
Aberystwyth University

Recent spatial and temporal variations in debris cover on Patagonian glaciers
Glasser, Neil; Holt, Thomas; Evans, Zachary D.; Davies, Bethan J.; Pelto, Mauri; Harrison, Stephan

Published in:
Geomorphology

DOI:
10.1016/j.geomorph.2016.07.036

Publication date:
2016

Citation for published version (APA):
Glasser, N., Holt, T., Evans, Z. D., Davies, B. J., Pelto, M., & Harrison, S. (2016). Recent spatial and temporal
variations in debris cover on Patagonian glaciers. Geomorphology, 273, 202-2016.
https://doi.org/10.1016/j.geomorph.2016.07.036

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

https://doi.org/10.1016/j.geomorph.2016.07.036
https://doi.org/10.1016/j.geomorph.2016.07.036


�������� ��	
���
��

Recent spatial and temporal variations in debris cover on Patagonian glaciers

Neil F. Glasser, Thomas O. Holt, Zachary D. Evans, Bethan J. Davies,
Mauri Pelto, Stephan Harrison

PII: S0169-555X(16)30316-6
DOI: doi: 10.1016/j.geomorph.2016.07.036
Reference: GEOMOR 5709

To appear in: Geomorphology

Received date: 13 May 2016
Revised date: 19 July 2016
Accepted date: 27 July 2016

Please cite this article as: Glasser, Neil F., Holt, Thomas O., Evans, Zachary
D., Davies, Bethan J., Pelto, Mauri, Harrison, Stephan, Recent spatial and tem-
poral variations in debris cover on Patagonian glaciers, Geomorphology (2016), doi:
10.1016/j.geomorph.2016.07.036

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.geomorph.2016.07.036
http://dx.doi.org/10.1016/j.geomorph.2016.07.036


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Recent spatial and temporal variations in debris cover on Patagonian glaciers 

Neil F. Glassera*, Thomas O. Holta, Zachary D. Evansa, Bethan J. Daviesb, Mauri Peltoc, 

Stephan Harrisond 

aDepartment of Geography and Earth Sciences, Aberystwyth University, Wales, SY23 3DB, 

UK 

bDepartment of Geography, Royal Holloway, University of London, Egham, Surrey, TW20 

0EX, UK 

cEnvironmental Science, Nichols College, Dudley, MA, USA 

dCollege of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, 

TR10 9EZ, UK 

*Corresponding author. Tel.: +44 1970 622785; E-mail: nfg@aber.ac.uk 

 

Abstract  

Supraglacial debris cover is an important component of glacier mass balance, especially in 

areas characterised by widespread glacier recession. Mapping of the spatial and temporal 

changes in debris cover on the surface of the receding outlet glaciers of the temperate 

North Patagonian Icefield (NPI) in southern South America between 1987 and 2015 shows 

that the total amount of debris cover has increased over time, from 168 km2 in 1987 to 307 

km2 in 2015. The number of debris-covered glaciers increased from 24 in 1987, to 31 in 2001 

to 32 out of 43 studied glaciers in 2015. The proportion of debris-covered area has also 

increased, from 4.1% in 1987 to 7.9% in 2015, with the largest proportional increases 

occurring east of the ice divide (where 15.2% of the glacier ice is now debris covered).  Over 

this time, the total area of the NPI decreased from 4133 to 3887 km2. The area occupied by 

proglacial and ice-proximal lakes also increased from 112 to 198 km2. Between 1987 and 

2015, the terminal environment of many of the outlet glaciers of the NPI changed from 

land-terminating to lake-calving, and these glaciers are now receding into terminal lakes. 

The change in the area of debris-covered ice is influenced by the loss of ice at debris-

covered termini and by an increase in debris cover at higher elevations. The glaciers of the 

NPI remain highly dynamic as they recede and are therefore behaving very differently to 

high-elevation glaciers, such as those of the Himalaya where debris cover leads to glacier 

stagnation at the termini.   

 

Keywords: glacier; debris; Patagonia 
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1. Introduction 

 

Global climate change is driving the behavior of mountain glaciers worldwide (Kaab et al., 

2012; Marzeion et al., 2014).  While most of these glaciers are undergoing terminus 

recession or rapid surface lowering, many glaciers in high mountain regions of the world are 

also accumulating surface debris as the surrounding valley sides and lateral moraines 

discharge rock and sediment.  While our understanding of the ways in which debris-covered 

glaciers evolve is incomplete, surface debris clearly affects the rate and pattern of glacier 

melting.  As a result, a better understanding of these processes is important if we are to 

assess the response of mountain glaciers to present and future climate change.  Here we 

use 28 years of observational data to map the spatial and temporal changes in debris cover 

on the outlet glaciers of the North Patagonian Icefield (NPI), one of the largest mid-latitude 

ice masses, and relate these to changes in glacier recession and terminal environment.  

 

1.1. Debris-covered glaciers 

 

Debris-covered glaciers have large areas of their ablation area (and occasionally part of their 

accumulation area) covered by a layer of rock debris, including dust, ash, and sediment of 

various sizes (Cogley et al., 2011). This supraglacial debris originates from a variety of 

different sources, including rock avalanches and rockfalls from surrounding valley sides 

(Benn et al., 2012; Deline and Kirkbride, 2009; Hewitt, 2009; Shugar et al., 2012). 

Supraglacial debris can also accumulate where englacial and subglacial debris is elevated to 

the ice surface in the ablation area (Goodsell et al., 2005, Kirkbride and Deline, 2013; 

Jennings et al., 2014). Supraglacial debris becomes progressively concentrated at glacier 

termini and margins in areas where the ice-surface velocity, and therefore debris transport 

rates, are low (Hambrey et al., 2008). 

