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RESEARCH ARTICLE Open Access

Seasonal immunoregulation in a naturally-
occurring vertebrate
Martha Brown1, Pascal Hablützel1, Ida M. Friberg2, Anna G. Thomason2, Alexander Stewart3,
Justin A. Pachebat1 and Joseph A. Jackson2*

Abstract

Background: Fishes show seasonal patterns of immunity, but such phenomena are imperfectly understood in
vertebrates generally, even in humans and mice. As these seasonal patterns may link to infectious disease risk
and individual condition, the nature of their control has real practical implications. Here we characterize seasonal
dynamics in the expression of conserved vertebrate immunity genes in a naturally-occurring piscine model, the
three-spined stickleback.

Results: We made genome-wide measurements (RNAseq) of whole-fish mRNA pools (n = 36) at the end of summer
and winter in contrasting habitats (riverine and lacustrine) and focussed on common trends to filter habitat-specific
from overarching temporal responses. We corroborated this analysis with targeted year-round whole-fish gene
expression (Q-PCR) studies in a different year (n = 478). We also considered seasonal tissue-specific expression (6
tissues) (n = 15) at a third contrasting (euryhaline) locality by Q-PCR, further validating the generality of the patterns
seen in whole fish analyses. Extremes of season were the dominant predictor of immune expression (compared to
sex, ontogeny or habitat). Signatures of adaptive immunity were elevated in late summer. In contrast, late winter
was accompanied by signatures of innate immunity (including IL-1 signalling and non-classical complement
activity) and modulated toll-like receptor signalling. Negative regulators of T-cell activity were prominent amongst
winter-biased genes, suggesting that adaptive immunity is actively down-regulated during winter rather than
passively tracking ambient temperature. Network analyses identified a small set of immune genes that might lie
close to a regulatory axis. These genes acted as hubs linking summer-biased adaptive pathways, winter-biased
innate pathways and other organismal processes, including growth, metabolic dynamics and responses to stress
and temperature. Seasonal change was most pronounced in the gill, which contains a considerable concentration
of T-cell activity in the stickleback.

Conclusions: Our results suggest major and predictable seasonal re-adjustments of immunity. Further consideration
should be given to the effects of such responses in seasonally-occurring disease.

Keywords: Seasonality, RNAseq, Teleost, Three-spined stickleback, Immunity, Immunoregulation, Ecoimmunology, Wildlife

Background
Seasonal immune function has often been observed in
vertebrates [1], including humans [2, 3], but is relatively
poorly understood. As with more studied circadian
rhythms, though, there are fundamental implications for
health [4, 5] (e.g., effects on vaccination and diseases
linked to immune function). Taking a comparative ap-
proach [6] and considering the conserved genes of the

vertebrate immune system, here we use transcriptomic
measurements to reveal seasonal re-adjustments of im-
munity in a naturally-occurring teleost model. Crucially,
through focussing on wild organisms exposed to real-
world environmental extremes, we expected to discover
more measurable variation than would be the case in a
study of domesticated animals, where seasonal variation
may be muted by anthropogenic influences.
We chose the three-spined stickleback (Gasterosteus

aculeatus) as a subject because it has an annotated
whole genome sequence [7] and occurs accessibly in
highly seasonal natural habitats. Also, a considerable

* Correspondence: J.A.Jackson@Salford.ac.uk
2School of Environment and Life sciences, University of Salford, Salford M5
4WT, UK
Full list of author information is available at the end of the article

© 2016 Brown et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Brown et al. BMC Genomics  (2016) 17:369 
DOI 10.1186/s12864-016-2701-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2701-7&domain=pdf
mailto:J.A.Jackson@Salford.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


knowledge base exists for this species: it is a highly stud-
ied model organism [8, 9], and there are particularly de-
tailed ecological studies relating to our main study area,
mid Wales [10, 11]. We compared the transcriptomes of
populations in late winter and late summer (outside of
the breeding season, to reduce complexity) in ecologic-
ally divergent natural populations, reasoning that a focus
on common responses would provide a way to filter
overriding seasonal trends from locality-specific vari-
ation. We chose to primarily use global mRNA extracts
from individual whole fishes rather than from isolated
cell populations or tissues. This was because a fully re-
ductionist approach to cell populations would be im-
practical, and because the majority of the teleost
immune system is likely to be diffusely distributed in the
gut, under the skin and mucosal surfaces and in associ-
ation with the gills and liver (where, for example, com-
plement proteins are mostly synthesized) [12–16].
By considering global (whole-fish) samples, we were

thus able to take a holistic view of which immune sys-
tem pathways are differentially expressed at seasonal ex-
tremes. We corroborated our transcriptomic analyses by
targeted gene expression measurements in year-round
samples of fishes from the original sites in a new annual
cycle, and by tissue-specific analyses at a further site.
Moreover, using network analyses we were able to ask
what genes are important in regulating seasonal immune
function and how do seasonally-biased immune net-
works interact with other seasonally-biased organismal
processes?

