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1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
2Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany

3Department of Mathematics, Aberystwyth University, Aberystwyth SY23 2BZ, United Kingdom
(Received 1 June 2015; published 8 October 2015)

What can one do with a given tunable quantum device? We provide complete symmetry criteria deciding
whether some effective target interaction(s) can be simulated by a set of given interactions. Symmetries lead to a
better understanding of simulation and permit a reasoning beyond the limitations of the usual explicit Lie closure.
Conserved quantities induced by symmetries pave the way to a resource theory for simulability. On a general
level, one can now decide equality for any pair of compact Lie algebras just given by their generators without
determining the algebras explicitly. Several physical examples are illustrated, including entanglement invariants,
the relation to unitary gate membership problems, as well as the central-spin model.
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I. INTRODUCTION

Thanks to impressive progress on the experimental side,
many small- and medium-scale quantum devices are now ready
for applications ranging from quantum metrology [1–4] to
quantum simulation [5–9]. With quantum information process-
ing as one of the driving but long-term goals (e.g., [10–12]),
one of the pressing questions is, what can one do with these de-
vices now? This problem clearly falls into the remit of quantum
systems and control engineering, an area naturally receiving in-
creased interest [13–15] both experimentally and theoretically.

Control theory offers a well-known characterization of the
operations that a quantum device is capable of on Lie-algebraic
grounds [14,16–21]. In this work, we simplify the question to
the Hamiltonian membership problem of (finite-dimensional)
quantum simulation. It amounts to deciding, for a set of
given control interactions P , whether a set of effective target
interactions Q can be simulated—without having to establish
controllability via nested (and hence tedious) commutator
calculations for the so-called Lie closure. Our results reduce
the Hamiltonian membership problem to the straightforward
solution of homogeneous linear equations.

In the setting of the controlled Schrödinger equation [22]
(taken as a bilinear control system [17,23])

d

dt
U (t) =

[
− iH1 +

p∑
ν=2

−iuν(t)Hν

]
U (t), (1)

we ask whether the given set P := {iH1, . . . ,iHp} of interac-
tions (which may include a drift term) generates an effective
interaction iHp+1 or, more generally, any interaction from a
setQ := {iHp+1, . . . ,iHq} assuming all Hν are represented by
Hermitian matrices henceforth. If so, then for every evolution
time τ > 0 of a simulated interaction iHk ∈ Q, there is a
solution U (t) of the simulating system (1) for 0 � t � θ

and controls uν(t) such that P generates a unitary U (θ ) =
exp(−iτHk) in the simulation time θ starting from the identity
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at t = 0 [6,24–31]. In this sense, Hamiltonian simulation
of a particular Hamiltonian Hk can be considered as an
infinitesimal version of creating a particular unitary gate. It also
generalizes the universality (or full controllability) question of
whether all Hamiltonians can be simulated (or, equivalently,
whether all unitary gates can be obtained) [19,28,32–41]. In
the context of gates, a familiar elementary example is that
all unitary gates in an n-qubit system can be obtained [32] by
combining local gates with CNOT gates. However, the approach
of the pioneering age of decomposing every target gate into
a sequence of CNOT and local gates is, in practice, all too
often imprecise or slow. So implementing gates or simulating
Hamiltonians with high fidelity rather asks for optimal control
techniques, as explained in a recent road map [42]. As a
precondition, here we step back to the Hamiltonian level and
give criteria for simulability and controllability.

II. MAIN IDEA

We solve the decision problems of simulability (and
controllability) by just analyzing the symmetries of the
Hamiltonians of given setups. We show that this decision
requires considering both linear and quadratic symmetries,
where linear symmetries of a Hamiltonian H commute with
H , while quadratic symmetries of H are those commuting
with the tensor square (iH ⊗ 1 + 1 ⊗ iH ). The term quadratic
symmetry is motivated, since the tensor square generates
U ⊗ U just as iH generates the unitary U .

More precisely, our goal is to get a symmetry-based
understanding of how a set P of available interactions can
simulate a set Q of desired effective quantum interactions in
the sense that the Lie closures coincide, i.e., 〈P〉 = 〈P∪Q〉.
We circumvent brute-force calculation of the Lie closure not
only because high-order commutators can entail a significant
growth in the appearing matrix entries and may lead to
instabilities in numerical computations, but first and foremost
because it provides no deeper insight into the problem.
Our symmetry analysis leads to a much more systematic
understanding of Hamiltonian simulation and quantum system
dynamics in general. It provides a powerful argument to
decide under which conditions a desired Hamiltonian can,
in fact, be simulated or, in turn, which explicit simulations or
computations are impossible in a given experimental setup.
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Let us summarize our line of thought: As shorthand, let the
linear symmetries ofP (analogously for any set of matrices) be
expressed via the commutant P ′, which consists of all matrices
S ∈ Cd×d that commute (i.e., [S,iHν] = 0) with each element
iHν ∈ Cd×d of P [43]. Obviously, for Q to be simulable
by P , it is necessary that Q may not break but rather has
to inherit the symmetries of P , so dim[P ′] = dim[(P∪Q)′].
However, a complete symmetry characterization is nontrivial.
It rather requires the following two steps: The first is to
introduce quadratic symmetries [19] as those linear symme-
tries of the system artificially doubled by the tensor square
P⊗2 := {iHν⊗1d+1d⊗iHν for ν ∈ {1, . . . ,p}}. It defines the
quadratic symmetries by its commutant P (2) := (P⊗2)′. Sec-
ond, let C denote the center [44] of the commutant (P∪Q)′
and consider the central projections of P and P∪Q onto C.
With these stipulations, we summarize our main result:

Main result (see Result 1 below). The given interactions P
simulate the desired interactions Q in the sense 〈P〉 = 〈P∪Q〉
if and only if P and Q share the same quadratic symmetries
(i.e., dim[P (2)] = dim[(P∪Q)(2)]) [condition (A)] and the
central projections of P and P∪Q onto C are of the same
rank [condition (B)].

