
Aberystwyth University

Populations can be essential in tracking dynamic optima
Dang, Duc-Cuong; Jansen, Thomas; Lehre, Per-Kristian

Published in:
Algorithmica

DOI:
10.1007/s00453-016-0187-y

Publication date:
2017

Citation for published version (APA):
Dang, D-C., Jansen, T., & Lehre, P-K. (2017). Populations can be essential in tracking dynamic optima.
Algorithmica, 78(2), 660-680. https://doi.org/10.1007/s00453-016-0187-y

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326671315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00453-016-0187-y
https://doi.org/10.1007/s00453-016-0187-y

Algorithmica
DOI 10.1007/s00453-016-0187-y

Populations Can Be Essential in Tracking Dynamic
Optima

Duc-Cuong Dang1 · Thomas Jansen2 ·
Per Kristian Lehre1

Received: 12 October 2015 / Accepted: 9 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Real-world optimisation problems are often dynamic. Previously good solu-
tions must be updated or replaced due to changes in objectives and constraints. It is
often claimed that evolutionary algorithms are particularly suitable for dynamic opti-
misation because a large population can contain different solutions that may be useful
in the future. However, rigorous theoretical demonstrations for how populations in
dynamic optimisation can be essential are sparse and restricted to special cases. This
paper provides theoretical explanations of how populations can be essential in evolu-
tionary dynamic optimisation in a general and natural setting. We describe a natural
class of dynamic optimisation problems where a sufficiently large population is nec-
essary to keep track of moving optima reliably. We establish a relationship between
the population-size and the probability that the algorithm loses track of the optimum.

Keywords Runtime analysis · Population-based algorithm · Dynamic optimisation

B Per Kristian Lehre
PerKristian.Lehre@nottingham.ac.uk

Duc-Cuong Dang
duc-cuong.dang@nottingham.ac.uk

Thomas Jansen
t.jansen@aber.ac.uk

1 ASAP Research Group, School of Computer Science, University of Nottingham, Jubilee
Campus, Wollaton Road, Nottingham NG8 1BB, UK

2 Department of Computer Science, Aberystwyth University, Penglais Campus, Llandinam Build-
ing, Aberystwyth SY23 3DB, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0187-y&domain=pdf

Algorithmica

1 Introduction

In a classical optimisation setting, so-called static optimisation, the focus is usually
directed to finding an optimal or a high quality solution as fast as possible. In real-
world optimisation, problem specific data may change over time, thus previously good
solutions can lose their quality and must be updated or replaced. Automatic optimal
control is a typical illustration of these situations, e. g. parameters of a machine can
be set optimally under ideal conditions of a factory but they need to be adapted to
changes in the real environment upon deployment. Dynamic optimisation is an area
of research that is concerned with such optimisation problems that change over time.
A specific characteristic is that it does not only focus on locating an optimal solution
but also on tracking a moving optimum (see [7] for a definition).

It is often suggested that Evolutionary Algorithms (EAs), especially the ones with
populations, are suitable for dynamic optimisation because a large population can
contain different solutions which could be useful in the future [22]. However, theo-
retical demonstrations for how populations in dynamic optimisation can be essential
are sparse and restricted to special cases. The ability of a very simple EA without a
population, the (1 + 1) EA, to track a target bitstring in a OneMax-like function is
analysed in [4,20]. The analysis has recently been extended from bitstrings to larger
alphabets [11]. The influence of magnitude and frequency of changes on the efficiency
of the (1 + 1) EA in optimising a specifically designed function was investigated in
[19], showing that some dynamic optimisation problems become easier with higher
frequency of change. The analysis of the (1+λ) EA that uses a larger offspring popu-
lation but still not a real population on a simple lattice problem is presented in [9]. The
efficiencies of specific diversity mechanisms when using an actual population were
compared in [18]. This was done for a specific example function (introduced by [19])
and considering low frequency of changes. It was shown in [12] that a Min-Max Ant
System (MMAS) can beat the (1 + 1) EA in a deterministic dynamic environment.
The comparison was later extended to general alphabets and to the (μ + 1) EA that
preserves genotype diversity [15]. With that particular setting of the (μ + 1) EA, the
size of the alphabets defines a threshold on the parent population size μ so that the
algorithm is able to track and reach the optimal solution in polynomial time. The result
was also extended to the single-destination Shortest Path Problem [14]. Comparisons
were also made between EAs and Artificial Immune System (AIS) on aOneMax-like
problem with the dynamic being periodic [10].

Considering the existing analyses we can in summary note two shortcomings that
leave the impression that important fundamental questions about dynamic optimisation
are still not answered satisfactorily. One shortcoming is the concentration on simple
evolutionary algorithms and other search heuristics that do not make use of an actual
population. Clearly, the advantages of a population-based approach cannot be explored
and explained this way. The other is that many studies consider very complex dynamic
environments that make it hard to see the principal and fundamental issues. Therefore,
the fundamental question why even a simple population without complicated diversity
mechanisms can be helpful in dynamic environments requires more attention.

Motivated by the above facts, we will use a simple argument considering a very
general class of dynamic functions to show that a population is essential to keep track

123

Algorithmica

of the optimal region.We define our function class on themost often used search space,
bit strings of a fixed length. However, it is not difficult to extend the function class to be
defined for any finite search spaceX and any unarymutation operator pmut : X → X .
The class is called (cn, ρ)-stable on X with respect to pmut, where n is the required
number of bits to specify a search point of X and c and ρ are positive constants
independent of n. The function class is only restricted by the probability of recovering
the optimal region via the mutation operator pmut (see Definition 4). The definition
of the function class does not refer explicitly to other function characteristics, such as
the topology or the fitness values of the set of optimal solutions, or the distribution of
fitness values of the set of non-optimal solutions.

We will use theMoving Hamming Ball function from [2] as an illustrative example
over the search space {0, 1}n andwith respect to the bitwisemutation operator.We also
use this specific function to argue that an approach based on a single individual, such
as the (1+1)EA, is inefficient in tracking the optimal region in spite of being equipped
with the same mutation operator. On the other hand, we show that a population-based
algorithm with a sufficiently large population can efficiently track the moving optimal
region of any dynamic function of the class defined for any given finite search space.

The remainder of the paper is organised as follows. The next section first gives a
formal description of dynamic optimisation and efficient tracking, then the class of
dynamic functions that we consider is described with an example function. Next, we
consider the (1 + 1) EA and RLS on the function class and provide an analysis to
serve as an example how search heuristics based on single solutions are not able to
track the optimal solutions over time. The efficiency of population-based algorithms is
then explained by proving a positive result about their performance. Here, we use the
setting of non-elitist populations and show that, with a sufficient selective pressure,
the ability of the population to track the moving optimal region is overwhelmingly
high with respect to the population size. On the other hand, as a consequence of a
fair comparison to a single-individual approach, the population must not be too big in
order to capture the frequency of changes. Finally, we summarise, conclude and point
out directions for future research.

