Cℓ is
evaluated as

C C p s s
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under the ergodicity of the channel . Then, let us look at the nthmoment

k k S S k C C . 50n
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ℓ ℓ ℓ
⎛
⎝⎜

⎞
⎠⎟* *
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It is an nth-order polynomial of k k k, , ,L0( )= ¼ and is a collection of all the nthmoments among
X S C C, , , L1( )= ¼ as its coefficients. Sincewe are interested in the asymptotic limit N , ¥ we collect the
leading-order contributions to kn ( )m for largeN. The idea to do that is basically the same as that for S: we try to
insert * asmany times as possible in place of  between points sid from S S *- á ñ and pairs of points

s s s s C 51i i i i( ) ( )ℓ ℓ ℓ ℓ
*

d = -+ +

Figure 4.The leading-order contributions to the evenmoments factorize.
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from C C .ℓ ℓ *- á ñ Sincewe have s 1 0i
1( ∣ ˜ ∣ )( )

* *
d rá ñ = = (equation (40)) and

s s 1 0, 52i i
1( )( ) ˜ ( )ℓ ℓ ℓ

( )

* *
d r= =+

where

ss , 53
s s

s s
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   ååd= ¢

¢

- ¢

there should be at least two pieces (points sid and/or pairs of points s si i( )ℓ ℓd + ) between two .* We just have to
generalize the diagrammatic rules infigure 2: we represent each pair of points s si i( )ℓ ℓd + by a dot ‘•’, too, and if
the pair overlaps with another pair or a point sid we connect the couple of dots ‘•’ by a dashed line (see figure 5),
while if it does notwe leave it disconnected fromor connect it with its adjacent dot by a solid line depending on
whether * is inserted between themor not. The ranges of the summationså å exploring all possible
distances between dots ‘•’ should be carefully arranged depending onwhether the dots represent points sid or
pairs of points s s ,i i( )ℓ ℓd + and some of the prefactors in N1 n are replaced by N1 ,ℓ( )- but such details
become irrelevant in the asymptotic regime N n L, . Then, the analysis goes in the sameway as before, the
leading-order diagrams are again given by figure 3, and the nthmoment kn ( )m for an even n asymptotically
factorizes pairwise asfigure 4, where the pair of dots ‘•’ connected by a dashed line or a solid line represents the
collection of all pairwise combinations among sid and s si i( )ℓ ℓd + ( L1, ,ℓ = ¼ ), with some care on the
coefficients to distinguish different orderings of the pieces, i.e., give a coefficient 1/2 to the pair connected by the
solid line infigure 4 and collect contributions with different orderings of the pieces (see the second and third
terms in 00S , ,0ℓS and ℓℓS ¢ in (55)–(57) below).We get
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Figure 5.Each pair of points s si i( )ℓ ℓd + is also represented by a dot ‘•’, and if the pair overlaps with another pair or a point s ,id we
connect the couple of dots ‘•’ by a dashed line. Several terms are involved in such a single connected diagram as shownhere. These

diagrams represent
2˜

ℓ
( )
 and

2˜
ℓℓ
( )
 ¢ in (58) and (59).
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corresponding to the diagrams infigure 5.We provide the complete expressions for the covariances among S
and Cℓ valid for any (even small)N in appendix A, whose asymptotic forms coincide with the covariances (55)–
(57) divided byN.

This result shows that the set of scaled variables N S S( )*- á ñ and N C C( )ℓ ℓ *- á ñ asymptotically
become normal in the limit N . ¥ The characteristic function reads
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whereΣ is the L L1 1( ) ( )+ ´ + matrix with itsmatrix elements given by the covariances in (55)–(57). The
central limit theoremholds, and the probability distribution XP ( ) of X S C C, , , L1( )= ¼ becomes
asymptotically Gaussian
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peaked at X X *= á ñ with a shrinking covariance N .S This ensures that the single-shot values X computed
froma single sequence ofmeasurement data well represent their expectation values X ,*á ñ throughwhichwe can
estimate a parameter g. The uncertainty gd in the estimation of g is given by (22)with the Fisher information
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which increases linearly in N, and the uncertainty gd diminishes as g N1d  (in (68) we have omitted the
contribution from g¶S ¶ to the Fisher information gL( ) since it does not grow with N). Moreover, this
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Fisher information gL( ) for the estimation of g through a set of quantities X S C C, , , L1( )= ¼ can be
greater than the Fisher information g g0( ) ( ) = given in (23) for the estimation of the same g but solely
through S. The precision of the estimation can be enhanced by looking at the correlation data Cℓ in addition
to the average S.