 

Supraglacial debris cover is an important component of glacier mass balance because it acts 

as a barrier between the ice surface and the atmosphere. Ablation rates beneath a debris 

cover are lower than on clean-ice glaciers because the debris layer protects the underlying 

ice from solar radiation and thermally insulates the underlying ice (Nakawo and Takahashi 

1982; Pelto, 2000). Supraglacial debris cover therefore strongly influences surface energy 

balance and ablation (Kirkbride, 2000; Jansson and Fredin, 2002). The nature of this 

relationship depends critically on the debris thickness (Østrem, 1959). The presence of 

supraglacial debris initially causes increased ablation because rock debris has a lower albedo 

than ice (Nakawo and Rana, 1999). The debris thickness at which maximum ablation occurs 

is referred to as the effective thickness and is typically between 0.01 and 0.05 m (Mattson, 

2000). Above this effective thickness, ablation decreases with increasing debris thickness 

(Mihalcea et al., 2008; Brock et al., 2010). The presence of a supraglacial debris layer and 

variations in its thickness therefore affects how a glacier responds to climatic change. 
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Glaciers with extensively debris-covered ablation areas tend to lose mass by surface 

lowering rather than terminus recession (Bolch et al., 2008). 

 

Debris-covered and clean-ice glaciers react differently to externally imposed changes in 

climate (Scherler et al., 2011; Pellicciotti et al., 2015). Using a numerical model, Rowan et al. 

(2015) demonstrated that supraglacial debris slows down the response of a glacier to 

atmospheric warming and causes surface lowering of the glacier in situ rather than 

recession at the terminus, concealing the magnitude of mass loss when compared with 

estimates based on glacierized area alone.  Much of this research on debris-covered glaciers 

has concentrated on glaciers in the Hindu-Kush Himalaya (e.g., Collier et al., 2015), central 

Andes (e.g., Janke et al., 2015), and New Zealand (e.g., Benn et al., 2004). Comparatively 

little has been written about the large outlet glaciers of the temperate icefields in 

Patagonia.  This omission is surprising; the outlet glaciers of the Patagonian Icefields are 

amongst the most dynamic on Earth, with high accumulation rates, high ablation rates, and 

rapid rates of terminus recession.  They also display a wide range of terminating 

environments including marine and lacustrine calving glaciers, and they form the Earth’s 

largest mid-latitude temperate ice masses.  As a result, their future evolution and the 

interplay between Southern Hemisphere regional climate and glacier dynamics are of 

considerable interest.  Consequently, in this paper we consider the spatial and temporal 

changes in debris cover over the last ~28 years between 1987 and 2015 on the dynamically 

receding outlet glaciers of the temperate North Patagonian Icefield (NPI) and the 

relationship between glacier recession, supraglacial debris, and changes in terminal 

environment.   

 

1.2 Study area: The North Patagonian Icefield (NPI)  

Understanding the past, present, and future dynamics of the glaciers of the Northern 

Patagonia Icefield (NPI; Fig. 1; 47.0°S, 73.5°W) and the Southern Patagonia Icefield (SPI; 

50.0°S, 73.5°W) is important because they are the largest temperate ice masses in the 

Southern Hemisphere (Aniya et al., 1996) and their behaviour reflects the operation of 

important oceanic and atmospheric circulation. In 2001, the NPI had an overall area of 

3953 km2 (Rivera et al., 2007). It is  drained by 28 main outlet glaciers (Aniya, 1988).  The 

two largest outlet glaciers are Glaciars San Quintin and San Rafael which, with areas of ~760 

km2, are almost equal in size (Aniya, 1988). Next in size are Glaciars Steffen and Colonia, 

both of which have similar areas of ~450 km2. Collectively, these four glaciers occupy ~2416 

km2, equivalent to 57% of the total area of the NPI (Aniya, 1988; Davies and Glasser, 2012).  

The outlet glaciers of the NPI are either land-terminating or terminate in proglacial lakes 

(e.g., Glaciars San Quintín, Nef, Leones, Reicher, and Gualas). The exception is Glaciar San 

Rafael, the closest tidewater glacier to the Equator, which calves into a tidal laguna of the 

Pacific Ocean. 
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The outlet glaciers of the NPI and SPI are receding rapidly (Davies and Glasser, 2012; White 

and Copland, 2015) and thinning (Chen et al., 2007; Willis et al., 2012). Davies and Glasser 

(2012) calculated that the glacierized area for the NPI between the Little Ice Age (LIA; A.D. 

~1870) and 2011 reduced by 660 km2, equivalent to a 14.2% overall reduction over that 

time period. Mouginot and Rignot (2015) compiled a near-complete map of ice velocity of 

the NPI from multiple synthetic aperture radar and optical data collected between 1984 and 

2014. These data show that the largest outlet glaciers remain dynamic during recession. The 

fastest outlet glacier of the NPI, Glaciar San Rafael, flows at 7.6 km/y and the second largest 

glacier, Glaciar San Quintìn, flows about 1.1 km/y in its narrowest section. 

 

Geologically, the NPI sits on top of homogeneous units, corresponding to calc-alkaline 

plutons (granite, granodiorites, and tonalites of Lower Cretaceous age) of the Patagonian 

Batolith (Sernageomin, 2003; Ghiglione et al., 2016a) related to Jurassic-Cenozoic 

subduction of the Pacific plates underneath South America (Ghiglione et al., 2016b). Toward 

the west, Triassic basement rocks composed of low grade meta-turbidites, schists, and 

phyllites  outcrop (Sernageomin, 2003). Toward the eastern flank, basement rock belonging 

to the Eastern Andes Metamorphic complex and the Río Lácteo Formation outcrop. Even 

farther east, and toward the fold- and thrust-belt and foothills, are small Miocene plutons, 

the El Quemado Jurassic volcanic complex, and Early Cretaceous to Miocene sediments of 

the northern Austral basin (Ghiglione et al., 2016a).  

 

Tectonically, the NPI is located at the latitude of the Chile Triple Junction, where subduction 

of the active Chile ridge produces active strike-slip deformation concentrated along the 

Liquiñi-Ofqui fault zone, a dextral strike-slip fault of approximately N-S orientation 

(Georgieva et al., 2016; Ghiglione et al., 2016a, 2016b). Recent geomorphic, 

thermochronological, and structural data document neotectonic activity along a number of 

faults along both flanks of the NPI (Georgieva et al., 2016). 