Let us emphasize that our approach goes beyond the ubiqui-
tous use of linear symmetries in physics, since linear symme-
tries provide only an incomplete picture of Hamiltonian sim-
ulation. The application of higher symmetries is the key here.
It is interesting to note that essentially only the quadratic sym-
metries (and no higher ones) in condition (A) are necessary to
characterize the dynamics of a quantum system. One obtains a
complete description together with the auxiliary condition (B).

Some remarks also summarizing known approaches are
in order. The quadratic symmetries are stronger than the
linear ones; actually they include them and thus condition (A)
implies that the linear symmetries also agree. Example 1 below
illustrates why matching the linear symmetries does not suffice
to ensure simulability. As shown in a companion paper [45],
one can decide if a subalgebra h ⊆ g of a compact semisimple
Lie algebra g actually fulfills h = g (e.g., 〈P〉 = 〈P∪Q〉) just
by analyzing quadratic symmetries. But Example 2 elucidates
why condition (A) alone does not, in the general compact case,
imply simulability. Only after fixing the central projections by
condition (B) do the quadratic symmetries decide simulability.

On a much more general scale, condition (B) closes
the gap to completely characterizing equality in h ⊆ g now
for all compact Lie algebras (generated by skew-Hermitian
interactions) beyond the semisimple ones of [45]. Simplifying
within the Lie-algebraic frame, our symmetry approach to
decide simulability and the membership Q ⊆ 〈P〉 can thus be
seen as a major step beyond the well-established Lie-algebra
rank condition [14,16,17] and beyond the limited first use of
quadratic symmetries to establish full controllability in [19].

III. SYMMETRIES

In this section, we elaborate our method and establish
necessary and sufficient conditions for Hamiltonian simulation
to arrive at Result 1 below. We also describe important
properties of linear and quadratic symmetries and discuss two
illustrating examples. Example 1 highlights the importance
of quadratic symmetries for deciding Hamiltonian simulation

and their relevance for entanglement invariants. The necessity
for the auxiliary condition (B) is made evident in Example 2.

The linear symmetries of M ⊆ Cd×d are identified [19]
with the commutant M′ given as

M′ := {S ∈ Cd×d such that [S,M] = 0 for all M ∈ M}.
The commutant includes all complex multiples of the identity
1d and it forms a vector space of dimension dim(M′).
A smaller set of matrices typically shows more symme-
tries, i.e., for M1 ⊆ M2, one has M′

1 ⊇ M′
2 and M′

1 =
M′

2 iff dim(M′
1) = dim(M′

2). By Jacobi’s identity (i.e.,
[S,[M1,M2]] = [[M2,S],M1] + [[S,M1],M2]), any symmetry
S that commutes with both M1 and M2 also commutes
with their commutator [M1,M2]. So, M and the Lie algebra
〈M〉 it generates have the same commutant: M′

1 = M′
2 if

〈M1〉 = 〈M2〉.
In our context, this implies that iHp+1 cannot be simulated

by P unless P ′ = (P ∪ {iHp+1})′, i.e., coinciding symmetries
are a necessary but not sufficient condition. This is because
the converse does not hold as the following basic example
illustrates:

Example 1. The pair interaction iHzz := iZ1Z2 cannot be
simulated by the local interactions P = {iX1,iY1,iX2,iY2}
of a two-qubit system [46] in spite of coinciding (trivial)
commutants P ′ = (P ∪ {iHzz})′ = C14.

Thus, we further discuss quadratic symmetries [19] defined
by the commutant to the tensor square [47],

M(2) := (M⊗2)′ = {S ∈ Cd2×d2
such that

[S,M⊗1d+1d⊗M] = 0 for all M ∈ M ⊆ Cd×d}.
The tensor-square commutant always contains (the subspace
spanned by) the identity 1d2 and the SWAP or commutation
matrix Kd,d [48]. Also, the quadratic symmetries include all
linear ones, i.e., S1⊗1d+1d⊗S1 ∈ M(2) for S1 ∈ M′. And by
Jacobi’s identity [51], one finds (M1)(2) = (M2)(2) if 〈M1〉 =
〈M2〉. As above, in our context this implies that iHp+1 cannot
be simulated by P unless P (2) = (P ∪ {iHp+1})(2) holds.

Example 1 (completion). The relevant tensor-square
commutants have different dimensions dim[P (2)] = 4 and
dim[(P ∪ {iHzz})(2)] = 2, so iHzz cannot be simulated. Nat-
urally, (P ∪ {iHzz})(2) contains 116 and the commutation
matrix K4,4, which is related to the joint permutation
(1,3)(2,4) of tensor components in C16×16, while P (2) con-
tains two additional quadratic symmetries related to the
separate permutations (1,3) and (2,4); see Fig. 1. Evi-
dently, the local interactions of P cannot generate entan-
glement. Hence, a quadratic symmetry in P (2) has a phys-
ical interpretation as an entanglement invariant. Indeed, the

(a) 1 2 (b) 1 2 3 4

FIG. 1. (Color online) Visualization of Example 1. (a) No linear
symmetries besides the identity exist for both the fully controllable
system and the local interactions. (b) The doubled system reveals non-
trivial quadratic symmetries corresponding to separate permutations
(1,3) and (2,4).
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concurrence [52] of a two-qubit pure state |ψ〉 can be defined as
[〈ψ |〈ψ |116−M(1,3)−M(2,4)+M(1,3)(2,4)|ψ〉|ψ〉]1/2/2 [53–56],
where the matrix Mp is defined by the permutation p.
Any quadratic symmetry S ∈ P (2) relates to a degree-two
polynomial invariant Tr[ρ⊗ρ S] in the entries of the density
matrix ρ [57].