The paper uses the following notation and terminology. For any positive integer n,
define [n]:={1, 2, . . . , n}. The natural logarithm is denoted by ln(·), and the logarithm
to the base 2 is denoted by log(·). The Hamming distance is denoted by H(·, ·) and
the Iverson bracket is denoted by [·]. We use 1A to denote the indicator function of
a set A, i.e. 1A(x) = 1 if x ∈ A, and 0 otherwise. For a given bitstring x ∈ {0, 1}n ,
the Hamming ball around x with radius r is denoted by Br (x) := {y ∈ {0, 1}n |
H(x, y) ≤ r}. The bitstring containing n one-bits and no zero-bits is denoted 1n . An
event is said to occur with overwhelmingly high probability (w.o. p.) with respect to
a parameter n, if the probability of the event is bounded from below by 1 − e−Ω(n).

2 A General Class of Dynamic Functions

Before defining the class of (κ, ρ)-stable dynamic functions which will be studied in
this paper, we first formalise our notion of dynamic optimisation, and we define what

123

Algorithmica

we mean when saying that a dynamic search heuristic tracks a moving optimal region
efficiently.

2.1 A Formal Description of Dynamic Optimisation

We focus on optimisation of pseudo-Boolean functions with discrete-time dynamics,
as formalised below. Note that our formalisation can be generalised to any finite search
spaceX , e.g. replacing {0, 1}n withX , and our results for population-based algorithms
also hold for this generalisation.

Definition 1 Adynamic function F is a random sequence of functions (ft)t∈N,where
ft : {0, 1}n → R for all t ∈ N. The optimal regions associated with F is the sequence
(OPTt)t∈N, where OPTt = argmaxx ft (x).

The perhaps simplest, non-trivial example of a dynamic function is a periodic
function which deterministically alternates between two functions, say g1 and g2, such
that f2i−1 = g1 and f2i = g2 for all i ∈ N. We will consider more complex dynamic
functions, where the sequence of functions is random and non-periodic. Although the
sequence of functions in a dynamic function is random, each individual function is
deterministic, i.e., we do not consider dynamic optimisation with noisy functions.

In this paper, we do not make any assumption about the changes of the function
and the speed of the algorithm. It has been pointed out that it is important to consider
the relationship between the speed of the execution platform where the algorithm runs
and the speed of change of the function because this has significant influence on the
performance [10]. Almost all studies assume that the function cannot change within
one generation of the algorithm. The only exception we are aware of is a paper by
Branke and Wang [1] who analyse a (1, 2) EA. We follow this idea but consider a
much broader class of algorithms.

When applying a search heuristic to a dynamic function, we therefore have to
consider two time lines: the first is associated with the evolution of the dynamic
function, and the second is associatedwith the search points generated by the heuristic.
Following the convention from black-box complexity [6], we assume that the function
evaluations are the most expensive operations, for sake of the analysis becoming the
basic time steps of an algorithm. The time consumed by all other operations, such as
sampling an individual or applying amutation operator, is assumed to be negligible.We
connect the two time-lines by assuming that every time the heuristic queries a search
point, the time-line of the dynamic function increases by one.We allowdynamic search
heuristics some flexibility in that search points can be queried not only with respect
to the most recent function ft , but also with respect to past functions. For example,
the individuals in a population can be evaluated with respect to one particular time.
We also assume that the decisions made by the search heuristic does not influence
the dynamic of the function. The dynamic optimisation-scenario we have described is
summarised in the following definition.

Definition 2 A dynamic search heuristic is an algorithm which given a search history(
(x j , i j , fi j (x j)

)
j∈[t−1] of t − 1 elements in {0, 1}n × N × R, selects a search point

xt ∈ {0, 1}n and an evaluation time it ∈ [t], and evaluates fit (xt).

123

Algorithmica

An element (xt , it , fit (xt)) in a search history describes the search point xt queried
by the algorithm in step t , the time point it ≤ t with which the search point is
evaluated, and the corresponding function value fit (xt). We can now formalise the
notion of efficient tracking of optima.

Definition 3 A search heuristic is said to efficiently track the optima of a dynamic
function F if there exist t0, � ∈ poly(n) and constants c, c′ > 0 such that

min
t0<t<ecn

Pr

(
t+�∑

i=t

1{xi∈OPTi } ≥ c′�
)

≥ 1 − e−Ω(n),

where (xt)t≥0 is the sequence of search points queried by the heuristic, and (OPTt)t≥0
is the sequence of optimal search points of function F .

Informally, Definition 3 means that the algorithm queries optimal search points fre-
quently. More precisely, within every sub-interval of length �within the exponentially
long time interval from t0 to ecn , a constant fraction of the queried search points are
optimal. Note that the optimality of a search point is defined with respect to the query
time, and regardless of the function with which the algorithm evaluates the search
point. The constraint � ∈ poly(n) on the length of sub-intervals guarantees that the
time between generation of two optimal search points is bounded from above by a
polynomial. It is clear from the definition that an algorithm is inefficient if with a
sufficiently high probability, e.g. at least constant, it loses track of the optimal region
and does not recover it within a polynomial number of steps.

2.2 A Class of Stable Dynamic Functions

The class of (κ, ρ)-stable dynamic functions with respect to a variation operator is
defined as follows.

Definition 4 Let φ : {0, 1}n → {0, 1}n be any unary variation operator, and κ ∈ N,
ρ ∈ (0, 1). If there exist constants c, c′ > 0 such that with probability at least 1−e−c′κ ,
the optimal regions (OPTt)t∈N of a function F satisfy for all time points t and t ′ with
0 < t < t ′ ≤ t + κ < ecκ , and for all search points x ∈ OPTt ,

Pr (φ(x) ∈ OPTt ′) ≥ ρ

then F is called (κ, ρ)-stable with respect to φ.

Definition 4 covers a large class of dynamic optimisation functions for any given
pair of parameters (κ, ρ). The optimal regions over time can take many shapes, includ-
ing disconnected pieces over {0, 1}n as long as the distances between them and the
cardinality of the intersections allow the probabilistic condition to hold. Figure 1
illustrates the required condition.

Given an operator φ, we focus on the class of (cn, ρ)-stable functions where c
and ρ are positive constants. We will show that a population-based algorithm with

123

Algorithmica

Fig. 1 Illustration of a (κ, ρ)-stable dynamic function, in which any search point in the optimal region of
time t can be mutated into the optimal region of time t + κ with probability at least ρ

a sufficiently large population and a sufficiently strong selection pressure can track
the optimal region of any function in the class efficiently. The next section gives an
example function of the class for φ being bitwise mutation and explains how it fits
within the framework of (cn, ρ)-stable function.Wewill then use the example function
to argue that algorithms that base their search on a single individual, such as the (1+1)
EA, can be inefficient.