Here we have considered the two-point correlations Cℓ as well as the average S. If we incorporate higher-
order correlations with more points, the precision of the estimation can be further improved. On the other
hand, correlations with too many points would not be helpful, since the number of data used to evaluate
such correlations is reduced, and some of the points involved in the correlations are separated beyond the
correlation length of the mixing channel supplying no more information than lower-order correlations. It is
currently not clear to what extent we can improve the precision of the estimation by looking at higher-order
correlations.

6. Example: estimation of the temperature of a reservoir

In this sectionwe analyze an explicit example, where the correlations among the data collected by the sequential
measurements would be useful for improving the estimation of a parameter. The settingwe consider is related to
quantum thermometry, which aims to use low-dimensional quantum systems (say qubits) as temperature
probes tominimize the undesired disturbance on the sample (see e.g. [34, 35] and references therein).
Specifically we focus on the paradigmatic examplewith a qubit probe in contact with a thermal reservoir at a
finite temperatureT. Our goal is to estimate the temperatureT of the reservoir bymonitoring the relaxation
dynamics induced on the qubit, which effectively plays the role of a local ‘thermometer’ (figure 6). In our
approachwe describe the probe-reservoir coupling in terms of the resultingMarkovianmaster equation [30, 36–
39] operating on the probe, i.e.

t
t t t t t

t t t

d

d
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2
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2
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2
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where t( )r represents the state of the qubit,  W is the energy gap between the excited ∣  ñand ground ∣  ñ
states of the qubit, and

, , . 70z ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )s s s=  ñá  -  ñá  =  ñá  =  ñá + -

The two relaxation constants g+ (for decay) and g- (for excitation) are related to the temperature of
the reservoir T, respecting the detailed balance condition. For a bosonic thermal reservoir, they are given by
[36–39]

n n n1 , ,
1

e 1
, 71

k Tth th th
B

( ) ( )


g g g g= + = =
-

+ - W

with kB being the Boltzmann constant.We assume that the parametersΩ and γ (i.e., the characteristics of the
thermometer) are known. Estimating the temperatureT is then equivalent to estimating

k T
coth

2
, 72

B

( )
g g g g= + =

W
b + -

while g g g= -+ - is a known constant independent of the temperatureT. The higher is the temperature, the
larger is the decay rate .gb

Figure 6.Weestimate the temperature of a thermal reservoir thoughmeasurements performed on a probe qubit in contact with the
reservoir.
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6.1. Standard strategy
The information about the temperatureT, namely, the parameter ,gb is imprinted in the state of the qubit

through the dynamics under the influence of the thermal reservoir, i.e., by the action of the quantum channel tL
which is the solution to themaster equation (69). Then, the standard strategy to estimate the parameter gb is

(i) to prepare the qubit in a specific initial state ,0r

(ii) to let the qubit evolve 0( ) ( )r t r= Lt for a certain time τ in contact with the thermal reservoir, and

(iii) tomeasure a specific observable in the state .( )r t

We repeat this processN times to collectmeasurement results, fromwhichwe estimate the parameter .gb
For instance, we prepare the qubit in a specific initial state ,0r say in the excited state ,∣  ñ and after afixed

waiting time τwemeasure the qubit to checkwhether it is in the excited state ∣  ñor in the ground state .∣  ñ
We repeat this processN times, andwe estimate gb from the survival probability of the initial state ∣  ñafter
time τ. Ourmeasurement however can beweak and unsharp: herewe consider themeasurement which
provokes the following back-action on the qubit

M M s 1 73s s s( ) ( ) ( )†r r r= = 

with
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depending on the outcomeof themeasurement s. Thismeasurement process can be simulatedwith a CNOT gate
[40, 41]. The parameterη controls theprecision and the strength of themeasurement: 0h = provides the
projectivemeasurement, whilewith 4h p= themeasurement gives totally randomresultswith nodisturbance
on themeasured system.The probability of obtaining themeasurement outcome s in the state ( )r t is then given by

p s Tr Tr , 75s s0( ) { } { }( ( )) ( ) ( )r r t r t= = Pt
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are the POVMelements of thismeasurement. The uncertainty in the estimation is then bounded by theCramér–
Rao inequality [3, 7–12, 33]
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For the presentmodel, the Bloch vector of the qubit evolves as
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where xs s s= ++ - and i .y ( )s s s= - -+ - The equilibrium state eqr is characterized by
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The probability distribution of the outcomes of themeasurement (75) at time τ reads

p 1
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2
1 cos 2 , 82z0 ( )( ) ( )r s h = t t

and the Fisher information F ( )gb in (78) is estimated to be
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A larger Fisher informationwould be attainable bymeasuring a different observable. ThemaximumFisher
information one can reachwith the optimalmeasurement is given by the quantumFisher information [2, 3, 7–
12],
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whereV is a 3×3matrix whosematrix elements are given by