 

Climatologically, this area of Patagonia is characterised by extreme precipitation and climate 

gradients with a particularly strong west to east decline in precipitation across the NPI 

(Lenaerts et al., 2014). Glacier equilibrium line altitudes (ELAs) on the NPI range from 870 to 

1529 masl, and ELAs are lower on the west side of the icefield (Barcaza et al., 2009).  Glacier 

recession in this area of Patagonia has been attributed to regional changes in temperature 

and precipitation, with regional atmospheric warming most commonly cited as the causal 

factor (Rosenblüth et al., 1995; Ibarzabal et al., 1996; Carrasco et al., 2002; Rasmussen et al., 

2007; Aravena and Luckman, 2009).  

 

The Patagonian Icefields make a significant contribution to global sea-level rise (Rignot et 

al., 2003; Rivera et al., 2007; Glasser et al., 2011).  Aniya (1999) calculated the contribution 

of the NPI to sea-level rise between 1945 and 1996 as 0.0105 ± 0.0043 mm/y based upon 

direct measurements of ice elevation and areal changes experienced mainly in the ablation 
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area. Rignot et al. (2003) found an ice-loss contribution to sea-level rise for the NPI of 

0.008 ± 0.001 mm/y by comparison of digital elevation models (DEMs) for the period 1975–

2000. Rivera et al. (2007) estimated a sea-level rise contribution from the NPI of 

0.013 ± 0.006 mm/y by DEM comparison and satellite imagery analysis for the period 1979 

to 2001. Willis et al. (2012) added speed and surface melt conditions to DEM analysis to find 

a sea-level rise of 0.009 ± 0.0002 mm/y between 2000 and 2011 for the NPI. Over longer 

timescales, Glasser et al. (2011) calculated ice losses for the NPI and SPI since the Little Ice 

Age using field determination of trimlines and terminal moraines. They compared former 

and contemporary glacier extents to calculate a lower sea-level contribution of 

0.0018 ± 0.0004 mm/y between A.D. 1870 and 2004, but then a marked acceleration of ice-

loss rates after that date.  

 

2. Methods and data sources  

Mapping of glaciers and debris cover was based on visual interpretation of repeat cloud-free 

satellite images covering the NPI from 1987 (Landsat TM, 80-m resolution), 2001 (Landsat 

ETM+, 15-30 m resolution) and 2015 (Landsat OLI, 15-30 m resolution; sSee Table 1 and Fig. 

2). Glacier outlines from 1987 and 2001 are derived from the data set generated by Davies 

and Glasser (2012), available from the GLIMS database (Pfeffer et al., 2014). Glacier outlines 

for 2015 used the 2011 outlines generated by Davies and Glasser (2012), manually edited to 

reflect glacier extent in 2015. Ice divides followed Davies and Glasser (2012) and remained 

unchanged throughout the study period.  

 

Supraglacial debris has the same spectral characteristics as lateral and terminal moraines 

and glaciofluvial deposits and bedrock outside the glacier margin, and therefore cannot be 

detected using multispectral classification alone (Paul et al., 2004).  We therefore applied 

manual delineation of debris-covered glaciers using on-screen digitizing, evaluated by three 

individual users to limit uncertainty. Ice-contact lakes at the margins of the glaciers of the 

NPI were also digitized. All information was stored in ArcGIS.   

 

To assess temporal change, we calculated the area of debris cover for individual glaciers at 

three time intervals: in 1987, 2001, and 2015 (Table 1). This equates to a time difference of 

5064 days (13.9 years) between mapping in 2001 and 2015 and 5144 days (14.1 years) 

between 1987 and 2001 (Table 2). The entire study period covers the difference between 

1987 and 2015 (28 years). On Glaciar San Quintin only, partial cloud cover means that the 

time elapsed between mapping periods in 2001 and 2014 is 13.7 years (Table 3). We present 

absolute (km2), relative (%), and annual (% a-1) rates of change in this paper, using these 

time periods to calculate annual rates of change. Comparing relative (% a-1) rates of change 

means that glaciers of different sizes can be easily compared. 

 

To assess spatial change, we also calculated debris cover by elevation band. One-hundred-

meter elevation bands were derived from the Advanced Spaceborne Thermal Emission and 
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Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) 

(http://asterweb.jpl.nasa.gov/gdem.asp). We used these elevation bands to intersect our 

digitized debris-covered areas for 1987, 2001, and 2015, with the total area per elevation 

band summed. We recognize that this does not account for any extensive thinning over this 

time period, but it does provide us with a reference point from which we can assess change 

in debris cover. Nunataks were excluded from calculations of glacier area (cf. Rignot and 

Mouginot, 2015, who included nunataks in their calculations of glacier area). Glacier 

characteristics such as minimum, maximum, and median elevation and mean slope were 

derived from the ASTER GDEM V2 and were automatically calculated in the GIS.  We use 

mean slope because the minimum/maximum slope is very susceptible to steep cells near 

glacier boundaries. Velocities for individual outlet glaciers were derived from Mouginot and 

Rignot (2015). 

 

The Transient Snow Line (TSL) near the end of the ablation season can be identified using 

aerial photographs or satellite imagery (Hall et al., 1989; Mernild et al., 2013). In this study, 

the latest observable Landsat image from the melt season in March and April were used. 

The date of the latest image therefore varies from year to year. Images were obtained using 

the software package U.S. Geological Survey Globalization Viewer for the period 2013-2016 

(using path/row 232/92 and 232/93 for the NPI); 2014-2016 images are from Landsat 8 OLI 

and 2013 from Landsat 7.  All images are false colour RGB composites, bands 3, 4, and 5. The 

satellite images were georeferenced in ArcMap 9.3 using five topographically unique 

reference points.  The TSL was manually digitized for each scene. The image spatial 

resolution of 30 m and the Ground Control point registration error of +48 m combined with 

mean surface slopes of 0.05–0.15 m m-1, yields an estimated error of ±10 m in TSL 

elevations.  