2.3 Example of a Stable Pseudo-Boolean Function

We consider theMoving Hamming Ball function as described in [2]. The static version
of the function has the following form.

Definition 5 The Hamming Ball function around a target bitstring x∗ and a radius r
is defined as,

HBr,x∗
(x) =

{
1 if H(x, x∗) ≤ r,

0 otherwise.

It suffices to change x∗ in sequential steps to create a dynamic version from the
static one. We use the following dynamic setting for the function: the points in time
when the target x∗ is changed are determined by a sequence of random variables drawn
from a Poisson distribution.

Definition 6 Let (Xi)i∈N be a sequence of random variables independently sampled
from a Poisson distribution with parameter θ , Xi ∼ Pois(θ), � be some integer in [n],
and

(
x∗
i

)
i∈N be a sequence of bitstrings generated by

x∗
i =

{
1n if i = 0,

∼ Unif
({
y
∣
∣H

(
x∗
i−1, y

) = �
})

otherwise.

The Moving Hamming Ball (MHB) function with parameters r , �, and θ is defined as

MHBr,�,θ
t (x) = HBr,x∗(t)(x)

where x∗(t) = x∗
max{ j |∑ j

i=1 Xi≤t}.

The MHB function fits within the stability framework of Definition 4 with respect
to the bitwise mutation operator pEAmut. This variation operator, which has a parameter
χ ∈ [0, n], flips each position in the bitstring independently with probability χ/n.

123

Algorithmica

Hence, the probability of mutating a bitstring x ∈ {0, 1}n into a bitstring y ∈ {0, 1}n
is

Pr
(
y = pEAmut(x)

)
=

(χ

n

)H(x,y) (
1 − χ

n

)n−H(x,y)
.

Lemma 7 For all positive constants d, χ and ε, the function MHBr,�,θ is(
θ

1+d ,
(rχ
n�

)�
e−(1+ε)χ

)
-stable with respect to the bitwise mutation operator pEAmut with

parameter χ .

Proof For any given time t , let X be the random variable associated with the number
of time steps in the future that the target bitstring will be changed. If we pick κ :=
θ/(1 + d), then it is clear that within the next κ time steps, there will be more than
one change of the target bitstring if and only if X ≤ κ . It follows from Lemmas 18
and 19 that

Pr (X ≤ κ) ≤ e−θ

(
eθ

κ

)κ

= e−(1+d)κ ((1 + d)e)κ

= e−dκ(1 + d)κ ≤ exp

(
−dκ + κ · d

2
· d + 2

d + 1

)

= exp

(
−κ

2

(
d2

d + 1

))
.

It suffices to pick the constant υ:= d2
2(d+1) so that with a probability of at least

1−e−υκ , there is at most one change to the target function within the next κ time steps.
Under that condition, it holds for all t ′ ∈ [t, t + κ] and for all x ∈ Br (x(t)) =: OPTt ,
that H(x, x(t ′)) = r + �′ for some �′ ∈ {0} ∪ [�].

In the case that �′ = 0, e.g. the target does notmove or itmoves closer to x , it suffices
to not flip any of the n− r bits. For any constant ε, it holds for all n ≥ (1+1/ε)χ that

Pr
(
pEAmut(x) ∈ Br (x(t

′)) | �′ = 0
)

≥
(
1 − χ

n

)n−r ≥
(
1 − χ

n

)(
n
χ

−1
)
χ

(
1+ χ

n−χ

)

≥ e−(1+ε)χ .

In the case that �′ > 0, it suffices to recover the �′ bits among the r +�′ mismatched
ones, so

Pr
(
pEAmut(x) ∈ Br (x(t

′)) | �′ > 0
)

≥
(
r + �′

�′

) (χ

n

)�′ (
1 − χ

n

)n−�′

≥
(
r + �′

�′

)�′ (χ

n

)�′
e−(1+ε)χ

>
(rχ
�′n

)�′
e−(1+ε)χ ≥

(rχ
�n

)�

e−(1+ε)χ .

123

Algorithmica

Note that OPTt ′ := Br (x(t ′)), hence

Pr
(
pEAmut(x) ∈ OPTt ′

)
≥

(rχ
�n

)�

e−(1+ε)χ =: ρ

and MHBr,�,θ is (κ, ρ)-stable with respect to pEAmut.
�
It is not difficult to see that the stability condition of the function class still holds

with the following relaxations:

– The fitness of the solutions inside the Hamming ball changes when the target string
moves,

– The fitness of the solutions outside the current Hamming Ball can be distributed
differently, as long as they are less than the current optimal fitness,

– The moving step � is relaxed to be sampled from any discrete distribution over [�]
in each change of the target bitstring.

We will not consider these relaxations as they are not required to distinguish between
the effectiveness of single-individual and population-based evolutionary algorithms.

3 Algorithms

We will compare the performance of population-based and single-individual based
evolutionary algorithms. In this section we first define these classes of algorithms.

We are considering dynamic optimisation problems and, as mentioned in the intro-
duction and discussed by Jansen and Zarges [10], it is important to clarify how the
algorithms deal with change of the fitness functions, in particular if this happens dur-
ing one generation. In this paper, we consider algorithms that make use of consistent
comparisons when applying on a dynamic function: when an algorithm has to make
fitness comparisons on a set of solutions, it will first make a static copy of the dynamic
function and evaluate the solutions on this copy. This approach corresponds to an
implementation where the necessary data to evaluate the optimisation function is col-
lected before evaluating a set of solutions. Meanwhile the real function may have
changed more or less depending on the number of solutions in the set.

We first consider the single-individual approach described in Algorithm 1. The
algorithm keeps a current search point x . In each iteration, it produces a new candidate
solution x ′, and compares it with the current search point using the same function.
Hence, static copies of the dynamic function are made in every two time steps. This
corresponds to a frequent update of the dynamic function. We let pmut be the bitwise
mutation operator pEAmut described in Sect. 2.3, and obtain the well-known (1+ 1) EA
[5]. However, the result can be easily generalised to other mutation operators, such as
the single-bit flip operator used in the RLS algorithm.

We are mostly interested in the influence of the population size, designated by
the parameter λ, on the ability of a population-based algorithm to track the moving
optimal region. We focus on the non-elitist setting as described in Algorithm 2. The
algorithm uses a unary variation operator denoted by pmut, no crossover operator,
and an unspecified selection mechanism psel. The selection mechanism is any random

123

Algorithmica

Algorithm 1 Single-individual Algorithm (Dyn. Opt.)
Require:

finite search space X ,
dynamic function F = (ft)t∈N,
initial solution x0 ∈ OPT0.