V i j x y z, , , . 86ij ij i j ( ) ( )d s s= - =
t t

Notice here that both the Fisher information F ( )gb in (83) and the quantumFisher information FQ ( )gb in
(84) depend on the choice of the initial state .0r Because of the convexity of the quantumFisher information, the
maximumof the quantumFisher information (the best estimation) is always achieved by choosing a pure input
state 0 0 0∣ ∣r y y= ñá [3, 42].Moreover, for the present problem, the ground state of the qubit 0∣ ∣y ñ =  ñ is the
optimal choice, in the sense that themaximumof FQ ( )gb for a given temperature is achievedwith :0∣ ∣y ñ =  ñ
see figure 7, and the temporal behavior of FQ ( )gb for 0∣ ∣y ñ =  ñ is plotted infigure 8(a). For this specific initial
state ,0 ∣ ∣r =  ñá  the Fisher information F ( )gb in (83)with 0h = coincides with the quantumFisher

information FQ ( )gb in (84), for any time τ and for any :gb the projectivemeasurement to discriminate ∣  ñand
∣  ñ is the optimalmeasurement. For nonvanishing 0h > the Fisher information F ( )gb is reduced, and the
weaker is themeasurement, the smaller is the Fisher information F ,( )gb as shown infigure 8(b).

6.2. Sequential scheme
Let us now turn our attention to the sequential scheme. First, it is important to checkwhether the channel 
defined in (19)with s in (16) ismixing. For the presentmodel, the spectrumof  is given by

1, e , e , 872 i{ }( ) ( )g t g t- -  Wb b

and therefore,  ismixing for any 0t > with a uniquefixed point (the eigenstate belonging to the eigenvalue 1)

, 88eq ( )
*
r r=

Figure 7.The dependence of the quantumFisher information FQ ( )gb given in (84) on the polar angle θ of a generic pure initial state
e cos 2 e sin 20

i 2 i 2∣ ( )∣ ( )∣y q qñ =  ñ +  ñj j- and on thewaiting time τ, for different values of ,g gb i.e., for different
temperatures. Note that FQ ( )gb is symmetric around the polar axis and is independent of the azimuthal anglej.
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which coincideswith the equilibrium state eqr in (81) of the free relaxation process. Thismixing is apparently a
direct consequence of the irreversibility of the relaxation process tL of the probe qubit. Since  ismixing, the
sequential schemeworks for the present problem.

Let us take the average of the outcomes of a sequence ofNmeasurements, S defined in (20), as a quantity
throughwhichwe estimate .gb For the presentmodel, its expectation value is computed to be
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In otherwords, S evaluated froma single sequence ofmeasurements almost certainly exhibits a value very close
to its expectation value S ,Ná ñ which is a function of .gb Therefore, by comparing S (obtained via a single
experimental run)with its expectation value S Ná ñ (given by the formula (91)), the parameter gb is estimatedwith

the uncertainty regulated by the variance S N
2( )D in (92), i.e., with the precision given by the Fisher information

0( ) ( ) g g=b b in (23),

Figure 8. (a)The temporal behavior of the quantumFisher information FQ ( )gb given in (84) for 0 ∣ ∣r =  ñá  and for different gb
(for different temperatures). (b)The temporal behavior of the Fisher information F ( )gb given in (83) for 0 ∣ ∣r =  ñá  and

1.5g g =b with different strengths of themeasurement η. In the case of projectivemeasurement 0,h = the Fisher information
F ( )gb coincides with the quantumFisher information FQ ( )gb given in (84) and plotted in (a).
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which is to be comparedwith the Fisher information NF ( )gb with (83) by the standard strategy (see figure 9).