 

 

3. Results  

 

3.1 Glacier characteristics 

We calculated glacier area, and supraglacial debris cover and determined the characteristics 

of proglacial lakes for 43 glaciers of the NPI in 1987, 2001, and 2015. In 2015, the extent of 

the NPI was 3980.5 km2 (Table 3). Just two glaciers account for a large part of this area: 

Glaciar San Quintin and Glaciar San Rafael cover 771.4 and 731.5 km2 each, respectively. The 

smallest glacier in the study region is just 1.4 km2 (Fig. 2). 

  

In 2015, the total area of debris cover was 306.6 km2, or 7.9% of the area. Average glacier 

slope ranged from 10.3° to 33.2°, with an average glacier slope over the entire NPI of 21.5°. 

The percentage of glaciers covered by debris in 2015 ranged from 0% to 43.8%, with the 

average being 9.5%.  
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The variation in the absolute and proportional area of glaciers that is debris-covered is high, 

with considerable spatial variations between glaciers. There is little relationship between 

debris cover and glacier mean slope, maximum velocity, and glacier area (Table 4). There is a 

positive correlation (r2 of 0.56) between absolute glacier area and debris cover (in km2), but 

smaller glaciers do not necessarily have a higher proportion (%) of debris cover (no 

correlation between glacier area and % debris cover). Larger glaciers are associated with 

larger proglacial lakes.  

 

Glaciers east of the ice divide had up to 44% debris cover, while the glacier with the highest  

debris cover west of the ice divide is Gualas (14.1%). The average proportion of debris-

covered area is 5 ± 2.2% west of the divide and 12.6 ± 5.8% east of the divide (95% 

confidence interval). A Student’s t-test further indicated that the individual percentage of 

glacier debris cover is statistically different east and west of the ice divide (t stat 2.52 > t crit 

1.69), indicating that on average glaciers have a higher proportion of debris cover east of 

the ice divide. A spatial analysis further reveals that all of the glaciers with a significant 

proportion of debris cover are on the eastern and northern outlet glaciers of the NPI. The 

large outlet glaciers on the western NPI have a low proportion of their ice surface covered 

by debris (Fig 3). 

 

3.2 Overall area changes of the NPI 

Glacier area (excluding nunataks) decreased in each time period, from 4133.1 to 3890.5 km2 

in 2015 (Table 5). Glaciers east and west of the ice divide shrank over this time period. The 
total amount of glacierized area lost is much greater on the west of the icefield (-93.2 km2 

west of the ice divide; -4.8 km2 east of the ice divide). This equates to a total change of 

242.6 km2 (5.9% of the 1987 area). Almost all glaciers receded, though there was one 

advance (Glacier ID 74; 1.2 km2 1987 to 2015). The largest areal losses were from Glaciar 

San Quintin (-52.7 km2), Glaciar Steffen (-34.4 km2), and the Acodado, HPN-3 and HPN-2 

systems (-20.6 km2). These three glaciers alone accounted for 44% of all ice surface area lost 

on the NPI. 

 

The total overall annual rate of recession has increased, from -0.17% a-1 in the period 1987 

to 2001 to -0.26% a-1 in the period 2001 to 2015. There seems little consistent difference in 

annual rates of recession (% a-1) east and west of the ice divide, though the larger western 

glaciers have lost far more absolute area. Annual rates of recession have increased east of 

the ice divide, but have not changed over the study period west of the ice divide. A 

Student’s t-test indicated that rates of recession east and west of the ice divide in the period 

1987-2015 are not statistically significant at the 95% confidence level (t-stat 0.22 < t crit 

1.7). There is no statistically significant difference in % annual rates of recession east and 

west of the ice divide. However, the overall rate of recession has changed significantly 

between 1987-2001 and 2001-2015 (t stat 3.85 > t crit 1.67), demonstrating that, across all 

glaciers of the NPI, the annual rate of recession accelerated after 2001. The fastest rates of 
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recession from 2001 to2015 was in small glaciers east of the ice divide with  no clear 

relationship between proportion of debris-covered area and annual rates of recession (Fig 

3).  

 

 

3.3 Overall lake area changes of the NPI 

 

Twenty-six glaciers of the NPI had proglacial lakes in 2015, covering 197.7 km2. Total 

cumulative lake area was calculated in each time interval for each glacier. Of the 26 glaciers 

with proglacial lakes, 10 <2 km2 cumulative lake area (Fig. 2). The largest cumulative lake 

areas are in front of Glaciar San Quintin (54.6 km2), Leones (22.8 km2), and Steffen (20.6 

km2). Loriaux and Casassa (2013) examined the expansion of lakes of the NPI from 1945 to 

2011 and concluded that lake area expanded 65%, or 66 km2, in that time period.  The 

increase in the number of lakes caused an increase in the recession of the glaciers 

terminating in them because of mass loss through calving. 

 

From 1987 to 2015, the number of glaciers with proglacial lakes increased from 23 to 26, 

and proglacial lake extent increased from 111.9 to 197.7 km2, as the lakes have increased in 

size and flooded overdeepened basins following glacier recession (Table 6). The largest 

increases are west of the ice divide, where larger glaciers with larger absolute recession (in 

km2) have receded further, resulting in the development of larger lakes. The largest lake 

area increases were identified in front of Glaciar San Quintin (+35.5 km2), Glaciar Steffen 

(+8.5 km2), and the Acodado, HPN3 and HPN2 systems (+8.3 km2). Figure 6 shows the 

example of Glaciar Fiero, where the ice-contact lake expanded between 2001 and 2015. 

 

 

3.4 Overall debris-covered ice area changes of the NPI 

 

Change in supraglacial debris cover is summarised in Table 7. The number of debris-covered 

glaciers increased from 24 in 1987, to 31 in 2001, and to 32 out of 43 studied glaciers in 

2015. The absolute area of debris-covered ice also increased from 168.5 km2 in 1987, to 

228.6 km2 in 2001, and to 306.6 km2 in 2015. This equates to a total increase in the 

proportion of debris-covered glacier surface area from 4.1% in 1987, to 5.7% in 2001, and  

to 7.9% in 2015. The largest increase in the proportion of debris-covered area was east of 

the ice divide, where 15.2% of glacier ice is now debris-covered (Table 7).  