1: for τ = 0, 1, 2, . . . until termination condition met do
2: x ′ = pmut(xτ).
3: v1 = f2τ (x ′).
4: v2 = f2τ (xτ).
5: if v1 ≥ v2 then
6: xτ+1 = x ′.
7: else
8: xτ+1 = xτ .
9: end if
10: end for

operator psel that given a population P and access to a fitness function returns one of the
individuals in P . By specifying different psel and pmut, Algorithm 2 can instantiate a
large number of population-based search heuristics, such as the (μ, λ) EA. The number
of search points λ produced in each round is the only parameter that appears in the
description of Algorithm 2. The (μ, λ) EA fits within this framework by making sure
that the selection in line 4 only takes into account the μ best of the λ search points
created in the last round.

The algorithm maintains a population Pτ of λ individuals which during one gener-
ation (steps 2–6) is replaced by a newly created population Pτ+1 of the same size. As
for the (1 + 1) EA, we assume that the initial population P0 is contained in the first
optimal region OPT0. Each individual in the next population Pτ+1 is created by first
making a copy x of one parent individual which is selected from the current population
(step 4 selection), then modifying the copy using pmut operator (step 5, mutation).

When selecting individuals, the algorithm must take into account that multiple
changes to the fitness function can occur during one generation. Here, we assume that
the algorithm makes a static copy of the fitness function fτλ at the beginning of each
generation, i.e. at time τλ. The selection mechanism psel compares all individuals in
a generation using the static copy. Note that if the population size λ is too large with
respect to the problem parameter θ (which controls the frequency of change of the
dynamic function), then the optimal region may change several times between two
consecutive generations. Hence, the population size should not be too large. However,
we will show in the next section that a sufficiently large population is also essential to
keep the population within the optimal region.

The result for populations will be first shown for any finite search space and any
mutation operator pmut because the class of dynamic function is defined with respect
to the operator pmut. Then we will use pEAmut over {0, 1}n as a specific example.

Although Algorithm 2 can use any selection mechanism psel, we are looking for
choices of psel that allows the algorithm to track optima efficiently. Formally, psel
applied on finite populations of sizeλ is represented by the transitionmatrix psel : [λ]×
X λ → [0, 1], where psel(i | P) represents the probability of selecting individual
P(i), i.e. the i-th individual, of P . We also write x = psel(P), e.g. in the algorithm,

123

Algorithmica

Algorithm 2 Non-elitist EAs (Dyn. Opt.)
Require:

finite search space X ,
dynamic function F = (ft)t∈N,
initial population P0 ⊂ OPT0.

1: for τ = 0, 1, 2, . . . until termination condition met do
2: evaluate solutions of Pτ with fτλ(·).
3: for i = 1, 2, . . . , λ do
4: x = psel(Pτ).
5: Pτ+1(i) = pmut(x).
6: end for
7: end for

to express that x is sampled from the distribution over P given by psel(·, P). We use
x(i) to denote the i th best individual of P , or the so-called (i/λ)-ranked individual.
Similar to [3,13], we characterise psel by the cumulative selection probability.

Definition 8 ([13]). Given a fitness function f : X → R, the cumulative selection
probability β associated with selection mechanism psel is defined on f for all γ ∈
(0, 1] and a P ∈ X λ by

β(γ, P) :=
∑

i∈[λ]
psel(i | P) · [

f (P(i)) ≥ f (x(
γ λ�))
]
.

Informally, β(γ, P) is the probability of selecting an individual with fitness at least
as good as that of the γ -ranked individual, assuming that P is sorted according to
fitness values. We are interested in a lower bound function of β(γ, P). Most often this
lower bound is independent of P , in which case we simply write it as a function of γ

only, i. e. as β(γ).

4 Performance Analysis

In this section, we first show that single-individual approaches are inefficient in track-
ingmoving optimaon at least one example function of the class, precisely onMHBr,�,θ .
Then we prove a general result that an appropriately parameterised population-based
algorithms can efficiently track the moving optima of any function in the class.

4.1 Inefficiency of a Single Individual

In this section, we will show that the (1 + 1) EA spends an exponential fraction of
its time outside the optimal region of a MHBbn,�,cn function, for a sufficiently small
constant b, any constant c > 0 and any � ≥ 1. That is to say the algorithm is inefficient
even in tracking such a stable function.

To prove such a result, we have to analyse the behaviour of the algorithm both
inside and outside the moving Hamming ball: We assume that the algorithm starts at
the center of the first optimal region and show that after some initial time, whenever

123

Algorithmica

the center of the ball moves, there is a constant probability that the (1 + 1) EA will
memorise a search point outside of the new ball; Whenever the algorithm is outside of
the optimal region there is also a constant probability that the memorised search point
will drift away from the optimal region (eventually get lost), before an optimal solution
inside the new ball is discovered. Since the changes to the function happens within
an expected polynomial number steps, we can conclude that with a high probability,
the (1 + 1) EA only spends a polynomial number of time steps inside the moving
Hamming ball.

We start with the first argument, the behaviour of the algorithm inside the Hamming
ball. We notice that the changes induced by the dynamics of the fitness function
strongly drag the target away from the current memorised search point, however this
does not happen in every iteration. In every iteration, the changes by mutation drive
the memorised solution away from the center of the current Hamming ball, but the
elitist selection also keeps the memorised solution from falling outside. We have the
following analysis of the drift.

We consider the process (Xt)t∈N, where Xt is the Hamming distance to the border
of the optimal region of MHBbn,�,cn at time t , i.e. Xt = r −H(x∗(t), xτ). The process
starts with Xt = r , e.g. exactly at the center of the Hamming ball. Given Xt = i ,
defineΔ(i):=Xt − Xt+1, thenE [Δ(i) | Xt = i] is the drift towards the border at time
t and where Xt = i .

First of all, the dynamic now only kicks in every cn time steps in expectation. Also,
the contributing drift is positive. For example, if the dynamic kicks in, let Z be the
number of bits being corrected by the dynamic, then we have Z ∼ Hypergeo(n, n −
i, �), and the contributing drift is E [� − 2Z] = �(1 − 2i/n) > 0 for any r/n < 1/2.

We now compute the drift by mutation at time t and where Xt = i > 0. Let X
and Y be the number of bits being corrected and being messed up respectively by the
mutation, so X ∼ Bin(r − i, χ/n), Y ∼ Bin(n − (r − i), χ/n) and the two variables
are independent. Note that for all integers X ≥ 0, Y ≥ 0 and i ≥ 1, it holds

Δ(i) = (Y − X) · 1{Y−X≤i} = Y · 1{Y≤i+X} − X · 1{X≥Y−i}
≥ Y · 1{Y≤1} − X = 1{Y=1} − X =: Δ1(i).

