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Analysis of residual stresses in thermoelastic multilayer cylinders

Gennaro Vitucci∗and Gennady Mishuris

Department of Mathematics, IMPACS, Aberystwyth University, Ceredigion, SY23 3BZ, UK

Abstract

The topic faced here is the modeling of an axisymmetric multilayer structure. An exact analytical
formulation is proposed in the framework of the plane strain problem for a cylinder encircled by annular
layers. Isotropic linear thermoelastic materials constitute the body. Perfect and imperfect contacts
between the layers are made available for the analysis. The derived exact solution is compared to finite
element simulations. Numerical applications are shown in order to study the dependency of the residual
stress distribution on the constituent material properties during a cooling process. The role of residual
stresses in brittle materials, particularly ceramics, is discussed.

1 Introduction

Ceramics present important and unique features, such as chemical inertness, high-temperature capability,
hardness, which make them particularly suited to advanced engineering usages. Simultaneously, a well
observed weakness is their fragile behavior. Unexpected brittle fractures with uncontrolled crack propagation
speed arise after a threshold energy. The failure energy may be caused either by mechanical external loads
and prestresses or by thermal induced differential deformations facing a material characterized by fortuitous
and often designed inclusions (e.g. for fiber-reinforced ceramics).

It has been shown widely in literature that the macro-mechanical behavior with respect to crack propa-
gation can be radically modified assembling multiple layers with different thicknesses and different material
properties. Moreover, the full-thickness toughness does not depend only on the individual features of the
layers, but also on their interactions. A property to be addressed is specifically the capability of laminar
ceramics to deflect cracks.

It can be obtained by facilitating the crack bifurcation, event which can occur only in the case that the
crack enters a compressed zone ( [5,28]). Thus a crucial role is played by controlling compressive prestresses
arising during the cooling process below the joining temperature ( [16, 17]). From a technological point of
view, the creation of such conditions is committed to the choice of materials with different thermal expansion
coefficients ( [7, 24, 29]) and/or phase transformation diagrams upon cooling ( [25, 26]). A second artifice
to alter crack paths is the introduction of weak interfaces between layers in order to lead the deformation
energy to obstacle the crack growth along the thickness ( [9]). Delamination gives place to multiple stages
fracturing and avoids catastrophic damage. Recent experimental tests confirm – in the framework of dental
restoration – the effectiveness of a weak polymeric interlayer inside a stiff ceramic. The structure results
toughened against sub-critical crack growth at regions near the interlayer, particularly in comparison with
the monolithic sample ( [?]).

Similar observations show that a possible improvement of ceramics resistance is possible if the production
process is carefully controlled, also considering that usually the size of the layers is of an order of tens of
micrometers. On the other hand, aleatory defects arise in every industrial product and if they show features
directed in the sense of favoring a catastrophic fracture, both economical and safety losses can invalidate
ceramic materials usage for innovative applications. Indeed a practical disadvantage of ceramics is that it is
not possible to predict which sample is brittle without testing it to destruction ( [8]).
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Prince Rupert’s Paradox is a suggestive phenomenon that resumes the importance of the appearance of
unintentional prestresses. The tip of a glass rod is melted before falling into room temperature water. The
created drop-shaped solid demonstrates a very singular behavior: while its bulbous head turns very tough,
its thin tail not only results fragile, but, when a fracture starts from there, it propagates with an extremely
high velocity, in a self-sustained destruction wave, through the whole structure causing instantaneous disin-
tegration ( [13]). The reason is clearly to be researched in the arising of high residual stresses. Specifically,
stretched internal zones of the head presented an elevate elastic energy which is suddenly released when even
a small perturbation occurs ( [8]).