Remarkably, symmetries beyond quadratic ones (i.e., those
of the tensor square) are not required for a necessary and suf-
ficient condition for simulability [58]. Concerning the tensor-
square commutant, we build on two important classification-
free results of [45] for compact Lie algebras [59,60] (as
generated by skew-Hermitian matrices iHν): For 〈P∪Q〉 being
semisimple (and compact), Ref. [45] first shows that 〈P〉 =
〈P∪Q〉 holds if and only if dim[P (2)] = dim[(P∪Q)(2)].
Beyond the semisimple case, any compact Lie algebra g can
be uniquely decomposed as g = s ⊕ c into its semisimple
part s and its center c (where s := [g,g] and [g,c] = 0 [44]).
So Ref. [45] secondly verifies that the semisimple parts of
〈P〉 and 〈P∪Q〉 have to agree if dim[P (2)] = dim[(P∪Q)(2)].
When generalizing from semisimple to arbitrary compact Lie
algebras, the equality of the two tensor-square commutants
implies that 〈P〉 and 〈P∪Q〉 agree—except for the central ele-
ments (commuting with all the other ones). These commuting
interactions require condition (B) to fix the central projection,
thus resulting in the following complete characterization:

Result 1. Consider two sets P := {iH1, . . . ,iHp} and Q :=
{iHp+1, . . . ,iHq} of (skew-Hermitian) interactions, and let Cα

denote elements of a linear basis spanning the center C of the
commutant (P∪Q)′. For the central projections, define the
matrix T by its entries Tαβ := Tr(C†

αiHβ) for 1 � α � dim(C)
and 1 � β � q, as well as T̃ by T̃αβ := Tr(C†

αiHβ) for 1 �
β � p. Then, P simulates Q in the sense 〈P〉 = 〈P∪Q〉, if
and only if both conditions (A) dim[P (2)] = dim[(P∪Q)(2)]
and (B) rank(T̃ ) = rank(T ) are fulfilled.

Condition (B) of Result 1 is a basic linear-algebra test solely
based on linear symmetries. Each of the matrices T̃ and T

depends on both P and Q. In Example 1, iHzz could not be
generated as condition (A) is not satisfied. Before proving
Result 1, the following example provides a helpful illustration
of condition (B):

Example 2. In a two-qubit system, consider a dipole
coupling combined with a tilted magnetic field, i.e., P :=
{i(2Z1Z2−X1X2−Y1Y2), i(X1−Y1+X2−Y2)}. We investigate
whether a Heisenberg-type interaction of the form Qa :=
{i(X1X2+Y1Y2+Z1Z2)} or one particular interaction of pair-
ing type (i.e., Qb := {i(X1Z2+Z1X2+Y1Z2+Z1Y2)}) can be
simulated. Condition (A) is satisfied in both cases as the
quadratic symmetries of P , P∪Qa , and P∪Qb all coincide
(there are 16 of them). The three linear symmetries also agree.
Moreover, with the mutually commuting operators

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠,

⎛⎜⎝1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠, and

⎛⎜⎝ 0 0 0 1
0 0 −i 0
0 −i 0 0

−1 0 0 0

⎞⎟⎠

forming a basis of the commutants P ′ = (P∪Qa)′ =
(P∪Qb)′, they also span the (three-dimensional) center C. For
the central projections, one thus gets the matrices

Ta =
⎛⎝0 0 0

0 0 6i

4 0 −4

⎞⎠, Tb =
⎛⎝0 0 0

0 0 0
4 0 0

⎞⎠, and

T̃a = T̃b =
⎛⎝0 0

0 0
4 0

⎞⎠.

Condition (B) reveals rank(T̃a) �= rank(Ta), rank(T̃b) =
rank(Tb), so Qa cannot be simulated by P , while Qb can.
Note the isomorphy types of 〈P〉, 〈P∪Qa〉, and 〈P∪Qb〉 are
su(2)⊕u(1), su(2)⊕u(1)⊕u(1), and su(2)⊕u(1).

Proof of Result 1. Decompose the compact Lie alge-
bras 〈P〉 and 〈P∪Q〉 into their semisimple parts and cen-
ters. If condition (A) holds, the semisimple parts coincide,
〈P〉 = s + cP and 〈P∪Q〉 = s + cP∪Q with cP ⊆ cP∪Q. Take
the unique decomposition iH	 = iH s

	 + iH c
	 with iH s

	 ∈
s and iH c

	 ∈ cP∪Q. Since [iHn,iHm] ∈ s, the real-linear
span of {iH c

1 , . . . ,iH c
p} agrees with cP , while the one of

{iH c
1 , . . . ,iH c

q } equals cP∪Q. It follows that cP = cP∪Q iff the
dimensions of the two real-linear spans agree; this in turn is
equivalent to the dimensions of the two complex-linear spans
being equal because all relevant Lie algebras are compact (see
Corollary 1 of Theorem 1 in Chapter IX, Sec. 3.3 of [60]).