Thus for i > 0, Δ(i) stochastically dominates Δ1(i) and we also have

E [Δ1(i) | Xt = i] = E
[
1{Y=1}

] − E [X]

=
(
n − (r − i)

1

) (χ

n

) (
1 − χ

n

)n−(r−i)−1 − iχ

n

≥ χ

((
1 − r − i

n

)
e−(1+ε)χ − r − i

n

)

> χ
((

1 − r

n

)
e−(1+ε)χ − r

n

)

= χ
(
(1 − b) e−(1+ε)χ − b

)

123

Algorithmica

for any constant ε > 0. Therefore, with any constant b < 1/(1 + 2eχ), we have that
b ≤ (1 − b)e−(1+ε)χ/2. Hence, for i > 0 we have at least a constant drift away from
the center

E [Δ1(i) | Xt = i] >
(χ

2 · e(1+ε)χ

)
(1 − b) =: δ.

The only position where we have a drift toward the center is the one at the border,
e.g. Xt = 0. However, this is not a strong drift. When the target bitstring does not
move in the next iteration, we have −Δ(0) = (X −Y) ·1{Y−X≤0} ≤ X ·1{X≥Y } ≤ X ,
then the negative drift is no more than

E [X] = rχ

n
=: η.

In summary, we get the drift by mutation:

E
[
Δ(i) · 1{Xt>0} | Xt = i

] ≥ δ · 1{Xt>0} (1)

E
[
Δ(i) · 1{Xt=0} | Xt = i

] ≥ −η · 1{Xt=0} (2)

It is then suggested that the equilibrium state of the memorised search point is around
the border. Furthermore, we can quantify the expected fraction of time that the search
point is found at the border, using the following tool.

Lemma 9 Given a stochastic process (Xt)t≥0 over a state spaceN, and two constants
η, δ ∈ R+ such that

– E
[
Xt+1 · 1{Xt=0} | Xt

] ≤ η · 1{Xt=0}, and
– E

[
Xt+1 · 1{Xt>0} | Xt

] ≤ (Xt − δ) · 1{Xt>0},
then for all t ≥ 1

t−1∑

i=0

Pr (Xt = 0) ≥ δt − X0

δ + η
.

Proof Define pi = Pr (Xi = 0). For all t ≥ 1, it holds

E [Xt] = E
[
1{Xt−1=0} · Xt

] + E
[
1{Xt−1>0} · Xt

]

= E
[
E

[
1{Xt−1=0} · Xt | Xt−1

]] + E
[
E

[
1{Xt−1>0} · Xt | Xt−1

]]

≤ E
[
η · 1{Xt−1=0}

] + E
[
(Xt−1 − δ) · 1{Xt−1>0}

]

= ηpt−1 − δ(1 − pt−1) + E
[
Xt−1 · 1{Xt−1>0}

]

= ηpt−1 − δ(1 − pt−1) + E
[
Xt−1

]
.

It follows that

E [Xt | X0] ≤ X0 − tδ + (δ + η)

t−1∑

i=0

pt .

123

Algorithmica

Finally, since E [Xt | X0] ≥ 0

t−1∑

i=0

pt ≥ tδ − X0

δ + η
.

�
The following lemma considers non-negative, integer-valued stochastic processes

with positive drift at most η in state 0, and negative drift at least δ elsewhere. It provides
a lower bound on the probability of such a process being in state 0 after some time.

Lemma 10 Let (Xt)t≥0 be any stochastic process with support in {0} ∪ [r] for some
fixed r ∈ N, which satisfies the properties of Lemma 9 for some δ, η ∈ R+. Then for
any random variable T1 ≥
2r/δ� which is independent of (Xt)t≥0, it holds

Pr
(
XT1 = 0

) ≥ δ

2(δ + η)
.

Proof Choose t :=
2r/δ�, and define Yi := XT0+i where T0 := T1 − T and T ∼
Unif({0} ∪ [t − 1]), i.e., we consider the process Xt from a random starting point
T0 ≥ 0. Due to independence between T1, T , and (Xt)t≥0, we have

Pr
(
XT1 = 0

) =
t−1∑

i=0

Pr (Yi = 0 ∧ T0 + i = T1)

=
t−1∑

i=0

Pr (Yi = 0)Pr (T = i)

=
t−1∑

i=0

1

t
Pr (Yi = 0) .

Lemma 9 applied to (Yt)t≥0 now implies

t−1∑

i=0

1

t
Pr (Yi = 0) ≥ δ − Y0/t

δ + η
≥ δ

2(δ + η)
.

�
We now show that once the (1 + 1) EA has lost track of the optimal region it will

take a long time to recover. We assume that the objective function is MHBbn,�,cn with
radius r = bn � n/2, i.e. b ≤ (1/2) − κ for some constant κ > 0 (note that b can
depend on n). The first step in this proof is to show that with not too small probability
the (1 + 1) EA ends up far away (more specifically, in a linear distance) from the
Hamming ball before recovering it.

123

Algorithmica

Lemma 11 Given o ∈ {0, 1}n, let (xt)t≥0 be a sequence of random bit strings
such that xt = pEAmut(xt−1) and x0 ∈ Br+1(o) for some r = bn � n/2,
i.e. 0 < b ≤ 1/2 − κ for some κ > 0. For any d ∈ N+, define Tr,d :=
inf {t | H(xt , o) ≤ r or H(xt , o) ≥ r + d}. It holds that Pr

(
H(xTr,d , o) ≤ r

) =
O(max{r, log n}/n) where d = εn for a not too large constant ε > 0.

Proof We begin with considering another random sequence y0, y1, y2, y3, . . . where
for each t ∈ N the point yt is created by flipping one randomly selected bit in yt−1.
Let T ′

r,d be defined as Tr,d but with respect to yt instead of xt .

Let px := Pr
(
H

(
yT ′

r,d
, o

)
≤ r | H(y0, o) = x

)
, i. e., the probability to enter the

Hamming ball before reaching distance d given the process is started with Hamming
distance x . Note that, for symmetry reasons, px is well defined, i. e., the probability
does only depend on the Hamming distance x and not the specific choice of y0.

By definition of T ′
r,d we have px = 1 for x ≤ r and px = 0 for x ≥ r + d. For all

other values of x , i. e., for x ∈ {r + 1, r + 2, . . . , n − r − 1} we have

px =
(
n − x

n

)
px+1 +

(x
n

)
px−1

by definition of the sequence yt because with probability (n − x)/n the Hamming
distance to the centre of the Hamming ball o is increased by 1 and with the remaining
probability x/n it is decreased by 1. If we pessimistically assume that the probability
to move towards the Hamming ball is always equal to (d + r − 1)/n we obtain an
upper bound on px and are in the situation of the gambler’s ruin problem with initial
funds sa = x−r and sb = d+r − x , pa = (n−d−r +1)/n, and pb = (d+r −1)/n
and the probability to be ruined

q(r, d, x) =
(

d+r−1
n−d−r+1

)x−r −
(

d+r−1
n−d−r+1

)d

1 −
(

d+r−1
n−d−r+1

)d

gives an upper bound on the probability to enter the Hamming ball before reaching
distance d when starting with Hamming distance x to the centre of the Hamming
ball. We consider the probability q(r, d, x) for different values of r , d and x . We are
interested in the results for d = Θ(n) and consider for this d = εn where we chose
the constant ε > 0 such that d + r ≤ (n/2) − δn for some positive constant δ. It is
clear that due to the upper bound on r such a constant ε exists.