Figure 9.The Fisher informations NL( ) gb permeasurement by the sequential scheme (solid lines) are comparedwith the Fisher
information F ( )gb by the standard strategywith 0 ∣ ∣r =  ñá  (dashed lines) for (a) projectivemeasurements 0h = and for (c)
weakmeasurements 0.h > The gains L L 1 0[ ( ) ( )] ( )  g g g-b b b- by incorporating the correlationCL are shown in (b) for
projectivemeasurements 0h = and in (d) forweakmeasurements 0.h >
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As stressed above, the correlations among the acquired data are also available for the estimation in the
sequential scheme. For instance, the two-point correlations Cℓ defined in (47) can be used to estimate .gb Their
expectation values (for a generic initial state 0r ) are given by
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(the complete expression for the covariance C C C CN N Nℓ ℓ ℓ ℓá ñ - á ñ á ñ¢ ¢ valid for any , 1ℓ ℓ ¢ and
N max , 1ℓ ℓ( ) ¢ + (but for 0 *

r r= ) is given in appendix B). All the covariances scale as N1 , and the Fisher
information (68) increases linearly inN. This ensures that, by comparing the set of quantities S C C, , , L1( )¼
evaluated from a single sequence ofmeasurement datawith the set of their expectation values

S C C, , , ,N N L N1( )á ñ á ñ ¼ á ñ one can estimate gb with the precision given by the Fisher information L( ) gb
computed by the formula (68), which increases linearly inN. It is reasonable to expect that the estimationwith
themultiple quantities S C C, , , L1( )¼ is better in precision than the estimation solely through the average S,
namely, the Fisher information L( ) gb (L 0> ) is larger than the Fisher information ,0( ) gb and themore
correlations are incorporated (the larger is the number L), the larger is the Fisher information .L( ) gb

Let us look at two different regimes.

6.2.1. Projectivemeasurement 0h =
The Fisher informations L( ) gb (L 0, 1, 2= ) by the sequential scheme are plotted in the five panels in

figure 9(a) and are comparedwith the Fisher information F ( )gb by the standard strategy with ,0 ∣ ∣r =  ñá 
for the case of projectivemeasurements 0.h = In this case, the Fisher information F ( )gb coincides with the
quantumFisher information FQ ( )gb in the standard strategy.

Compare first F ( )gb and N0( ) gb (permeasurement).We observe that the standard strategy provides

better estimation than the sequential scheme. Recall here that the input state 0 ∣ ∣r =  ñá  for F ( )gb is the
optimal for the standard strategy. On the other hand, in the sequential scheme, the state of the qubit is projected
into ∣  ñor ∣  ñdepending on the outcome of the projectivemeasurement. If it is projected into ∣  ñby a
measurement, it restarts to evolve from this non-optimal state for the nextmeasurement. Not all the steps in the
sequentialmeasurements are optimal for the estimation. That is why the sequential scheme cannot beat the
standard strategy, in the case of projectivemeasurement.

One can improve the performance of the sequential scheme, by incorporatingC1 for the estimation. Indeed,
as is clear from figure 9(a), the Fisher information 1( ) gb for the estimation through S C, 1( ) is greater than the
Fisher information 0( ) gb solely through S. Note that no additional resources or experiments are required to
incorporateC1: one simply needs to carry out additional data analysis to computeC1 from the data used to
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evaluate S. Infigure 9(b), the gain in the Fisher information by incorporatingC1 is shown for different
temperatures.

On the other hand, incorporatingmore correlation data, i.e., Cℓ with 1,ℓ > does not help improve the
estimation. See figure 9(a) again. This is because every time one performsmeasurement the system is reset to a
pure state by the projectivemeasurement: there is no correlation between themeasurement results separated
over two steps. The system simply repeats the same dynamics, jumping between pure states ∣  ñand ,∣  ñ and
themeasurement aftermultiple steps gains nomore information than that attainable by themeasurement after a
single step.

6.2.2.Weakmeasurement 0h >
Let us next look at the cases withweakmeasurements 0.h > As is clear from figure 9(c), the sequential scheme
can be better than the standard strategy. In particular, at low temperatures, the Fisher informations NL( ) gb
(L 0 ) by the sequential scheme exceed the Fisher information F ( )gb by the standard strategy.