In order to characterize similar features of brittleness we solve here the general plane strain axisymmetric
problem of deformation in thermoelasticity which involves a cylinder inscribed into a series of concentric
rings. The scientific interest in this configuration springs from practical applications such as layered or fiber-
reinforced ceramics. The former analysis performed by Sutcu in [?] presented a simple recursive algorithm
which considers only two concentric cylinders at a time. More recent investigations ( [?, 30]) extended
the analysis to 3D residual stresses and pressurized hollow cylinders, while the contact between the layers
was ideal. Our simple analytical solution can be advantageously adopted for following the residual stresses
which derive from the difference of the interfacing materials or from the provided prestresses and very
thin layers can be substituted via appropriate transmission conditions. Qualitative observations can be
addressed by examining different components distribution inside the multilayer structure. Particularly, a
graded distribution with respect to thermal expansion coefficients is illustrated. The engineering concern is
mainly about the possibility allowed by the design to give place to compressive zones. Holding on the same
structure and simply modifying Young’s modulus of one of the layers, the additional effect of the presence
of a soft layer is studied.

The problem received a large attention, up to the present days. The former analysis performed by
Sutcu (1992) presented a simple recursive algorithm which considers only two concentric cylinders at a time.
More recent investigations (Zhang et al. 2006; Vedeld and Sollund, 2014) extended the analysis to 3D
residual stresses and pressurized cylinders, but considering perfect interfaces between layers. In the field
of homogeneization of composites, Sevostianov et al. 2012 identified the interval of thickness at which the
interphase does not influence the effective properties and showed how the imperfection effects described by
different models can be expressed in terms of each other.

2 Mechanical Model

The equilibrium, constitutive and kinematic equations in linear thermoelasticity for an isotropic material are

∇ · σ = 0, (1)

σ = C(ε− Iα̂∆T ), (2)

ε =
1

2

(
∇u +∇uT

)
, (3)

where σ, ε and u are the stress tensor, the strain tensor and the displacement vector; C, I the stiffness
and and the identity tensors; α̂ and ∆T the coefficient of thermal expansion and the difference between
the current temperature and the strain reference one. If two materials (1) and (2) are in contact by means
of a very thin interphase, the latter can be classified differently depending on the relationships between its
elastic properties and the surrounding media and mathematically substituted by transmission conditions
( [2,3,14,19]). The interval of thickness at which the interphase does not influence the effective homogenized
properties of a composite, together with the correlations between different imperfection models has been for
instance addressed in [?]. Sticking to the definitions given by Benveniste and Miloh in [4], three cases are
considered in the present work: perfect, spring-type (soft) and membrane-type (stiff) interfaces.

Let us consider the linear elastic deformation problem of a long axisymmetric structure undergoing
an axisymmetric thermal and mechanical loading, so that its behavior can be adequately described in as
axisymmetric plane strain. The only coordinate along which variable quantities arise is the radial one, say r,
being θ and z respectively the angular and axial coordinates; λ, E and ν the material Lamé’s first parameter,
Young’s modulus and Poisson ratio. Our scope is to generalize the problem of a cylinder encircled by an
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arbitrary number n of concentric layers, each of them characterized by possibly different thermomechanical
parameters. An assigned uniform load or displacement on the outer border is also considered.

The solution for each of the n+1 bodies (i) is written by the fields Eq.(4) and (5). If α(i) = (1+ν(i))α̂(i) is
the coefficient of thermal expansion in plane strain for the i-th body (proportional to the classical coefficient
α̂), then

u(i)rr = (a(i) + α(i)∆T (i))r +
b(i)

r
, (4)

σ(i)
rr =

λ(i)

ν(i)

[
a(i) − (1− 2ν(i))

b(i)

r2

]
, (i = 0, 1..., n). (5)

The superscript (0) labels the inner cylinder and b(0) = 0 descends from the symmetry condition. If the
materials are not in mutual contact in their undeformed configuration they are assembled in such a way that
the external radius of the i-th element is forced elastically to fit the internal radius of the (i + 1)-th one –
namely prestressed. It would be the case, for instance, of a cylinder which is inserted into a heated up ring
before a homogeneous temperature is reached by the composite. The initial geometry of the multilayer body

is completely described by the inner cylinder radius R
(0)
2 and by the internal and external radii R