It is not difficult to see that limn→∞ q(r, d, r + 1) = Θ((r + d)/n). For r = Θ(n)

this is Θ(1) and the best bound we can obtain. For r = o(n) we need to be more
precise.

We begin with the case r = o(n) and r = Ω(log n). For this setting we consider
q(r, log n, r + 1) and know that limn→∞ q(r, log n, r + 1) = Θ(r/n) holds. Now we
consider q(r, εn, r + log n) and see that limn→∞ q(r, εn, r + log n) = o(r/n) holds.

123

Algorithmica

Finally, for the case r = ω(log n), we also consider q(r, log n, r +1) and know that
limn→∞ q(r, log n, r+1) = Θ((log n)/n) holds. Nowwe consider q(r, εn, r+ log n)

and see that limn→∞ q(r, εn, 2r) = o((log n)/n) holds.
Together, we have pr+1 = O(max{r, log n}/n) for all values of r and d = εn. Since

the sequence yt corresponds to ‘local mutations’ this proves the claim for random
local search. We generalise the statement to the (1 + 1) EA in the following way.
We can express a standard bit mutation as a process where first a random number
k ∈ {0, 1, 2, . . . , n} is chosen and then k bits are selected uniformly at random to be
flipped. The case k = 0 does not flip any bit and can be ignored. The case k = 1 is
covered by the analysis for RLS. For larger k = O(log n) we observe that such a step
is very similar to a sequence of k steps where exactly 1 bit is flipped. The difference
does not change the limits we considered above. Since in one standard bit mutation k
bits flip with probability Θ(1/k!) we can ignore steps where ω(log n) bits flips since
they contribute too little to change the asymptotic result.
�

Theorem 12 On MHBbn,�,cn with any constants b ∈ (0, 1/(1 + 2e)), c > 0 and
� > 0 the (1 + 1) EA with mutation rate 1/n will spend only an exponentially small
proportion of its time in optimal regions.

Proof We assume the process starts inside the first Hamming ball, and consider the
process as (Xt)t≥0 as described before in Lemma 9. For the standard mutation, we
have the drifts according to Eqs. 1 and 2 are δ = (1 − b)/2e and η = b. Applying
Lemma 10 gives that after r/(2δ) = 2ebn/(1 − b) = Θ(n) time steps, whenever the
center of theHammingball ismoved, it holds that Pr (H(x∗(t), xτ) = r) ≥ δ/(η+δ) =
(1− b)/(2(1− b+ 2eb)). Conditioned on this event, the probability that the dynamic
move x∗(t + 1) so that xτ /∈ Br (x∗(t + 1)) is Pr (l − 2Z ≥ 1) = Pr (Z ≤ �/2)
where Z ∼ Hypergeo(n, r, �), e.g. the number of bit positions being corrected by the
dynamic (see the definition of Z before Lemma 9). Therefore, E [Z] = �r/n = b�
and by Markov’s inequality and b < 1/(1 + 2e) it holds that

Pr
(
x∗(t + 1), xτ > r

) ≥ Pr
(
H(x∗(t), xτ) = r

)
(1 − Pr (Z > �/2))

≥ Pr
(
H(x∗(t), xτ) = r

)
(1 − 2E [Z] /�)

≥ (1 − b)(1 − 2b)

2(1 − b + 2eb)
=: p1 >

2e − 1

4(2e + 1)
> 0.

When the xτ is outside of the current Hamming ball, it follows from Lemma 11 that
there is a probability of at least p2 = 1−O(r/n) = 1−O(b) > 0 that the (1+ 1) EA
reaches linear Hamming distance to the Hamming ball before finding its way back to
it. Application of the negative drift theorem [17] yields that the probability to find the
way back into the optimal region within 2cn steps is O

(
e−n

)
for a sufficiently small

constant c > 0.
We have just show that in every Θ(n) time steps, whenever a change occurs to the

target bitstring there is a probability of at least p1 p2(1− e−Ω(n)) that the (1+ 1) EA
will lose track of the optimal region where p1 and p2 are constants. Applying this
argument n times (a change occurs approximately every cn time steps), we conclude

123

Algorithmica

Fig. 2 Illustration of Lemmas 14 and 15

that with an overwhelmingly high probability, the (1+1) EA will spend no more than
O

(
n3

)
time steps within the optimal region of the MHBbn,�,cn function.
�

4.2 Efficiency of Non-elitist, Population-Based Algorithms

Theorem 13, which is the main result in this section, gives conditions under which
the non-elitist, population-based Algorithm 2 tracks the optimal regions of dynamic
functions efficiently. We show that these conditions can be satisfied for the moving
Hamming-balls function MHBbn,�,cn for any constant b ∈ (0, 1).

Theorem 13 If there are constants ρ, δ > 0 and γ0 ∈ (0, 1) such that

1. F is a (λ, ρ)-stable dynamic function wrt. pmut with λ = Ω(n), and
2. psel satisfies β(γ) ≥ γ (1 + δ)/ρ for all γ ∈ (0, γ0],
then Algorithm 2 initialised with P0 ⊂ OPT0 tracks the optima of F efficiently.

Condition 1 of the theorem requires that the optimal region of the function does
not move too much relatively to the variation operator pmut during one generation.
The population size λ is a parameter of the algorithm which can be chosen freely.
So if the function is (κ, ρ)-stable, then the first condition can be satisfied by setting
population size λ = κ . Condition 2 requires that the selection mechanism psel induces
a sufficiently high selective pressure. Note that increasingly high selective pressure
is required for decreasing values of ρ, where ρ is the probability of recovering the
optimal search region via mutation (see Definition 4).

The central argument in the analysis is illustrated in Fig. 2. It follows from the
stability-assumption that any search point in OPTτλ can be mutated into OPTτλ+i for
any i ∈ [λ]with probability at least ρ. Hence, if the algorithm selects a search point in
OPTτλ with probability β(γ0), then the offspring belongs to OPTτλ+i with probability
at least β(γ0)ρ ≥ γ0(1 + δ). This argument is invoked in both of the two steps of the
analysis.

Lemma 14 Assume that conditions 1 and 2 of Theorem 13 hold. Then for any τ ∈ N,
i ∈ [λ], if |Pτ ∩ OPTτλ| ≥ γ0λ, then any offspring in generation τ + 1 belongs to
OPTτλ+i with probability at least γ0(1 + δ).