 

Glaciar Steffen, Glaciar San Quintin, Glaciar Colonia, Glaciar Grosse, and Glaciar 

Exploradores each have more than 20 km2 of debris cover in 2015 (Fig. 7A). Of the individual 

outlet glaciers, Glaciar San Rafael (+10.7 km2), Glaciar Colonia (+9.4 km2), Glaciar 

Exploradores (+5.5 km2), and Glaciar Gualas (+4.6 km2) show the greatest increases in 

debris-covered area (Fig. 7B).  New material was added to the glacier surface by rockfall 
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events from the surrounding valley walls on Glaciar Grosse, Glaciar Pissis, and Glaciar 

Leones (Fig. 8). Existing ice-surface debris was transported and redistributed down-ice by 

glacier flow on Glaciar Colonia and Glaciar Pared Norte (Fig. 9).  Three glaciers showed a 

small reduction in their debris-covered area: Grosse (-7.1 km2), Verde (-0.6 km2), and Arco (-

0.1 km2). These losses in debris-covered area are largely because of glacier recession.  For 

example, in 1987 Grosse Glacier ended on a proglacial outwash plain, with little evidence of 

recent recession and only a few small supraglacial lakes near the margin.  By 2015 the 

glacier had receded 2.4 km with the commensurate growth of a proglacial terminus lake. 

The lower 4 km of the glacier appears relatively stagnant and is poised to be lost as 

recession continues.  On Verde Glacier, the 1-km retreat in 28 years is substantial for a 

glacier that is only 5 km long. The lowest 300 m of the glacier is undergoing a transition from 

debris-covered ice to an ice-cored moraine and  no longer represents active glacier ice. 

 

Although there is no clear statistical correlation between glacier maximum velocity and 

percentage of debris-covered area (Table 4), Fig. 3C demonstrates how the fastest flowing 

glaciers generally have very little debris cover, and that debris-covered glaciers, which are 

largely east of the ice divide, tend to be smaller and have slower flow rates. Recent rockfalls, 

mudslides, and landslides have been a significant contributor to new debris-covered areas 

(Fig. 8).   For example, a large rockfall deposit appeared on the surface of Leones Glacier ~3 

km above its terminus between February 2014 and January 2015, extending about 2 km 

across the glacier (Fig. 10).  

 

4. Discussion 

 

4.1 Relationship between debris cover and annual rates of recession 

Debris-covered glaciers tend to recede more slowly than debris-free glaciers because the 

supraglacial debris slows down the response of a glacier to atmospheric warming and 

causes surface lowering of the glacier in situ rather than recession at the terminus (Rowan 

et al., 2015).  A logical hypothesis is a negative relationship between proportion (%) of 

debris-covered area and annual rates of recession (% a-1). We note that the largest 

acceleration in annual rates of recession is east of the ice divide. We also note that the 

largest increase in glacier debris-covered area is also east of the ice divide; the proportion of 

debris-covered area is higher east of the ice divide (both average percentage and total 

percentage debris-covered area). Glaciers with a larger debris-covered area are more likely 

to have experienced a greater amount of glacier recession (in km2; (r2 of 0.57; Table 8; Fig. 

2). This is probably because larger glaciers are more likely to have more debris cover (glacier 

area and debris-covered area in km2 are correlated; Table 4). However, the proportion of 

debris-covered area (%) is not correlated with rates of recession from 1987 to 2015 (r2 of 

0.02). 
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Larger glaciers, which tend to have a greater debris-covered surface area (km2), are 

therefore losing more area in general. However, we find no clear relationship between 

proportion of debris-covered area and percentage change in glacier area per annum. Rather, 

the greatest control on the total amount of surface area lost (in km2) is glacier size, with 

larger glaciers losing the most ice-covered area. The percentage change in glacier area 

seems to be controlled by other factors and variables, with the fastest rates of recession in 

small glaciers east of the ice divide (Fig. 3B).  

 

4.2 Changes in the Transient Snow Line (TSL) and Equilibrium Line Altitude (ELA) 

An increase in debris-covered area is related to an increase in exposed  glacier ice by a rising 

Transient Snow Line (TSL). The TSL is the location of the transition from snow cover to bare 

glacier ice at a particular time during the ablation season (Østrem, 1975), whereas the 

Equilibrium Line Altitude (ELA) is the altitude of the snow line at the end of the ablation 

season. To test this hypothesis, the TSL was identified for the 11 glaciers of the NPI near the 

end of the ablation season using satellite imagery (Table 9). In recent years the ELA has been 

rising, and the highest observed TSL in the period 2013-2016 averaged 1215 m. Comparison 

of the highest observed TSL in a year with data for the 1979-2003 ELA presented by Barcaza 

et al. (2009) indicated a rise of 103 m. This is a minimum value for the ELA rise. The rise in 

snowline therefore also partly explains the change in debris-covered area simply because, as 

the TSL rises, more bare ice and debris are exposed.   

 

4.3 Relationship between hypsometry and debris cover 

To investigate further the spatial patterns of debris cover and change, we looked at the 

distribution of debris cover with elevation in 1987, 2001, and 2015 (Fig. 11A) and how its 

overall distribution has changed over time between 1987 and 2015 (Fig. 11B). In 1987, there 

was >20 km2 of debris-covered ice in the 0-100 m elevation band, and this has reduced 

rapidly up to 2015 (<3 km2;Fig. 11A).  Since 1987, the area of debris-covered ice has greatly 

expanded at elevations above the 500-m elevation band in concert with the rise in the TSL 

(Fig. 11B). Ice area loss has also been greatest at lowest elevations (<100 masl) where 

glaciers are calving into the sea (e.g., Glaciar San Rafael) and into proglacial lakes (e.g., 

Glaciar San Quintin, Glaciar Steffen, and the Acodado, HPN-3 and HPN-2 systems).  As more 

ice is lost at lower elevations (<100 masl), we see a commensurate increase in lake area and 

a loss of debris-covered ice area (Fig. 12; Table 10). 