(i)
1 and R

(i)
2

for each i-th ring (i = 1, 2, ..., n), with the subscripts 1 and 2 meaning internal and external (see Fig.1).
In presence of soft contact, the equality of the radial displacements at the two sides of an interface is not

guaranteed. Let β(i) be both the radial softness of the thin connecting layer (i) between the components (i)
and (i− 1). Spring-type transmission conditions lead to the boundary value problem:

u
(i−1)
2 − u(i)1 + σ

(i)
1 β(i) = R

(i)
1 −R

(i−1)
2 , (6)

σ
(i−1)
2 − σ(i)

1 = 0, (7)

with i = 1, 2, ..., n. From the latter equation on, where not specified, we refer simply to stresses σ and
displacements u indicating radial ones, omitting subscripts for the coordinate system. The conditions in
Eq.(7) can be efficiently adopted, also in dynamics, to represent a thin interphase layer whose stiffness is
smaller than the surrounding materials. The introduction of such interphase is indeed absolutely common
for arresting crack propagation, as discussed in Section 1. The right-hand side of Eq.(6) can turn useful in
the case of stiffer interfaces, when the necessity may arise of preserving the interphase gap via springs, e.g.
in order to correctly estimate the scattering amplitude under dynamic loadings ( [?]). If the i-th interface,
instead, is of membrane type with stiffness γ(i), the previous two equations are substituted via:

u
(i−1)
2 − u(i)1 = R

(i)
1 −R

(i−1)
2 , (8)

σ
(i−1)
2 − σ(i)

1 + γ(i)(u
(i)
1 +R

(i)
1 ) = 0. (9)

An ideal contact is taken into account simply setting β(i) and γ(i) to zero. The outer boundary condition
(BC) both in terms of axisymmetric uniform load σ (σ-BC) or radial uniform displacement u (u-BC) can be
added by the equation:

σ
(n)
2 = σ or u

(n)
2 = u (10)

Being the n+ 1 unknowns a(0) and the n couples a(i)-b(i), the problem is completely stated by the set of 2n
equations Eq.(6)-Eq.(7) or Eq.(8)-Eq.(9) plus Eq.(10). For the sake of conciseness, it is useful to the define
the following vectors and matrices (i = 1, 2, ..., n):

M
(0)
2 =

[
R

(0)
2

λ(0)

ν(0)

]
; M

(i)
2 =

 R
(i)
2

1

R
(i)
2

λ(i)

ν(i) − λ(i)

R
(i)
2

2
1−2ν(i)

ν(i)

 ; (11)

M
(i)
1 =



soft interface:

 R
(i)
1 −

β(i)λ(i)

ν(i)
1

R
(i)
1

+ β(i)λ(i)

R
(i)
1

2
1−2ν(i)

ν(i)

λ(i)

ν(i) −λ
(i)

ν(i)
1−2ν(i)

R
(i)
1

2


stiff interface:

 R
(i)
1

1

R
(i)
1

λ(i)

ν(i) − γ(i)R
(i)
1 − λ(i)

R
(i)
1

2
1−2ν(i)

ν(i) − γ(i)

R
(i)
1


; (12)
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Cylinder(0)

Ring(2)

R
(0)
2

R
(2)
1

Figure 1: Schematic undeformed configuration of a non-prestressed cylinder surrounded by multiple rings.

B
(n)
2 =


with σ-BC:

λ(n)

ν(n)

[
1 − (1−2ν(n))

R
(n)
2

2

]
with u-BC:

[
1 1

R
(n)
2

] . (13)

The whole set of 2n conditions takes the form

Ma = d, (14)

where the following assembly holds:

M =



M
(0)
2 −M

(1)
1

M
(1)
2 −M

(2)
1

. . .
. . .

M
(i−1)
2 −M

(i)
1

. . .
. . .