The center c of a compact Lie algebra g lies within the center
C of its matrix commutant g′: [c,g] = 0 for c ∈ c, g ∈ g implies
c ⊆ g′; likewise, [s,c] = 0 for s ∈ g′ shows that c ⊆ C. Given
the basis {Cα} of C, introduce its dual basis {Bα} with respect
to the Hilbert-Schmidt scalar product via Tr(C†

αBβ) = δα,β .
So any C ∈ C can be written as C = ∑

α Tr(C†
αC) Bα . Define

the matrix K entrywise by Kαβ := Tr(C†
αiH c

β ) for 1 � α �
dim(C) and 1 � β � q, and similarly K̃ by K̃αβ := Tr(C†

αiH c
β )

for 1 � β � p. Hence the dimension of cP∪Q agrees with the
rank of K , and the dimension of cP equals the rank of K̃ .

Now, for any b ∈ s, there are two elements b1,b2 ∈ s with
b = [b1,b2] (Chapter I, Sec. 6.4, Proposition 5 of [59]). Thus,
Tr(Cαb) = Tr(Cα[b1,b2]) = Tr(Cαb1b2) − Tr(Cαb2b1) = Tr
(Cαb1b2) − Tr(b2Cαb1) = Tr(Cαb1b2) − Tr(Cαb1b2) = 0,
where the third equality follows as Cα ∈ C and b2 commute,
and cyclic permutations in the trace imply the fourth equality.
Moreover, Tr(C†

αb) = −Tr(C†
αb†) = −Tr(Cαb) = 0. Hence,

Tr(C†
αiHβ) = Tr(C†

αiH c
β ), which implies T = K and T̃ = K̃ .

In summary, cP = cP∪Q iff the ranks of T and T̃ agree, which
proves Result 1. �

IV. ALGORITHMICS AND BEYOND

Both linear and quadratic symmetries can readily be com-
puted by standard linear algebra: Linear symmetries S ∈ Cd×d

are determined by the commutant and can be obtained by solv-
ing the linear equations (1d⊗M−Mt⊗1d ) vec(S) = 0 jointly
for all M ∈ M ⊆ Cd×d [19,50]. Here, vec(S) is a column vec-
tor of length d2 stacking all columns of S [49]. The dimension
of the solution is d2−r , where r denotes the rank of the matrix
formed by vertically stacking the matrices 1d⊗M−Mt⊗1d .
Likewise, the quadratic symmetries S ∈ Cd2×d2

(given

042309-3
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TABLE I. Central-spin model of Example 3: number n of spins, Lie dimensions dim(〈P〉) = dim(〈P∪Q〉), the isomorphy type, dimensions
of quadratic and linear symmetries (i.e., dim[P (2)] = dim[(P∪Q)(2)] and dim[P ′] = dim[(P∪Q)′]), and ranks of the central projections [i.e.,
rank(T̃ ) = rank(T )].

Lie Isomorphy No. of symmetries Rank of
n dimensions type Quadratic Linear central projections

Case (a): Jk = 1
2 15 su(4) 2 1 0
3 38 su(2)⊕su(6) 8 2 0
4 78 su(4)⊕su(8) 50 5 0
5 137 su(2)⊕su(6)⊕su(10) 392 14 0
6 221 su(4)⊕su(8)⊕su(12) 3528 42 0
Case (b): Jk = 2 for even k, and Jk = 1 otherwise
2 15 su(4) 2 1 0
3 63 su(8) 2 1 0
4 158 su(4)⊕su(12) 8 2 0
5 396 su(2)⊕su(6)⊕su(6)⊕su(18) 32 4 0
6 796 su(4)⊕su(8)⊕su(12)⊕su(24) 200 10 0

by the tensor-square commutant) just amount to solving
[1d2⊗(M⊗1d+1d⊗M)−(M⊗1d+1d⊗M)t⊗1d2 ] vec(S) = 0
jointly for all M ∈ M. The preceding discussion
explains how to explicitly determine linear and quadratic
symmetries. This allows us to test condition (A) (i.e.,
dim[P (2)] = dim[(P∪Q)(2)]) by comparing the dimensions of
the quadratic symmetries for P and P∪Q.

As the commutant (P∪Q)′ represents the linear sym-
metries of P∪Q, its center C is readily obtained by solv-
ing the linear equations (1d⊗M−Mt⊗1d ) vec(C) = 0 and
(1d⊗S−St⊗1d ) vec(C) = 0 jointly with M extending over all
M ∈ P∪Q and S over all S ∈ (P∪Q)′. Solving for C yields a
basis Cα of the center C, and one can determine the matrices
T and T̃ as Tαβ = Tr(C†

αiHβ) for 1 � α � dim(C) and 1 �
β � q, as well as T̃αβ = Tr(C†

αiHβ) for 1 � β � p. Since
condition (B) is given by rank(T̃ ) = rank(T ), it can easily be
tested by elementary linear-algebra computations comparing
the ranks of T̃ and T . To sum up, Result 1 reduces the
Hamiltonian membership problem to straightforward solutions
of homogeneous linear equations.

Example 3 (central-spin model). Consider a central
spin interacting with n−1 surrounding spins via a star-
shaped coupling graph (where the surrounding spins may
be taken as uncontrolled spin bath) [61–63]. The inter-
actions amount to a drift term (tunneling plus coupling)
and just a local Z control on the central spin, P :=
{iX1+i

∑n
k=2 Jk(X1Xk+Y1Yk+Z1Zk), iZ1}. We ask whether

the central spin can be fully controlled, i.e., if Q := {iX1} can
be simulated. Depending on the interaction strengths Jk ∈ R
for k � 2, different cases are possible: (a) with Jk = 1 and (b)
with Jk = 2 for even k, and Jk = 1 otherwise.