 

 

4.4 Glacier lake growth 

Our new mapping shows ice-marginal lake areas around the periphery of the NPI of 112 km2 

in 1987, 150 km2 in 2001, and 198 km2 in 2015.  Loriaux and Casassa (2013) also compiled a 

glacial lake inventory for the periphery of the NPI and measured a total glacial lake area of 

102 km2 in 1945, rising to 168 km2 in 2011.  Our lake area calculations therefore confirm the 

findings of Loriaux and Casassa (2013) that ice-marginal and moraine-dammed lakes are 
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increasing in area as the glaciers of the NPI recede. An increasing volume of water is 

therefore being stored in these lakes, potentially mitigating some of the effects of increased 

ablation on the NPI to its global sea-level contribution.  

 

 

4.5 Glacier velocity and debris cover 

The flow velocity of the largest outlet glacier of the NPI, Glaciar San Rafael, has been 

measured at 7.6 km/y or 21 m/d (Willis et al., 2012; Mouginot and Rignot, 2015). The 

second largest glacier, San Quintìn, is comparable in size to Glaciar San Rafael but 

terminates in a proglacial lake and reaches its maximum velocity  about 29 km from the ice 

front, at about 1.1 km/y, in the narrowest section of the terminal valley and  close to the 

ELA (Rivera et al., 2007). In 1993 the glacier terminus was advancing into vegetated ground 

(Winchester and Harrison, 1996), but since then its terminus has been undergoing steady 

recession with decay of its piedmont lobe (Davies and Glasser, 2012). Mouginot and Rignot 

(2015) observed high flow rates, >100 m/y, over more than 90% of the lengths of Glaciars 

San Rafael and San Quintin, indicating a rapid transfer of mass from the source of these 

glaciers to their termini. These two glaciers are therefore more or less free of surface debris.  

The third largest outlet glacier of the NPI, Glaciar Steffen, shares a common catchment with 

HPN-2 and HPN-3, and debris cover here has increased since 2001.  

 

Large rockfalls, mudflows, and debris flows from high mountain slopes constitute a strong 

paraglacial depositional response to glacier recession and thinning (Shroder et al., 2000).  In 

combination with the transfer of sediment from subglacial locations along shear planes, 

paraglacial sedimentation is assumed to be the main contributor to supraglacial debris cover 

in mid-latitude high mountain chains such as New Zealand (Reznichenko et al., 2011) and 

Morocco (Hughes et al., 2014).   Large rockfalls from mountain slopes also contribute debris 

to glacier surfaces in Patagonia (Winchester and Harrison, 1997; Harrison et al., 2006; 

Glasser et al., 2009). However,  high rates of vegetation colonization of valley sides exposed 

by glacier downwasting, especially to the west of the ice divide, means that slopes that 

might produce large amounts of paraglacial debris become rapidly stable within a decade or 

two of ice recession (Harrison and Winchester, 1997).  

  

 

The glaciers described here differ from debris-covered glaciers in other high mountain 

settings.   For instance, many Himalayan debris-covered glaciers such as those in Nepal are 

characterised by low surface velocities leading to surface lowering in their mid-sections and 

terminus stagnation. Large supraglacial lakes impounded by terminal moraines at the 

terminus can coalesce to develop the potential to produce Glacial Lake Outburst Floods 

(GLOFs; Richardson and Reynolds, 2000).  Conversely, the debris-covered glaciers we have 

described here in Patagonia are much more dynamic with higher contemporary ice fluxes 

and velocities, even as they undergo significant terminus recession.  Thus they do not form 
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the long, debris-covered tongues and moraine-dammed lakes that typify Himalayan glaciers.  

Further work is required to determine how the behavior of the temperate Patagonian 

glaciers described here relates to those in other areas, such as Southeast Alaska, which are 

similar to Patagonia in terms of climate (Pelto et al., 2013).  

 

5. Conclusions 

 

Using satellite images from three different time periods (1987, 2001, and 2015), we have 

presented the first complete picture of the spatial and temporal changes in debris cover 

over the last 28 years on the dynamically receding outlet glaciers of the temperate North 

Patagonian Icefield (NPI). We have related these changes in debris cover to rates of glacier 

recession, changes in the Transient Snow Line (TSL), glacier velocity, and changes in terminal 

environment such as proglacial lake growth.   

 

The number of debris-covered glaciers on the NPI increased from 24 in 1987, to 31 in 2001, 

to 32 out of 43 studied glaciers in 2015. The total amount of debris cover also increased in 

each time period, from 168.5 km2 in 1987 to 306.6 km2 in 2015. The proportion of debris-

covered area has also increased, from 4.1% in 1987 to 7.9% in 2015, with the largest 

proportional increases occurring east of the ice divide (where 15.2% of ice is now debris 

covered).   

 

Glacier area has shrunk rapidly over this time period, with annual rates of recession 

increasing from -0.17 % a-1 from 1987 to 2001 to -0.26 % a-1 from 2001 to 2015. The greatest 

increase in rates of recession has occurred east of the ice divide, with annual rates of 

recession reaching 0.37 % a-1 from 2001 to 2015. Glacier surface area loss has been greatest 

at low elevations, near glacier termini. The smaller, debris-free glaciers east of the ice divide 

are receding fastest, but we find no statistically significant correlation between proportion 

of debris-covered area and annual rates of glacier recession.  We observe  a corresponding 

increase in proglacial lake area over the study period.  

 

The glaciers of the NPI have high mass balance and rapid ice-flow rates that combine to 

ensure that these glaciers remain dynamic, even during recession. These dynamic 

temperate glaciers in Patagonia show very different recent geomorphological behavior to 

other glaciers accumulating surface debris in areas such as the Himalayas.  
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Fig. 1. Composite Landsat-7 image (11/03/2001) of the North Patagonian Icefield (NPI) in 

Southern South America indicating the main glacier catchments and outlet glaciers.   

