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Abstract

It has been shown that breast density and parenchymal patterns are significant indicators in mammographic risk assessment. In

addition, studies have shown that the sensitivity of computer aided tools decreases significantly with increase in breast density. As

such, mammographic density estimation and classification plays an important role in CAD systems. In this paper, we present the

classification of mammographic images according to breast parenchymal structures through a multi-scale ellipse blob detection

technique. Our classification is based on classifying the mammographic images of the MIAS dataset into high/low risk mammo-

grams based on features extracted from a blob detection technique which is based on breast tissue structure. In addition, it evaluates

the relation between the BIRADS classes and low/high risk mammograms. Results demonstrate the probability of estimating breast

density using computer vision techniques to improve classification of mammographic images as low/high risk.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Organizing Committee of MIUA 2016.
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1. Introduction

Breast cancer is considered as a major health problem among women in western countries .It is estimated that one

among eight women in their life span has the chance of developing breast cancer. Breast tissue density and parenchy-

mal pattern structures are indicative of there being a high risk of developing breast cancer and there is a direct relation

with the probability of developing breast cancer1,2,3. The recent studies have shown that the sensitivity of computer

aided tools is significantly reduced with the increase in density of the breast tissue. A few examples of mammographic

images are illustrated in Fig. 1 clarifying various types of tissue densities as per the Breast Imaging Reporting and

Data System (BIRADS) density classification. The manual assessment of breast density and/or parenchymal patterns

is covered in various classification schemes1,2,4,5 which are all correlated6.The automatic segmentation of mammo-

graphic tissue and the related (BIRADS) density classification of the mammograms has been an active research area.

In general this has concentrated on the modelling and detection of dense tissue7,8,11. The review by He et al. 10 demon-
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Fig. 1. Some example mammograms showing various BIRADS density classification based on Birads 4th edition. (a) BIRADS 1 (entirely fatty

breast tissue), (b) BIRADS 2 (scattered fibro-glandular density), (c) BIRADS 3 (heterogeneously dense breast obscuring small masses), and (d)

BIRADS 4 (extremely dense breast lowering the sensitivity of mammography).

strated all recent approaches in finding the correlation between the breast density and its classification methods in risk

assessment. In10 they showed that the main approaches in the literature use techniques like thresholding, clustering,

and statistical model building.

In this paper, we demonstrate the novel approach of modelling the breast tissue : i.e. the modelling of distribution

of dense tissue and fatty tissue and how this can be exploited to provide the BIRADS density classification. This work

is closely related to that of Chen et al. 9, which developed a mammographic segmentation approach using topographic

maps with an emphasis on the modelling and distribution of bright blobs in mammographic images. In section 2, the

creation of gLoG kernel is briefly described. Later in section 3, the results obtained from the blob detection technique

is discussed18. In section 4, the classification of the mammographic images from the Mammographic Image Analysis

Society (MIAS) database into BIRADS classes based on the features obtained from the multi-scale blob detection

technique is described. In addition the classification of mammographic images into low/high risk images based on

blob detection is explained. Lastly section 5 discusses the results obtained and future work.

2. Blob Detection from Mammogram Images

In computer vision, the regions or points which are identified as either darker or brighter than the local area are

referred as blobs. The higher the contrast between the region and the surrounding tissue and the more blob-like the

region is the higher the blob probability should be. Traditional approaches have concentrated on the detection of

circular objects for which approach such as the Hough transform 12 and Laplacian of Gaussian (LoG) filtering13 have

been used. However, a lot of regions in natural images are not truly circular and as such ellipse detection might

be a more appropriate approach. This leads to the introduction of generalized Laplacian of Gaussian (gLoG) based

approach, which allows for the detection of asymmetric regions and includes directional estimation for such regions
14. The gLoG approach uses a set of orientation and scale dependent kernels. As with the LoG approach, the image,

f (x, y) is processed with a Gaussian defined by

∇2[G(x, y) ∗ f (x, y)] = ∇2[G(x, y)] ∗ f (x, y) (1)

where

∇2G(x, y) =
∂2G
∂x2
+
∂2G
∂y2

(2)
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Fig. 2. A set of gLoG example kernels, where (a) {σx = 4, σy = 4}, (b) {σx = 10, σy = 10}, (c) {σx = 8, σy = 2, θ = π/2}, and (d) {σx = 12, σy =

8, θ = π/4}.

and

G(x, y) = A.e−(ax2+2bxy+cy2) (3)

In Equation3, the coefficients a, b, and c controls the shape and orientation of the kernel G(x, y). the parameters are

determined by

a =
cos2 θ

2σ2
x
+

sin2 θ

2σ2
y

(4)

b = − sin 2θ

4σ2
x
+

sin 2θ

4σ2
y

(5)

c =
sin2 θ

2σ2
x
+

cos2 θ

2σ2
y

(6)

where σx, σy and θ are respectively the standard deviation in the horizontal direction, the standard deviation in the

vertical direction, and the orientation of the Gaussian kernel. The two σx, σy values determine the scale/width of the

Gaussian kernel, and as there are two values this can now be asymmetrical.Some typical kernels can be found in Fig. 2.

This illustrates a few possible varieties of kernels obtained while changing the orientation and scale parameters.