Computational results for the central-spin model have been
obtained using exact arithmetic [64] for a moderate number of
spins, as detailed in Table I. These results vary significantly for
different coupling strengths Jk . But our approach for deciding
simulability allows for analytic reasoning even beyond specific
choices of Jk . For Hamiltonian simulation, it thus provides a
powerful technique to analyze and understand the dynamics of
general quantum systems. This even holds if the symmetries
cannot be calculated explicitly. Showcases for the strength of

explicit symmetries are given in Examples 1–3, while Example
3 also makes use of symmetries implicitly (in parts where
they cannot be calculated explicitly) via the proofs of the
Appendix A. These proofs motivate the following:

Conjecture. In the central-spin model of Example 3, the
central spin is fully controllable for a finite number of spins
and any choice of Jk (i.e., iX1 can be simulated, and the
surrounding spins can be uncoupled by applying the control).

V. DISCUSSION

Similar to the Hamiltonian membership problem for inter-
actions solved here, one may address membership for groups,
e.g., (i) in the (prototypical) discrete case, (ii) in connected
compact Lie groups, and (iii) in nonconnected compact groups
including finite groups.

In discrete groups (i), asking the question (a) if Q̂ =
{Up+1} is (exactly) contained in the group generated by the
unitaries P̂ = {U1, . . . ,Up} is undecidable for SU(N ) (at
least for N � 4) [65]. Yet the question (b) of approximate
universality [66,67], i.e., if all unitaries in SU(N ) can be
approximated, is decidable [65,68] by comparing the matrix
algebra generated by elements Ūν⊗Uν for Uν ∈ P̂ with its
equivalent for SU(N ) (plus other conditions). Still, the tedious
algebra closure is needed, similar to the Lie closure. Question
(b) is equivalent to comparing the topological closure of the
group generated by P̂ to SU(N ) and thus leads to (ii).

In continuous groups (ii), Result 1 applies to decide if two
connected, compact Lie groups (given by their infinitesimal
generators) are equal:

Result 2. Given two sets P and Q of (skew-Hermitian)
interactions, the elements of P simulate the ones of Q and
vice versa iff both 〈P〉 = 〈P∪Q〉 and 〈Q〉 = 〈P∪Q〉 hold,
where each condition can be tested by Result 1.

Our findings do not generalize to nonconnected compact
groups (iii), nor are they implied by the representation theory
of compact groups. In particular, finite groups with trivial
quadratic symmetries [S,Uν⊗Uν] = 0 only (known as group
designs [69]) do not contradict our work.
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VI. CONCLUSION

We have presented a complete symmetry approach to
decide Hamiltonian simulability, i.e., whether given drift
and control Hamiltonians can simulate a target (effective)
Hamiltonian in finite dimensions. Quadratic symmetries lead
to an understanding that allows one to algebraically prove
simulability in classes of many-body systems where the usual
computational assessment via the Lie closure is infeasible.
This is exemplified by proving simulability for interesting
cases of the central-spin model (see the Appendix) for which
only very restricted cases were addressed before [63].

Achievability of specific target interactions is particularly
important for fault tolerance, where the simulation of a par-
ticular Hamiltonian (or universality) is needed only on logical
subspaces and not globally. While linear symmetries have
often been used in those cases [70–73], going a step further
by applying quadratic symmetries to ensure controllability or
simulability on a noise-protected subspace could be an inter-
esting application, simplifying complicated system-algebraic
analysis. For instance, in Ref. [74], we examined standard
scenarios of noise-protected subspaces, where controllability
was (moderately) easy to assess. However, in more realistic
settings, analyzing quadratic symmetries and their restrictions
to protected subspaces is anticipated to be much easier than
establishing Lie closures over restricted subspaces.

Moreover, our results on quadratic symmetries distinguish-
ing local properties from global ones can be generalized
into an overarching framework that encapsulates concurrence
(Example 1) and links naturally to entanglement detection
via a quadratic invariant of the quantum system under local
transformations in [75–78].

Our findings imply that for any nonsimulable interaction,
a related resource is lacking. In Example 1, it simply was
entanglement, but more generally we can characterize lacking
resources as induced by conserved quantities arising from
quadratic symmetries. This paves the way toward a resource
theory of quantum simulability.
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APPENDIX: CENTRAL-SPIN CONTROLLABILITY FOR
DIFFERENT LEVELS OF GENERALITY

In this Appendix, we analyze under which conditions
on the coupling coefficients Jk the central spin is con-
trollable in Example 3. We collect proofs for this con-
trollability under varying assumptions. Recall the set P =
{iH1, iH2} of control interactions, where iH1 = iX1 +
i
∑n

k=2 Jk(X1Xk+Y1Yk+Z1Zk) and iH2 = iZ1, as well as the
target interaction Q = {iX1}. Assuming that condition (A)
of Result 1 holds, there exists an element iC in the center
of 〈P∪{iX1}〉 such that iX1+iC ∈ 〈P〉. Since iZ1 ∈ 〈P〉,

one obtains −[iZ1,[iZ1,iX1+iC]]/4 = iX1 ∈ 〈P〉. Thus, it
follows that it suffices to verify condition (A) in the different
cases below, which is equivalent to showing that D(iX1)v = 0
holds for all vectors v ∈ Cd4

with d := 2n and D(iH1)v =
D(iH2)v = 0. Here, the linear operator

D(M) :=[1d2⊗(M⊗1d+1d⊗M)

−(M⊗1d+1d⊗M)t⊗1d2 ] ∈ Cd4×d4

is a shortcut in order to define the linear equations
D(M)v = 0 for the matrix M ∈ Cd×d and quadratic
symmetries S where v := vec(S). One naturally obtains
that both of the equations [D(M1),D(M2)] = D([M1,M2])
and exp[D(M1)]D(M2) exp[−D(M1)] = D[exp(M1)M2 exp
(−M1)] hold for all matrices M1,M2.