 

Fig. 2. (A) Number of glaciers and total glacierized area in different glacier size classes. (B) 

Histogram of proglacial lake area. (C) Scatterplot showing original glacier area in 1987 

against glacier area change (km2). (D) Scatterplot showing glacier area change (km2) against 

glacier debris cover in 2015. Larger glaciers tend to have more debris-covered area (km2) 

and tend to have lost most glacier area (km2). 

 

Fig. 3.(A) Glacier extent in 1987, 2001, and 2015. Blue indicates glaciers  west of the ice 

divide; red indicates glaciers east of the ice divide. Blue circles are percentage debris cover. 

(B)As (A), but 2015 glacier extent colored according to annual rate of recession (% a-1) from 

2001 to2015. (C) As (A), but 2015 glacier extent colored according to maximum rate of 

velocity (m/y) from Mouginot and Rignot (2015). 

 

Fig. 4. Glaciar Grosse on the northern side of the NPI, a debris-covered glacier where the 

entire ablation area is debris-covered in 2015 {21st January 2015} Note also the large 

proglacial lake (image: Landsat 8 OLI-TIRS LC82320922015021LGN00 from 21st January 

2015) 

 

Fig. 5.  (A) Lake areas for individual glaciers of the NPI in 1987, 2001, and 2015. Note the 

rapid expansion of proglacial lakes at Glaciar San Quintin, which has grown in area from ~18 

km2 in 1987 to ~54 km2 in 2015.  (B) Lake area changes for individual glaciers of the NPI for 

the periods 1987-2001, 2001-2015 and the entire period 1987-2015. Note that expansion of 

the proglacial lake at Glaciar San Quintin also dominates the change in lake area over this 

time period. (C) Percentage change in lake area through time.  

 

Fig. 6. Detail of changes at the snout of Glaciar Fiero between 2001 and 2015. The white line 

(arrowed) indicates the position of the glacier terminus in 2001 in both cases.  Note the 

expansion of the large proglacial lake at Glaciar Fiero (arrowed) and the changes in surface 

debris cover.  A new glacial lake has also formed at the adjacent glacier (arrowed) in the 14 

years between 1987 and 2015.  

 

Fig. 7. (A) The extent of the debris-covered area on the largest individual outlet glaciers of 

the NPI in 1987, 2001, and 2015. (B) Debris-cover change by glacier for the periods 1987-
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2001, 2001-2015, and the entire period from 1987 to2015. Note that several large glaciers 

(e.g. Glaciar San Rafael, Glaciar Gualas, Glaciar San Quintin, and Glaciar Steffen) actually lost 

large areas of debris cover between 1987 and 2001 before debris cover then increased 

between 2001 and 2015.    

 

Fig. 8. Detail of debris features that have appeared on glacier surfaces between 2001 and 

2015. (A) Large rockfall deposited on the surface of Glaciar Grosse. (B) Large lobate rockfall 

deposited on the surface of Glaciar Pissis. Note also the recession of the ice front over this 

time. (C) Large rockfall deposited on the surface of Glaciar Leones. Note the large run out 

zone and how the rockfall obscures the existing medial moraines on the glacier surface.  

 

Fig. 9.  Detail of changes in ice-surface debris and transport through time (1987-2001-2015).  

(A) New patch of debris (arrowed) appeared on the surface of Glaciar Colonia in 1987 and 

was transported down-ice between 2001 and 2015. (B) Immediately below the icefall on 

Glaciar Pared, a rockfall deposited on the ice surface (arrowed) was transported rapidly 

down-ice to merge with existing supraglacial debris. (C) Closer to the terminus of Glaciar 

Pared Norte, a second rockfall (arrowed) was also transported rapidly down-ice along the 

lateral margin in the period 1987-2001-2015.   

 

Fig. 10.   Oblique aerial photograph of Leones Glacier showing recent large rockfall on the 

glacier surface (orange arrows). This is the same rockfall as Fig.  8C. The red arrow indicates 

the terminus of North Leones Glacier (photograph: Jill Pelto, 13th March  2015).  

 

Fig. 11.  (A) Area of debris-covered ice in 100-m elevation bands. (B) Change in area of 

debris-covered ice in 100-m elevation bands between 1987 and 2015. Note the loss of ~19 

km2 below an elevation of 100 m caused by the reduction of glacier ice at this low elevation.  

 

Fig. 12. Example of the interplay between changes in glacier area, debris cover and lake area 

for Glaciar Steffen (A-C), Glaciar San Quintin (D-F), and Glaciar Grosse (G-I).  
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Table 1: Data sources used in this study 

Platform/Sensor/Image ID Date acquired 

(d/m/y) 

Comments e.g. clouds etc 

Landsat 8 OLI-TIRS (LC82320922015021LGN00) 21/01/2015 Northern section 

Landsat 8 OLI-TIRS (LC82320932015021LGN00) 21/01/2015 Southern 

section02/11/2014 was 

also used because of 

cloud cover on Glaciar San 

Quintin 

Landsat 8 OLI-TIRS (LC82320932014306LGN00) 02/11/2014 Southern section 

Landsat 7 ETM (LE72320922001070EDC00) 11/03/2001 Northern section 

Landsat 7 ETM (LE72320932001070EDC00) 11/03/2001 Southern section 

Landsat 5 MSS (LM52320921987040AAA04) 09/02/1987 Northern section 

Landsat 5 MSS (LM52320931987040AAA03) 09/02/1987 Southern section 
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Table 2: Time taken between different time intervals in days and years.  

 

Time period Number of days Number of years 

2001-2015 5064 13.9 

2001-2014
a
 4984 13.7 

1987-2001 5144 14.1 

1987-2015 10208 28.0 

1987-2014
a
 10128 27.8 

aSan Quintin only. 
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Table 3. Glacier area and number of glaciers in the NPI in 2015.  