3. Data and Experimental Results

For this initial study we have used the MIAS dataset15 , which contains 322 digitised MLO mammograms. The

database consists of left and right MLO mammograms of 161 women. The spatial resolution of images is 50μm×50μm
quantised to 8 bits. All the mammograms were classified according to the BIRADS density classification scheme4

by expert breast radiologists16. As an initial step, all the images are pre-processed and the breast area is separated

from the background region and from the pectoral muscle. Blob-like structures detected outside the breast area are

also removed. Subsequently, all the mammograms in the dataset were processed with Equation. 1, using a variety of

{σx, σy, θ} kernels. A few typical examples can be found in Fig. 3. This shows that different size and orientation

structures are localized and enhanced by the different kernels. Based on the results, we identify the local maxima

which indicate the central location of each blob-like structure and thresholding is used to select the regions with higher

probability. This approach is done to extract blob-like fatty and dense structures from the mammogram images. In

order to maintain the computational cost, repeated filtering of the mammographic image with a filter of increasing size

across scale space is avoided. Instead downsampling of the mammographic image is performed giving more stability

to the gLoG kernel.

To exhibit the working of blob detection on various density types, mammograms from BIRADS I to BIRADS

IV are taken into account and is shown by Fig. 1. The extrema of local regions in the image at different scales for
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Fig. 3. Example gLoG processing based on the mammogram shown in Fig. 1(b) and the gLoG kernels shown in Fig. 2.

Fig. 4. Blobs detecting fatty tissue at multi-scale after merging based on qualitative relations for mammograms sorted from BIRADS I to BIRADS

IV

{σx = 10, σy = 10} are estimated. Such detected blobs represent the approximate size of blob like fatty and dense

tissue regions. To calculate the overall amount of blob like fatty/dense tissue structures from the image, the blobs

are identified at multiple scales. All these blobs are merged together to represent the total amount of dense/fatty

tissue in the image. The overlapped blobs due to the closely related tissues are removed while merging the blobs at

different scales. The overlapped and intersected blobs are removed using the above qualitative relations. The merging

procedure starts from the largest scale to the smallest scale. The external blobs are retained. If the distance between

the blobs is less than the radius of the largest blob, the inner blob is eliminated. If they are intersecting and if the

distance between them is less than the radius of the largest blob, it leads to its deletion. Blob like structures detected

for fatty tissues are represented in Fig. 4 while blob like structures detected for dense tissues are represented in Fig. 5

4. Density classification

In order to find the correlation between the BIRADS classes and the dense/fatty areas detected from blob detection

methodology, we classified the mammograms from MIAS database on the basis of BIRADS class. The MIAS database

was classified into 4 groups of BIRADS classes by an expert radiologist.To classify the MIAS mammograms based

on the BIRADS classes, we used the K-nearest neighbour classifier algorithm17.The K-nearest Neighbour classifier
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Fig. 5. Blobs detecting dense tissue at multi-scale after merging based on qualitative relations for mammograms sorted from BIRADS I to BIRADS

IV

(kNN) classifies a non-classified vector into ’k’ most nearest similar vectors from the training set. kNN is based on the

distance between the sample points in the feature space data sample. The classification result by the k-NN classifier

is represented by Table 1.The MIAS mammographic images are classified into BIRADS classes based on the features

obtained from blob detection.

Table 1. Confusion matrix for k-NN classifier based on BIRADS classes

Automatic Classification

Truth Data Birads I Birads II Birads III Birads IV

Birads I 44 21 13 9

Birads II 22 37 35 9

Birads III 12 36 35 10

Birads IV 8 9 11 9

To find the correlation between classification by classifier on the BIRADS class and the risk, the MIAS database

was divided into low risk and high risk mammograms based on the tissue type they have. BIRADS I and II were

considered low risk as they have a low amount of dense tissue while BIRADS III and IV were considered high

risk mammograms as they have more dense tissue. The same classifier, k-NN algorithm was used to classify the

mammograms as low/high risk. It gave a classification similar to the Birads classification and is illustrated in Table 2.

Table 2. Confusion matrices of k-NN classifier for classifying low/high risk

Automatic Classification

Low Risk High risk

Low Risk 132 60

High risk 65 63

The method was applied on a set of 320 mammograms taken from the MIAS database.To evaluate the results, we

used a 10 fold cross validation method on the entire data set. The confusion matrix for the classifier is shown in Table

1. The rows in the confusion matrix indicate the true class and columns indicate the label the classifiers associates
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with the object. It was found that the accuracy of k-nn classifier on classifying the mammograms as high-risk and

low-risk based on the dense area and fatty area found by the blob detection method is 61%. This is correlated to the

results obtained in Table 1 where the mammographic images are classified based on BIRADS version 44.

5. Discussion and Conclusions

The main purpose of the paper has been in determining the fatty/dense tissue present in mammograms using multi-

scale blob detection method and to classify the mammograms based on the BIRADS classification leading to the

classification of mammographic images into high risk and low risk mammograms.

We have shown that the fatty/dense tissue area obtained from the mammographic images through the generalized

Laplacian of Gaussian based approach can be used to classify the mammographic images into high/low risk mammo-

grams. The comparison between the classification of BIRADS class and high/low risk mammograms based on the

fatty/dense tissue obtained from the multi-scale blob method give a linear relationship.

Future work will focus on classifying the mammograms using more fatty/dense blob structures obtained from a

wide number of kernels at different range of ratios of {σx and σy}. In addition, we will evaluate the classification

on larger digitised and digital datasets to estimate the relationship between dense/fatty tissue and classify them as

low/high risk and find the relation between the Birads classes. Similarly the classification of mammograms into high

risk and low risk will be improved through evaluating more features at different orientations.
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