M
(n−1)
2 −M

(n)
1

B
(n)
2


; (15)

aT =
[
a(0) a(1) b(1) · · · a(i) b(i) · · · a(n) b(n)

]
. (16)

The known terms are collected in the vector d, whose components are

d2i−1 = (1 + α(i)∆T (i))R
(i)
1 − (1 + α(i−1)∆T (i−1))R

(i−1)
2 ,

d2i =

{
0 (soft interface)

− γ(i)R(i)
1 (1 + α(i)∆T (i)) (stiff interface)

,

d2n+1 =

{
σ for σ-BC

u− α(n)∆T (n)R
(n)
2 for u-BC

,

(17)

with i = 1, 2, ..., n. From a computational point of view it is useful to underline that M is a bidiagonal block
matrix. Consequently a sweep method (see A, [15, 18]) can be developed for its inversion, which takes into

account that B2(n) ∈ R1×2 and M
(0)
2 ∈ R2×1 are not invertible. It is clear that, once found the 2n + 1

constants contained in a, they can be used for knowing displacements and stresses of every point of the
domain.

If one needs to solve the similar problem of a hollow cylinder instead of a full one, it is sufficient ensure
the first unknown a(0) to fulfill the internal boundary conditions in terms, for instance, of pressure or radial
displacement constraints (see Eq.(4)-(5)). In that case the present solution enriches the work developed
in [30] in the framework of pipe and vessels design through the availability of prestresses and imperfect
interfaces.
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Figure 2: Comparison of the residual σrr and hoop σθθ stresses obtained for the case A by means of
the analytical solution and a FE analysis run with COMSOL Multiphysicsr. The mesh consists of 22710
triangular elements.

3 Residual Stresses in Multilayer Ceramics

The first benchmark computed via the present analytical exact solution is a multilayer structure of radius

R
(n)
2 = 1m. The i-th interface is situated at r = iR

(n)
2 /5 except for the third one which at 0.4m + t. The

thickness t of the second layer is 2cm in the case A and is 2mm in the case B. The Young modulus and
Poisson’s ratio and the thermal load of the whole body are 30GPa, 0.222 and 907°K; the coefficient of thermal
expansion is alternately 40°K−1 and 8°K−1 from the central component outwards. The plot in Fig.2 shows
the good agreement, for the case A, of the results both in terms of radial and hoop stresses if compared
to a finite element (FE) simulation. For the case B such comparison would remain, for practical purposes,
unvaried. The situation changes if one refers to the errors. The dimensionless error of the FE solution with
respect to the analytical one (AN) for the stresses σii (i = r, θ) is calculated as

erri =

√∑
(σ

(FE)
ii − σ(AN)

ii )2

max |σ(AN)
ii |

.

In Fig.3 one can observe that, due to the tenfold reduced thickness of the layer (2) in the case B, the mesh
required in a FE analysis to approximate the exact solution at the same level of accuracy is much finer than
in the case A. As evident consequence, a highly increased computational effort is required and special domain
decomposition techniques may be required (e.g. [10]). This is, after all, the reason for the introduction of
imperfect interface conditions in presence of very thin layers in a similar fashion as derived in [2–4, 14, 19].
The advantages of such mathematical approach have been widely exploited in engineering computations,
demonstrating to be highly effective via finite and boundary elements analysis, by the way, applied to the
design of elastic and piezoelectric structures ( [?, 20,21]), materials tests ( [23]) or to improve the numerical
performances in thermo-diffusive contact problems ( [31,32]).

The simple mechanical model explored in the Section2 proves to be fruitful in characterizing a multilayer
cylindrical ceramic structure, particularly attaining to production precautions. The layers are obtained
usually by overlapping different ceramic powders and sintering the previously compacted so-called green
body (e.g. [27]). The goal is to fuse the constituent grains together. A cooling process starts thereafter,
which must be accurately controlled in order not to give place to destructive fractures due to unexpected
self-stress ( [12]).