Proof The algorithm produces an individual in OPTτλ+i if the algorithm selects an
individual in OPTτλ and mutates this individual into OPTτλ+i . The probability of this
event is β(γ0)ρ ≥ (1 + δ)γ0.
�

123

Algorithmica

Lemma 15, which is the first step of the analysis, implies that in every genera-
tion τ ∈ N, a large fraction of the population Pτ belongs to OPTτλ. This can be
shown inductively by arguing using Lemma 14 that if many individuals in Pτ belong
to OPTτλ, then whp. many individuals in Pτ+1 belong to OPT(τ+1)λ. Knowing that
many individuals in Pτ belong to OPTτλ for every generation τ gives us some control
on the dynamics of the population. However it does not imply that the dynamic perfor-
mance measure in Definition 3 is satisfied because the individuals in OPTτλ may not
necessarily have been optimal when they were generated. A second step in the analysis
is therefore required, showing that if sufficiently many individuals in population Pτ

belong to OPTτλ, then many offspring in generation τ + 1 were optimal at the time
they were generated. This second step is contained in the proof of Theorem 13.

Lemma 15 Assume that conditions 1 and 2 of Theorem 13 hold. Then for any gener-
ation τ ∈ N, if |Pτ ∩ OPTτλ| ≥ γ0λ, then

Pr
(∣∣Pτ+1 ∩ OPT(τ+1)λ

∣∣ ≥ γ0λ
) ≥ 1 − e−Ω(λ).

Proof By Lemma 14, any offspring in generation τ + 1 belongs to OPT(τ+1)λ inde-
pendently with probability γ (1+ δ). Hence, by a Chernoff bound, the probability that
less than γ0λ offspring belongs to OPT(τ+1)λ is e−Ω(λ).

We are now in position to prove the main result of this section.

Proof of Theorem 13 We say that generation τ fails if |Pτ ∩ OPTτλ| ≥ γ0λ and
|Pτ+1∩OPT(τ+1)λ| < γ0λ. By Lemma 15 and a union bound, the probability that any
of the first ecλ/λ generations fails is e−Ω(λ), assuming that c > 0 is a sufficiently small
constant. By Lemma 2 and assuming no failure, any individual xi with λ < i < ecλ

belongs to the optimal regionOPTi with probability at least γ0(1+δ). By the definition
of the algorithm, individuals within the same generation are produced independently.
During any time interval (t, t + λ) where t, λ < t < ecλ, at least λ/2 individuals
are produced in the same generation, and hence independently. It therefore holds by a
Chernoff bound that for any time interval with λ < t < ecλ,

Pr

(
t+λ∑

i=t

1{xi∈OPTi } ≥ γ0λ/2

)

≥ 1 − e−Ω(λ).

The theorem now follows by taking into account the failure probability with a union
bound, and choosing the parameters t0 = λ, � = λ, and c′ = γ0/2 in Definition 3.
�

Theorem 13 implies that with a sufficiently slow dynamic, e.g. κ = cn for any
constant c > 0, the population-based algorithmcan efficiently track themoving optima
of the function, given that psel induces a sufficiently strong selective pressure. We now
show that given any constant ρ ∈ (0, 1), it is possible to parameterise many selection
mechanisms so that they satisfy this requirement on psel. The selection mechanisms
are:

– In k-tournament selection, k individuals are sampled uniformly at random with
replacement from the population, and the fittest of these individuals is returned.

123

Algorithmica

– In (μ, λ)-selection, parents are sampled uniformly at random among the fittest μ
individuals in the population.

– A function α : R → R is a ranking function [8] if α(x) ≥ 0 for all x ∈ [0, 1], and∫ 1
0 α(x) dx = 1. In ranking selection with ranking function α, the probability of
selecting individuals ranked γ or better is

∫ γ

0 α(x) dx . Linear ranking selection
uses α(x) := η(1 − 2x) + 2x for some η ∈ (1, 2]. Exponential ranking selection
uses α(x) := ηeη(1−x)/(eη − 1) for some η > 0.

The following theorem shows how these selection mechanisms can be parame-
terised to satisfy the second requirement of Theorem 13, and hence ensure that
Algorithm 2 tracks the moving optima of any (λ, ρ)-stable function with respect to
the mutation operator pmut.

Theorem 16 For any constant ρ ∈ (0, 1), let F be any (λ, ρ)-stable function wrt.
pmut for λ = Ω(n). If there is a constant δ > 0 such that Algorithm 2 initialised with
P0 ⊂ OPT0, and selection mechanism psel either

– k-tournament selection with k ≥ (1 + δ)/ρ,
– (μ, λ)-selection with λ/μ ≥ (1 + δ)/ρ,
– linear ranking selection with η ≥ (1 + δ)/ρ, or
– exponential ranking selection with η ≥ (1 + δ)/ρ,

then the algorithm tracks the optima of F efficiently.

Proof The result follows from Theorem 13 if we can show that there exist constants
δ′ > 0 and γ0 ∈ (0, 1) such that β(γ) ≥ (1 + δ′)γ /ρ for all γ ∈ (0, γ0]. The results
for k-tournament, (μ, λ)-selection and linear ranking follow from Lemmas 5, 6 and 7
from [13] with ρ in place of p0. For exponential ranking, we notice that

β(γ) ≥
∫ γ

0

ηeη(1−x) dx

eη − 1
=

(
eη

eη − 1

) (
1 − 1

eηγ

)
≥ 1 − 1

1 + ηγ
,

the result then follows similarly to k-tournament as in the proof of Lemma 5 in [13]
with η in place of k (Equations (3) and (4) in [13] show that β(γ) ≥ 1− 1/(1+ γ k),
then the constants γ0 and δ′ are shown to exist given the condition on k).
�

Finally, we apply Theorem 16 to show that population-based EAs can track the
optima of the example Moving Hamming Ball function efficiently. Note that the para-
meter η in linear ranking selection can only take values in the interval (1, 2]. The
conditions of Theorem 16 can therefore only be satisfied if ρ > 1/2, i.e., the optimal
regions can only change slightly. For the last part of the paper, we therefore exclude
linear ranking selection.

Corollary 17 For any constants δ > 0, b ∈ (0, 1), c > 0, d > 0 and � ≥ 1,
Algorithm 2 with the bitwise mutation operator pEAmut for χ = 1, with population size
λ = cn/(2(1 + d)), and selection mechanism psel either

– k-tournament selection with k ≥ (1 + δ)3(�/b)�,
– (μ, λ)-selection with λ/μ ≥ (1 + δ)3(�/b)�,

123

Algorithmica

– exponential ranking selection with η ≥ (1 + δ)3(�/b)�.

can efficiently track the moving optima of MHBbn,�,cn.