Proposition 1. The interaction iX1 can be simulated if all
couplings Jk are either (a) equal, i.e., Jk = J , (b) equal up to
an odd integer ok , i.e., Jk = Jok where ok may depend on k,
or (c) Q-linear independent.

Proof. Let us consider the two definitions iH̃zz :=
i
∑n

k=2 JkZ1Zk = iH1 + [iH2,[iH2,iH1]]/4 ∈ 〈P〉 and
iH̃ := iX1 + i

∑n
k=2 Jk(X1Xk+Y1Yk) = iH1 − iH̃zz ∈ 〈P〉.

We assume in the following that D(iH1)v = D(iH2)v =
D(iH̃zz)v = D(iH̃ )v = 0 holds in order to prove
D(iX1)v = 0.

The joint eigenbasis of the operators D(iZk/2) and
D(iZ1Zk/2) for k ∈ {2, . . . ,n} is given by the computational
basis, and its basis vectors are w(b) = |b1〉 ⊗ · · · ⊗ |b4n〉 with
bk ∈ {0,1}, |0〉 := (0,1)t , and |1〉 := (1,0)t . This implies that
the eigenvalue equations are D(iZk/2)w(b) = iμk(b)w(b)
and D(iZ1Zk/2)w(b) = iλk(b)w(b), and the corresponding
eigenvalues are given by

μk(b) = 1
2 (−sk−sn+k+s2n+k+s3n+k),

λk(b) = 1
2 (−s1sk−sn+1sn+k+s2n+1s2n+k+s3n+1s3n+k),

where μk(b) ∈ {−2, − 1,0,1,2}, λk(b) ∈ {−2, − 1,0,1,2},
and sj := 2bj−1. By checking all of the 28 cases for
sen+1,sen+k ∈ {−1,+1} and e ∈ {0,1,2,3}, one concludes that
μk(b) mod 2 = λk(b) mod 2 holds if D(iZ1)w(b) = 0. Re-
call that D(iZ1)v = D(iH̃zz)v = 0 and expand v as v =∑

b αbw(b). It follows that the equations D(iZ1)w(b) = 0
and D(iH̃zz)w(b) = 0 hold for αb �= 0 as each w(b) is an
eigenvector of D(iZ1) and D(iH̃zz) = ∑n

k=2 2Jk D(iZ1Zk/2).
Assuming D(iZ1)w(b) = 0, this also means that the re-
lation μz(b) mod 2 = λzz(b) mod 2 holds for the eigen-
value iμz(b) of

∑n
k=2 D(iZk/2) and the eigenvalue iλzz(b)

of
∑n

k=2 D(iZ1Zk/2). Moreover, we obtain for αb �= 0
that 0 = D(iH̃zz)w(b) = [i

∑n
k=2 2Jkλk(b)]w(b) and, conse-

quently,
∑n

k=2 2Jkλk(b) = 0.
The proof depends now on the particular cases, and

we prove in each case that μz(b) mod 2 = 0: For case
(a) with Jk = J , it follows that λzz(b) = ∑n

k=2 λk(b) =
0. This implies that μz(b) mod 2 = 0. In case (b), we
obtain Jk = Jok and λzz(b) mod 2 = ∑n

k=2 λk(b) mod 2 =∑n
k=2 okλk(b) mod 2 = 0, which also shows that μz(b) mod

2 = 0. For case (c),
∑n

k=2 2Jkλk(b) = 0 means that λk(b) = 0
for all k since the couplings Jk are Q-linear independent and
λk(b) ∈ Z. In particular, it follows that λzz(b) = ∑n

k=2 λk(b) =
0, which proves again that μz(b) mod 2 = 0.
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Define the operator

W := exp

[
π

n∑
k=2

D(iZk/2)

]
.

Using the properties of
∑n

k=2 D(iZk/2), one gets that
the equation Ww(b) = eiμz(b)πw(b) = w(b) holds for each
w(b) with αb �= 0, where the last equality follows from
μz(b) mod 2 = 0. Thus, we obtain Wv = W

∑
b αbw(b) =∑

b αbWw(b) = ∑
b αbw(b) = v. We also have that

WiD(X1Xk+Y1Yk)W † = iD[G(X1Xk+Y1Yk)G†], using the
notation

G := exp

(
π

n∑
k=2

iZk/2

)
=

n∏
k=2

exp(π iZk/2) =
n∏

k=2

iZk.

It follows that WiD(X1Xk+Y1Yk)W † = iD[
∏n

k′,k′′=2
(iZk′)(X1Xk+Y1Yk)(−iZk′′ )] = −iD(X1Xk+Y1Yk) since
ZkXkZk = −Xk and ZkYkZk = −Yk . Naturally, WD(iX1)
W † = D(iX1) is also satisfied.

One can now verify that

0 = WD(iH̃ )v = WD(iH̃ )W †Wv

=
[
D(iX1) −

n∑
k=2

iJkD(X1Xk+Y1Yk)

]
v

= D(iH̃ )v − 2
n∑

k=2

iJkD(X1Xk+Y1Yk)v.