Lugovy et al. ( [16]) presented the concept of joining temperature Tjoin: a temperature below which,
during the cooling process, two phases start to deform together under an ideal contact condition. The
materials difference in thermal expansion properties and stiffness are the main origin of residual stresses
inside the final product and such mismatches evolve during the temperature reduction. For the computation,
we assume that:

� the thermal expansion coefficients increase with the temperature, both Young’s moduli and the stress
resistance vice versa, while Poisson’s ratios remain constant with that respect ( [6, 17]);
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� the above dependencies are linear;

� the cooling is performed relatively slowly so that the temperature gradient inside the structure at every
moment is negligible.

It should be remarked that, in this analysis, the temperature has to be lower than the one at which the
phase changes occur, since the positions of the interfaces must be known. It has been indeed proofed, based
on thermodynamical considerations, that the combination of interface conditions Eq.(6)-(7) or Eq.(8)-(9)
and boundary conditions Eq.(10) require to be treated accurately in the case of phase transition in order to
ensure the stability of the solution (see [33]).

The geometry of the system for the following two benchmarks at the joining temperature is the same: a
multilayer cylinder of radius 20cm is composed of equally spanned layers. Poisson’s ratio is 0.3 everywhere.
A joining temperature Tjoin = 1200.15°K is considered for every interface. The reference temperature-
dependent thermal expansion coefficient and Young’s modulus are α̂ref(T ) = 10−6(1.5 + 0.037T )°K−1 and
Eref = (390 − 0.02T )Gpa. The structure is cooled uniformly down to room temperature Troom = 293.15°K
and the differences in material properties give place to residual stresses during the process. Attention is
payed to the surface stresses which can be responsible of toughening at the macroscale or of changing the
elastic response of the material at nanoscale, as for instance discussed in [1, 11].

Five different materials are assembled whose thermal expansion coefficients decrease 5 times from the
surface layer toward the inner cylinder while every other parameter is kept constant along the radius. Such
an arrangement causes the temperature stresses upon cooling plotted in Fig.4. It has been shown in [5, 28]
that the presence of compressive residual stresses results advantageous for enhancing crack bifurcation if the
compression is perpendicular to the crack growth. Considering a fracture which propagates from the external
surface inwards, the presence of residual compressive hoop stresses in the superficial layers is able to increase
the fracture toughness. The scope appears to be reached thanks to the special arrangement hypothesized
here. On the other hand, one can observe that tensile radial stresses at the interfaces may raise the risk
of delamination. Moreover, the shielding from radial crack growth is not guaranteed in the case the crack
nucleates in the core of the structure, which may be the understanding key, for instance, of the disintegrating
fracture of Prince Rupert’s drops ( [8, 13]).

The structure for which the residual stresses are shown in Fig.5 constituted of a graded material in the
sense of thermal expansion coefficient. It ranges linearly along the radius from α̂ref at the symmetry axis
to 5α̂ref at the external surface – thus on the contrary as the example of Fig.4 – and discretized into 100
layers. As explained in the Section 1, a common artifice to arrest the crack propagation is the provision of
weak interlayers inside a brittle structure. The materials used to this purpose for engineering application or
found in nature (e.g. see [22]) often present lower stiffness than the surrounding ones and larger failure strain
with the result of an increased fracture work. In this benchmark, one of the layers is a soft thin circular
layer introduced in the middle of the overall radius and it is characterized by a value of Young’s modulus
of 10−3Eref, where Eref is assigned to each other component. The behavior of such structure upon cooling,
pictured in hatched surfaces in Fig.5, is compared to the same structure in absence of the soft layer, plotted
in unshaded surface in the same figure. The effect of the soft element is a jump in the hoop stresses which
allows to reduce, as expected, the surface tension of the cylinder, as well as approaching a compressive zone
to the same surface which may work, as discussed dealing with the previous benchmark, to arrest a radial
crack. However, it must be noticed that the residual radial compression is weakened, which is crucial when
protecting the structure from delamination. It is the engineer who must choose, in the design phase, to
what kind of danger risk the product will be most probably subjected during its service life and adopt an
appropriate safety criterion, pragmatically via an optimization process.