Glacier area Total area (km
2
) Number of glaciers 

0 to 1 km
2
 0.00 0 

1 to 10 km
2
 76.6 14 

10 to 50 km
2
 305.9 14 

50 to 100 km
2
 417.4 6 

100 to 500 km
2
 1596.8 7 

> 500 km
2
 1493.9 2 

   

Total 3890.6 43 
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Table 4. Regression analysis of glacier characteristics in 2015.  

 

X variable Y variable Pearson’s R
2
 

Mean Slope (°) Max Velocity (m/y) -0.36 0.13 

Max Velocity (m/y) % Debris cover 0.08 0.07 

Glacier Area (km
2
) Max Velocity (m/y) 0.41 0.17 

Mean Slope (°) Lake area (km
2
) -0.45 0.21 

Glacier Area (km
2
) Lake area (km

2
) 0.75 0.56

a
 

Zmax (m asl) Max Velocity (m/y) 0.39 0.15 

Glacier Area (km
2
) Debris cover (km

2
) 0.74 0.55

a
 

Glacier Area (km
2
) Mean Slope -0.62 0.39 

Mean Slope (°) Debris cover (km
2
) -0.54 0.29 

Mean Slope (°) % Debris cover -0.11 0.01 

Glacier Area (km
2
) % Debris cover -0.08 0.01 

Velocity (m/y) Debris cover (km
2
) 0.06 0.00 

aSignificant values. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 5. Change in glacierized area (excluding nunataks) east and west of the ice divide 

 

  Total East of ice 
divide 

West of ice 
divide 

n of glaciers (2015) 43 26 17 

Glacierized area 2015 (km2) 3890.5 1037.2 2853.3 

Glacierized area 2001 (km2) 4035.1 1093.7 2941.4 

Glacierized area 1987 (km2) 4133.1 1098. 5 3034.6 

Area change 1987 to 2001 (km2) -97.9 -4.8 -93.2 

Area change 2001 to 2015 (km2) -144.6 -56.5 -88.1 

% change 2001 to 2015 -3.6 -5.2 -3.0 

% change 1987 to 2001 -2.4 -0.4 -3.1 

% change per annum (% a-1) 2001-2015 -0.3 -0.4 -0.2 

% change per annum (% a-1) 1987-2001 -0.2 -0.03 -0.2 
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Table 6. Change in proglacial lake extent, 1987-2015 

 

 

Total East of ice divide West of ice divide 

Proglacial lake extent (km
2
) 2015 197.7 82.9 114.8 

Proglacial lake extent (km
2
) 2001 150.3 73.4 76.9 

Proglacial lake extent (km
2
) 1987 111.9 66.3 45.5 

Lake area change 1987 to 2001 (km
2
) 38.5 7.1 31.4 

Lake area change 2001 to 2015 (km
2
) 47.4 9.5 37.9 

% change 2001 to 2015 31.5 12.9 49.2 

% change 1987 to 2001 34.4 10.7 69.0 
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Table 7. Number, area, and proportional area of debris-covered glaciers in each region and time 

period 

 

 Year Total East of ice divide West of ice divide 

Number of debris-
covered glaciers 

2015 32 19 13 

2001 31 19 12 

1987 24 13 11 

Total debris-
covered area (km

2
) 

2015 306.6 157.1 149.5 

2001 228.6 135.4 93.2 

1987 168.5 119.2 49.3 

Total proportion of 
debris-covered 
area (%) 

2015 7.9 15.2 5.2 

2001 5.7 12.4 3.2 

1987 4.1 10.9 1.6 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 8. Relationship between debris cover and rates of recession 

 

x variable y variable Pearsons RSQ 

Glacier area 1987 Rate of recession 1987-2015 0.08 0.01 

% Debris cover 2015 Rate of recession 1987-2015 -0.15 0.02 

Debris cover 2015 (km2) Amount of change 1987-2015 (km2) -0.76 0.57 

Glacier slope Rate of recession 1987-2015 0.05 0.00 

Debris cover 2015 (km2) Rate of recession 1987-2015 0.04 0.00 

Max velocity Rate of recession 1987-2015 0.33 0.11 

Glacier area 1987 Amount of change 1987-2015 (km2) -0.89 0.78 

ZMAX Rate of recession 1987-2015 0.09 0.01 
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Table 9:  Transient snow line observations from Landsat images (2013-2016) indicating the 

highest observation for a given year on 11 glaciers of the NPI.  

 

 

 

Glacier 87/2013
a
 50/2014

 a
 85/2015

 a
 72/2016

 a
 Mean  

2013-2016 
1979/2003 
(Barcaza et 
al., 2009) 

Difference 

Steffen 1200 1075 1025 1100 1100 1000 100 

Acodado 1200 1075 1025 1110 1103     

HPN1 1075 1000 950 1075 1025 897 128 

Benito Cloud 1000 950 1050 1000 876 124 

San Quintin 1050 Cloud 975 1050 1025 950 75 

San Rafael 1100 1075 1000 1075 1063 900 163 

Gulalas 1200 1225 1200 1250 1219 996 223 

Soler 1450 1425 1475 1475 1456 1390 66 

Nef 1350 1300 1325 1350 1331 1250 81 

Colonia 1350 1325 1300 1350 1331 1270 61 

Pared Nord 1075 1050 1075 1100 1075 1020 55 

Mean 1225 1233 1193 1236 1214 1111 103 

 
aDates are displayed as Julian Day/Year.  These new data are compared to the Barcaza et al. 

(2009) data in the final two columns.  

 

 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 10: Summary statistics for the North Patagonian Icefield (NPI) in 1987, 2001, and 2015  

 

Year NPI area (km2) Debris area (km2) Lake area (km2) Modal debris   

elevation (m)  

1987 4133.1 246.3 111.9 501-600 

2001 4031.4 231.9 150.3 601-700 

2015 3886.9 310.6 197.7 601-700 
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Figure 1 
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Figure 4 
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Figure 5A 
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Figure 5C 
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Figure 10 
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Figure 11A 
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Figure 11B 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

Figure 12 