This implies
∑n

k=2 iJkD(X1Xk+Y1Yk)v = 0, and one
concludes that D(iH̃ )v − ∑n

k=2 iJkD(X1Xk+Y1Yk)v =
D(iX1)v = 0. �

The techniques in the proof of Proposition 1 can be
generalized in order to establish the following result:

Proposition 2. The interaction iX1 can be simulated if Jk =
J for 2 � k � n0 and Jk = 2J for n0 < k � n.

Proof. We establish again all the properties of the first two
paragraphs in the proof of Proposition 1. Then, it follows
that

∑n0
k=2 Jλk(b) + ∑n

k=n0+1 2Jλk(b) = 0. Let iμ(0)
z (b) be the

eigenvalue of
∑n0

k=2 D(iZk/2). One obtains that μ(0)
z (b) mod

2 = 0 for each w(b) with αb �= 0. Define the operator

W (0) := exp

[
π

n0∑
k=2

D(iZk/2)

]
.

We apply the properties of
∑n0

k=2 D(iZk/2) and conclude

that the equation W (0)w(b) = eiμ
(0)
z (b)πw(b) = w(b) holds for

each element w(b) satisfying αb �= 0, where the last equality
follows from μ(0)

z (b) mod 2 = 0. Thus, we obtain W (0)v =
W (0) ∑

b αbw(b) = ∑
b αbW

(0)w(b) = ∑
b αbw(b) = v.

We also have that W (0)iD(X1Xk+Y1Yk)(W (0))† =
iD[G(0)(X1Xk+Y1Yk)(G(0))†] using the notation

G(0) := exp

(
π

n0∑
k=2

iZk/2

)
=

n0∏
k=2

exp(π iZk/2) =
n0∏

k=2

iZk.

It follows that

W (0)iD(X1Xk+Y1Yk)(W (0))†

= iD

[
n0∏

k′,k′′=2

(iZk′)(X1Xk+Y1Yk)(−iZk′′ )

]
= −iD(X1Xk+Y1Yk),

if 2 � k � n0 since ZkXkZk = −Xk and ZkYkZk = −Yk , and
W (0)iD(X1Xk+Y1Yk)(W (0))† = iD(X1Xk+Y1Yk) if k > n0.
Naturally, W (0)D(iX1)(W (0))† = D(iX1) is also satisfied.

One can now verify that

0 = W (0)D(iH̃ )v = W (0)D(iH̃ )(W (0))†W (0)v

=
[
D(iX1) −

n0∑
k=2

iJD(X1Xk+Y1Yk)

+
n∑

k=n0+1

2iJD(X1Xk+Y1Yk)

]
v

= D(iH̃ )v − 2
n0∑

k=2

iJD(X1Xk+Y1Yk)v,

which implies
∑n0

k=2 iJkD(X1Xk+Y1Yk)v = 0. Thus, one
can conclude that D(iH̃ )v − ∑n0

k=2 iD(X1Xk+Y1Yk)v =
D(iH̃ (1))v = 0, where we introduced the notation iH̃ (1) :=
iX1 + i

∑n
k=n0+1 2J (X1Xk+Y1Yk).

Furthermore, the equation D(iH̃zz)v = D(iH̃ (1))v =
D(iH2)v = 0 implies the important commutator identity
[[[D(iH̃ (1)),D(iH2)],D(iH̃ (1))],D(iH̃zz)]v = 0. In addition,
we have

[[[D(iH̃ (1)),D(iH2)],D(iH̃ (1))],D(iH̃zz)]

= D([[[H̃ (1),H2],H̃ (1)],H̃zz]) = 64J 2D

⎛⎝i

n∑
k=n0+1

Yk

⎞⎠.

Thus, D(i
∑n

k=n0+1 Yk)v = 0. Now, we also get that

0 =
⎡⎣⎡⎣D(iH̃zz),D

⎛⎝i

n∑
k=n0+1

Yk

⎞⎠⎤⎦,D

⎛⎝i

n∑
k=n0+1

Yk

⎞⎠⎤⎦v

= −4D
(
iH̃ (1)

zz

)
v,

where iH̃ (1)
zz := i

∑n
k=n0+1 2JZ1Zk . Considering the expan-

sion v = ∑
b αbw(b), we obtain from D(iH̃ (1)

zz )v = 0 that
the condition λ(1)

zz (b) = 0 holds for the eigenvalue iλ(1)
zz (b)

of
∑n

k=n0+1 D(iZ1Zk/2) with respect to a vector w(b) with
αb �= 0. As we have for any w(b) with D(iZ1)w(b) = 0
that the eigenvalue iμ(1)

z (b) of
∑n

k=n0+1 D(iZk/2) satisfies
λ(1)

zz (b) mod 2 = μ(1)
z (b) mod 2, thus we can conclude that

μ(1)
z (b) mod 2 = 0 for b with αb �= 0. We can now define the

operator

W (1) := exp

⎡⎣π

n∑
k=n0+1

D(iZk/2)

⎤⎦.
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Using the properties of
∑n

k=n0+1 D(iZk/2), one gets

that the equation W (1)w(b) = eiμ
(1)
z (b)πw(b) = w(b) holds

for each w(b) with αb �= 0, where the last equality
follows from μ(1)

z (b) mod 2 = 0. Thus, we obtain W (1)v =
W (1) ∑

b αbw(b) = ∑
b αbW

(1)w(b) = ∑
b αbw(b) = v.

We also have that W (1)iD(X1Xk+Y1Yk)(W (1))† =
iD[G(1)(X1Xk+Y1Yk)(G(1))†] using the notation

G(1) := exp

⎛⎝π

n∑
k=n0+1

iZk/2

⎞⎠ =
n∏

k=n0+1

exp(π iZk/2)

=
n∏

k=n0+1

iZk.