4 Conclusions

The plain strain deformation problem for a multilayer cylinder composed of an inner cylinder inscribed by
a general number of annular layers is solved analytically in the case of mechanical loads or constraint and
thermal expansion. The proposed solution includes also prestresses and three kinds of interface transmission
conditions: perfect, membrane-type and spring-type. The reasons for the introduction of the latter feature
are made clear through a study of the disadvantages of a FE solution in presence of thin layers due to
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Figure 5: Evolution of radial and hoop residual stresses with decreasing temperature from Tjoin to Troom for
a graded material in terms of thermal expansion coefficients whose αdecreases 5 times from the outer surface
to the symmetry axis. Comparison between homogeneous Young’s modulus Eref (unshaded surfaces) and
inhomogeneous with a soft internal layer of E = 10−3Eref (hatched surfaces).

important mesh refinement required in the vicinity of the interfaces (see Fig.3). In that case, indeed, the
computational efforts for reaching an acceptable accuracy largely increase with the reduced ratio between
the thin layer size and the adjacent ones. The set of linear equations deriving from the present formulation
has been solved efficiently applying a sweep method and illustrated in A. The method was adopted for
studying the uniform cooling of multilayer cylinders whose composing materials start to deform together
below their joining temperature and whose thermoelastic parameters are temperature-dependent. Based on
literature considerations regarding fracture toughness of composites, mainly ceramics, selected numerical
examples show how different arrangements of thermal expansion coefficients or the inclusion of soft layers
inside a stiffer environment are able to create residual stresses which can shield the structure from crack
propagation.
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A A Sweep Method

Based on the approach adopted in [15] for layered systems and expanded in [18] to wedged-layered domains,
for the sake of computational efficiency, we propose here a sweep method to solve the linear system stated
in Eq.(14). Condensing the writing, we set here the following abbreviations:

Mi = M
(i)
2 ;

Gi = −M(i)
1 ;

B = B
(n)
2 ;

a0 = a(0); ai =

[
a(i)

b(i)

]
;

de = d2n+1; di =

[
d2i−1
d2i

]
;

(18)
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Therefore, the system can be expressed as
M0 G1

M1 G2

. . .
. . .

Mn−1 Gn

B




a0
a1
a2
...
an

 =


d1

d2

...
dn
de

 . (19)

It is a bidiagonal block matrix. B ∈ R1×2 and M0 ∈ R2×1 are not invertible, thus the method shown here
is devised to fix this features. As start of forward sweeping, the second matrix equation is substituted by
G1M

−1
1 times itself minus the first equation. The variable a1 is eliminated, the variable a0 appears:

−M0a0 + G1M
−1
1 G2a2 = G1M

−1
1 d2 − d1. (20)

Or, defining G′2 = G1M
−1
1 G2 and d′2 = G1M

−1
1 d2 − d1:

−M0a0 + G′2a2 = d′2. (21)

The method is substantially based on vanishing ai−1 and including a0 in the i-th equation (i = 2, ..., n). The
forward sweep, posed that G′1 = G1 and d′1 = d1, is therefore described by the following recursive formulae:

for i = 2, ..., n

{
G′i = G′i−1Mi−1

−1Gi

d′i = G′i−1Mi−1
−1di − d′i−1

, (22)

so that the i-th equation takes the form

(−1)nM0a0 + G′iai = d′i. (23)

The n-th Eq.(23), combined with the outer boundary condition, gives the 3× 3 linear set of equations{
(−1)iM0a0 + G′nan = d′n

Ban = de
, (24)

whose solution is [
a0
an

]
=

[
(−1)nM0 G′n

0 B

]−1 [
d′n
de

]
. (25)

With an in hand, a backward sweep can be started which finds the remaining n− 1 vector variables

ai = M−1i (di+1 −Gi+1ai+1), (26)

for i = n− 1, ..., 1. It is probably worth to mention that the matrices M−1i are already computed during the
forward sweep.
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