The reason is the following. In the standard strategy, theweakmeasurement is performed only once, and the
system is reset to the specific initial state 0r for the nextmeasurement. The single weakmeasurement can acquire
less information than a projectivemeasurement, but if it is repeatedmany times, as in the sequential scheme, the
information is accumulated, and better information is gained in our hands. At the same time, the system is
gradually projected to one of the eigenstates of themeasured observable by the repeatedweakmeasurements
[43]. In otherwords, the repetition of theweakmeasurementsmimics a strongermeasurement (closer to a
projectivemeasurement). That is why the sequential scheme can be better than the standard strategy, in the case
of weakmeasurement.

It is also clear from figure 9(c) that the precision of the estimation is improved by incorporating the
correlation data C .ℓ The gain in the Fisher information L L 1 0[ ( ) ( )]  g g-b b- by adding a correlationCL to
S C C, , , L1 1( )¼ - is shown infigure 9(d). The enhancement is reminiscent when the time interval between
measurements τ is short, i.e., 1.g tb Moreover, the gain exhibits a peak at a smaller τ for a larger L. This is
because the two points of each two-point correlation C ,ℓ separated byℓ steps, should bewithin the correlation

time 2ct g~ b (which is ruled by the second largest eigenvalues e 2 i( )g t-  Wb of themixing channel (87)), in
order for the correlation Cℓ to bear useful information.

It appears that the sequential scheme can beat the standard strategy only at low temperatures (small gb), but
it should be noted that the standard strategy infigure 9 assumes the optimal initial state ,0 ∣ ∣r =  ñá  while in
the sequential scheme the system is around the stationary state

*
r of themixing channel , which is the thermal

equilibrium state eqr (see (88)). It would bemore appropriate to compare the Fisher informations NL( ) gb by

the sequential schemewith the Fisher information F ( )gb by the standard strategy in the large τ limit (which
gives the Fisher informationwith the initial thermal state 0 eqr r= ).

7. Conclusions

The estimation of a parameter encoded in a quantumprobe, through a series ofmeasurements performed
sequentially on the probe, has been analyzed in a general non-i.i.d. setting. On the basis of a diagrammatic
approachwe have discussed the conditions underwhich the central limit theoremholds as the number of
measurements increases, reproducing the previous results [19] and generalizing them to the case where the
correlations among themeasurement data are also taken into account in the estimation strategy.Our analysis
explicitly shows that the latter strategy can yield a significant advantage over the standard procedure where only
the average of the acquired data is considered.

At present however it is not clear whether this is the best strategy one can do: it is indeed possible that
different data processing (including the evaluation of higher-order correlations commented at the end of
section 5) can improve further the attainable accuracy. In the example studied in section 6, the sequential
scheme surpassed the standard i.i.d. procedure whenwe are able to performonlyweakmeasurements, but could
not beat the standard procedure whenwe are allowed to perform strongmeasurements. A better strategy for the
sequential scheme could beat the ultimate precision achievable by the standard strategy. The optimal strategy
would require differentmeasurements step by step, ormoreover would require quantum-correlated
measurements over differentmeasurement probings. The use of entanglement is also an interesting possibility
[44]. It is yet to be clarifiedwhat is the ultimate accuracy attainable in the sequential scheme for parameter
estimation6.

6
In [19] a concise formula for the quantumFisher information providing themaximumFisher information attainable by the optimal

measurement strategy applied on the target systemplus probing systems in the sequential scheme is derived. It is however valid onlywhen
each probing process is unitary.Moreover, it is not applicable if one canmeasure the target system only through the probes.
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Recently, quantummetrology in the presence of noise is under intense study [44–47]. Themixing property
required for the sequential scheme is relevant to noisy channels, and connections with such issuewould be
interesting to be explored.
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AppendixA. Complete expressions for the covariances

In section 5, we derived the asymptotic expression (54) for the evenmoments among S and C .ℓ Herewe provide
the complete expressions for the covariances among S and Cℓ valid for any (even small)N. Under the
assumption that the quantum channel  is ergodic (not necessarilymixing), they read
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where
m˜ ( ) and s 2( )

*
D are defined in (30) and (31), respectively,

m˜
ℓ
( )
 are in (53) and (58), and the other

components are given in (60)–(65).

Appendix B. Covariances among Cℓ for themodel

In (95) in section 6we showed the asymptotic expression for the covariance between Cℓ and Cℓ¢ for largeN for
themodel. Herewe provide its complete expression valid for any (even small)N. In the stationary state ,0 *

r r=
the covariances between Cℓ and Cℓ¢ ( 1ℓ ℓ ¢ ) are given for N ℓ ℓ + ¢ by
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