With these preparations, one can now verify that

0 = W (1)D(iH̃ (1))v = W (1)D(iH̃ )(W (1))†W (1)v

=
⎡⎣D(iX1) − 2

n∑
k=n0+1

iJD(X1Xk+Y1Yk)

⎤⎦v

= D(iH̃ )v − 4
n∑

k=n0+1

iJD(X1Xk+Y1Yk)v,

which hence implies
∑n

k=n0+1 iJkD(X1Xk+Y1Yk)v = 0. Con-
sequently, one can finally conclude that D(iH̃ (1))v −∑n

k=n0+1 2iJD(X1Xk+Y1Yk)v = D(iX1)v = 0. �
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[53] F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett. 92,

167902 (2004).
[54] F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98, 140505

(2007).
[55] A. Osterloh and J. Siewert, Phys. Rev. A 72, 012337 (2005).
[56] A. Osterloh and J. Siewert, Phys. Rev. A 86, 042302 (2012).
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[78] M. Oszmaniec and M. Kuś, Phys. Rev. A 88, 052328 (2013).

042309-8

http://dx.doi.org/10.1103/PhysRevA.79.053403
http://dx.doi.org/10.1103/PhysRevA.79.053403
http://dx.doi.org/10.1103/PhysRevA.79.053403
http://dx.doi.org/10.1103/PhysRevA.79.053403
http://arxiv.org/abs/arXiv:1508.00442
http://dx.doi.org/10.1063/1.4928410
http://dx.doi.org/10.1063/1.4928410
http://dx.doi.org/10.1063/1.4928410
http://dx.doi.org/10.1063/1.4928410
http://dx.doi.org/10.1080/03081088108817379
http://dx.doi.org/10.1080/03081088108817379
http://dx.doi.org/10.1080/03081088108817379
http://dx.doi.org/10.1080/03081088108817379
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.92.167902
http://dx.doi.org/10.1103/PhysRevLett.92.167902
http://dx.doi.org/10.1103/PhysRevLett.92.167902
http://dx.doi.org/10.1103/PhysRevLett.92.167902
http://dx.doi.org/10.1103/PhysRevLett.98.140505
http://dx.doi.org/10.1103/PhysRevLett.98.140505
http://dx.doi.org/10.1103/PhysRevLett.98.140505
http://dx.doi.org/10.1103/PhysRevLett.98.140505
http://dx.doi.org/10.1103/PhysRevA.72.012337
http://dx.doi.org/10.1103/PhysRevA.72.012337
http://dx.doi.org/10.1103/PhysRevA.72.012337
http://dx.doi.org/10.1103/PhysRevA.72.012337
http://dx.doi.org/10.1103/PhysRevA.86.042302
http://dx.doi.org/10.1103/PhysRevA.86.042302
http://dx.doi.org/10.1103/PhysRevA.86.042302
http://dx.doi.org/10.1103/PhysRevA.86.042302
http://dx.doi.org/10.1103/PhysRevA.58.1833
http://dx.doi.org/10.1103/PhysRevA.58.1833
http://dx.doi.org/10.1103/PhysRevA.58.1833
http://dx.doi.org/10.1103/PhysRevA.58.1833
http://dx.doi.org/10.1051/jphys:0197600370100108700
http://dx.doi.org/10.1051/jphys:0197600370100108700
http://dx.doi.org/10.1051/jphys:0197600370100108700
http://dx.doi.org/10.1051/jphys:0197600370100108700
http://dx.doi.org/10.1103/PhysRevB.76.014304
http://dx.doi.org/10.1103/PhysRevB.76.014304
http://dx.doi.org/10.1103/PhysRevB.76.014304
http://dx.doi.org/10.1103/PhysRevB.76.014304
http://dx.doi.org/10.1088/1367-2630/16/6/065023
http://dx.doi.org/10.1088/1367-2630/16/6/065023
http://dx.doi.org/10.1088/1367-2630/16/6/065023
http://dx.doi.org/10.1088/1367-2630/16/6/065023
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1063/1.2716992
http://dx.doi.org/10.1063/1.2716992
http://dx.doi.org/10.1063/1.2716992
http://dx.doi.org/10.1063/1.2716992
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.88.207902
http://dx.doi.org/10.1103/PhysRevLett.88.207902
http://dx.doi.org/10.1103/PhysRevLett.88.207902
http://dx.doi.org/10.1103/PhysRevLett.88.207902
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1103/PhysRevA.80.022319
http://dx.doi.org/10.1103/PhysRevA.80.022319
http://dx.doi.org/10.1103/PhysRevA.80.022319
http://dx.doi.org/10.1103/PhysRevA.80.022319
http://dx.doi.org/10.1103/PhysRevA.81.062318
http://dx.doi.org/10.1103/PhysRevA.81.062318
http://dx.doi.org/10.1103/PhysRevA.81.062318
http://dx.doi.org/10.1103/PhysRevA.81.062318
http://dx.doi.org/10.1088/1751-8113/45/24/244034
http://dx.doi.org/10.1088/1751-8113/45/24/244034
http://dx.doi.org/10.1088/1751-8113/45/24/244034
http://dx.doi.org/10.1088/1751-8113/45/24/244034
http://dx.doi.org/10.1103/PhysRevA.88.052328
http://dx.doi.org/10.1103/PhysRevA.88.052328
http://dx.doi.org/10.1103/PhysRevA.88.052328
http://dx.doi.org/10.1103/PhysRevA.88.052328