Proof It follows from Lemma 7 that for any constant ε > 0, MHBbn,�,cn is(
cn
1+d , (b/�)�e−(1+ε)

)
-stable with respect to the mutation operator pEAmut. Since

e−(1+ε) > 1/3 for a sufficiently small ε, the function is also
(

cn
1+d , (1/3)(b/�)�

)
-

stable. The result then follows by applying Theorem 16.
�

5 Conclusion

This paper has considered the frequently stated intuition that evolutionary algo-
rithms maintaining a population of diverse solutions can be more resilient to dynamic
changes in the objective function than algorithms maintaining single solutions. We
have described a general class of fitness functions where population-based evolution-
ary algorithms outperform single-individual evolutionary algorithms. We have proved
that for this function class, single-individual approaches, such as the (1 + 1) EA and
RLS, have a constant risk of losing the optimal solution region at any given time.More-
over, these single-individual algorithms not only lose the optimal region with constant
probability, but are also likely to drift away from the optimal region subsequently.

On the other hand, assuming a not too high frequency of change, we describe
sufficient conditions such that a non-elitist population-based evolutionary algorithm
will remain within the optimal region with overwhelmingly high probability. Our
analysis covers a range of the most commonly used selection mechanisms, and we
provide appropriate parameter settings for each of them. Furthermore, the success
of the population-based evolutionary algorithm does not rely on an explicit diversity
mechanism. Our analysis gives further explanations of how and why populations can
be essential and widely used in dynamic optimisation.

As future work, we would like to investigate further the influence of population
settingswithin this class of dynamic functions, such as elitist populations, the necessary
condition for the population size with respect to the frequency and magnitude of
changes and how a population could rebuild itself after losing a few optimal solutions.

Acknowledgments The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 618091 (SAGE), and is based
upon work from COST Action CA15140 ‘Improving Applicability of Nature-Inspired Optimisation by
Joining Theory and Practice (ImAppNIO)’.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

Appendix

Lemma 18 (Theorem 5.4 in [16]). Let X ∼ Pois(θ), then for all θ > x > 0

Pr (X ≤ x) ≤ e−θ

(
eθ

x

)x

.

Lemma 19 (Inequality (3) in [21]).

∀x ≥ 0 1 + x ≤ exp

(
x

2
· x + 2

x + 1

)
.

References

1. Branke, J., Wang, W.: Theoretical analysis of simple evolution strategies in quickly changing envi-
ronments. In: Proceedings of the 5th Annual Conference on Genetic and Evolutionary Computation,
GECCO’03, pp. 537–548. (2003)

2. Dang, D.-C., Jansen, T., Lehre, P.K.: Populations can be essential in dynamic optimisation. In: Pro-
ceedings of the 17th Annual Conference on Genetic and Evolutionary Computation Conference,
GECCO’15, pp. 1407–1414. ACM (2015)

3. Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to
partial information. Algorithmica 75(3), 428–461 (2016)

4. Droste, S.: Analysis of the (1+1) EA for a dynamically bitwise changing OneMax. In: Proceedings
of the 2003 International Conference on Genetic and Evolutionary Computation, GECCO’03, pp.
909–921. Springer (2003)

5. Droste, S., Jansen, T.,Wegener, I.: On the analysis of the (1+1)EvolutionaryAlgorithm.Theor. Comput.
Sci. 276, 51–81 (2002)

6. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-
box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

7. Fu, H., Lewis, P.R., Sendhoff, B., Tang, K., Yao, X.: What are dynamic optimization problems?. In:
Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2014, pp. 1550–1557. (2014)

8. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In:
Proceedings of the First Workshop on Foundations of Genetic Algorithms, FOGA 1991, pp. 69–93.
Morgan Kaufmann (1991)

9. Jansen, T., Schellbach, U.: Theoretical analysis of a mutation-based evolutionary algorithm for a track-
ing problem in the lattice. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, GECCO’05, pp. 841–848. ACM (2005)

10. Jansen, T., Zarges, C.: Evolutionary algorithms and artificial immune systems on a bi-stable dynamic
optimisation problem. In: Proceedings of the 16th Annual Conference on Genetic and Evolutionary
Computation Conference, GECCO’14, pp. 975–982. ACM (2014)

11. Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of the
2015 ACM Conference on Foundations of Genetic Algorithms XIII, FOGA 2015, pp. 40–51. ACM
(2015)

12. Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-boolean function. In: Proceedings of
the 12th International Conference on Parallel Problem Solving from Nature, vol. Part I, PPSN’12, pp.
113–122. Springer (2012)

13. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO’11, pp. 2075–2082. ACM (2011)

14. Lissovoi, A.,Witt, C.: Runtime analysis of ant colony optimization on dynamic shortest path problems.
Theor. Comput. Sci. 561, 73–85 (2015)

15. Lissovoi, A., Witt, C.: MMAS vs. population-based EA on a family of dynamic fitness functions.
Algorithmica 75(3), 554–576 (2016)

16. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, Cambridge (2005)

123

Algorithmica

17. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation.
Algorithmica 59(3), 369–386 (2011)

18. Oliveto, P.S., Zarges, C.: Analysis of diversity mechanisms for optimisation in dynamic environments
with low frequencies of change. Theor. Comput. Sci. 561, 37–67 (2015)

19. Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: an analysis of frequency
and magnitude of change. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, GECCO’09, pp. 1713–1720. ACM (2009)

20. Stanhope, S.A., Daida, J.: (1+1) genetic algorithm fitness dynamics in a changing environment. In:
Proceedings of Congress in Evolutionary Computation, IEEE CEC’99, pp. 1851–185 (1999). doi:10.
1109/CEC.1999.785499

21. Topsøe, F.: Some bounds for the logarithmic function. In: Cho, Y.J., Kim, J.K., Dragomir, S.S. (eds.)
Inequality Theory and Applications, vol. 4, pp. 137–151. Nova Science Publishers, New York (2007)

22. Yang, S., Yao, X. (eds.): Evolutionary Computation for Dynamic Optimization Problems, volume 490
of Studies in Computational Intelligence. Springer (2013)

123

http://dx.doi.org/10.1109/CEC.1999.785499
http://dx.doi.org/10.1109/CEC.1999.785499

	Populations Can Be Essential in Tracking Dynamic Optima
	Abstract
	1 Introduction
	2 A General Class of Dynamic Functions
	2.1 A Formal Description of Dynamic Optimisation
	2.2 A Class of Stable Dynamic Functions
	2.3 Example of a Stable Pseudo-Boolean Function

	3 Algorithms
	4 Performance Analysis
	4.1 Inefficiency of a Single Individual
	4.2 Efficiency of Non-elitist, Population-Based Algorithms

	5 Conclusion
	Acknowledgments
	Appendix
	References