Results
Seasonal expression bias of immune system genes occurs
against a well-defined genome-wide seasonal signature
We analyzed the global (whole fish) transcriptomes of G.
aculeatus from two contrasting habitats in mid Wales,
River (Afon) Rheidol (RHD) and Lake (Llyn) Frongoch
(FRN), in September 2012 and March 2013. To begin
our analysis we considered, genome-wide, which genes
were associated with seasonal expression bias. At FRN,
4464 genes were significantly differentially expressed
from summer to winter with an individual cut-off (P =
0.05) and 1678 with a false discovery rate (FDR)-adjusted
cut-off. At RHD, 4383 genes were significantly differen-
tially expressed with an individual cut-off and 2067 with
an FDR-adjusted cut-off. Genes that were seasonally dif-
ferentially expressed at both localities tended, over-
whelmingly, to show synchronous expression (in the
same direction at the same season across sites).
We hypothesized that these synchronously differen-

tially expressed genes would also be those contributing
to overarching seasonal responses. Thus, we categorized
such genes on the basis that they were significantly (P
<0.05) differentially expressed, in the same direction, at

both sites at the individual error rate (in practice a more
stringent cut-off than an FDR-adjusted P = 0.05 for one
locality). Following this criterion, 1263 genes were differ-
entially expressed in a consistent direction (Additional
file 1: Table S1 shows those with Ensembl annotations),
850 increasing expression during winter (winter-biased)
and 413 increasing expression during summer (summer-
biased).
We then considered genome-wide winter-summer ex-

pression changes in functional gene sets using gene set
enrichment analyses (GSEA) (Fig. 1), focussing on pre-
dicted orthologues of human genes (n = 11455 genes).
We compared ranked gene expression to KEGG and
REACTOME pathways, globally (Fig. 1a, Additional
file 2: Table S2). We also compared the ranked genes
to a selected group of gene sets reflecting different
organismal processes and immunological pathways
(Fig. 1b, Additional file 3: Table S3). Finally, we con-
sidered hypergeometric overlap of the selected gene
sets with the summer- and winter-biased genes de-
fined above (Fig. 1b). Taken together, these analyses
(Fig. 1) indicated signatures of growth in summer
(summer bias of pathways reflecting mitotic activity,
ECM processes, neural development, developmental
biology) and physiological challenge in winter (winter
bias of pathways reflecting autophagy, metabolism,
biological oxidation and the transport of a wide range
of biomolecules). In all analyses, some immune path-
ways were seasonally-biased, with innate processes
(complement cascade) emphasised in winter and
adaptive (lymphocyte) processes in summer (Fig. 1).
The above analyses were carried out on expression

data un-adjusted for individual size, as this variable was
(intentionally) approximately balanced across winter and
summer samples. However, as our sampling points
bounded a non-recruiting population ageing in the inter-
val between breeding seasons, we considered in more
detail the potential influence of ontogenetic stage. It is
likely, given the months (March to September) in which
we recorded reproductive activity in the field, and taking
into account slower biological ageing at lower tempera-
tures (through measuring age in growing degree days),
that the 0+ cohort in our approximately size-matched
summer and winter samples would have included
individuals widely overlapping in effective age (see
Additional file 4: Figures S1-S2). Furthermore, as our
sampling deliberately selected a wide range of fish sizes,
it is probable that 0+ and 1+ cohorts [11] were repre-
sented, resulting in a very extensive overlap of effective
ages between summer and winter samples. A close asso-
ciation between body size and age allows age to be parti-
tioned from season in statistical models by the use of a
size metric, such as body length, as a surrogate. This is
validated by data from experiments in artificial outdoor
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Fig. 1 (See legend on next page.)
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habitats, where we found that time explains at least 57 %
of the variation in length (see Additional file 4: Figure
S1). In order to control for age (length) effects we ap-
plied general linear models (LMs) to each in turn of the
11455 genes in the GSEA dataset, including main effects
for season, length, sex and site. We found that season
was the dominant predictor of gene expression (see
Additional file 5: Figure S3a). Consistent with this gene-
by-gene analysis, a multivariate principal co-ordinates
analysis (PCO) of the same data demonstrated marked
differentiation across seasons against the two major axes
(axis 1, P = 0.003; axis 2, P = 0.0004), but none for length,
sex or site (see Additional file 5: Figure S3b). We also
re-ran “global” GSEA analyses (against all KEGG and
REACTOME pathways), first with genes ranked by
confounder-adjusted seasonal effect, and then with genes
ranked by confounder-adjusted length effects (ranking
was based on parameter sign and effect size, η2, in the
LMs above). We found a similar outcome in the analysis
ranked by confounder-adjusted seasonal effect to in the
unadjusted analysis shown in Fig. 1a, with the two ana-
lyses sharing 67 gene sets that were significantly season-
ally enriched (FDR-adjusted P = 0.05 cut-off ), including

all of the immunological sets except leucocyte transen-
dothelial migration (Additional file 6: Table S4). In con-
trast, there was a distinctive outcome in the analysis
ranked by confounder-adjusted length effect, where only
8 enriched gene sets were shared with the analysis
shown in Fig. 1a, including none of the immunological
sets. Thus, the effect of season was a very dominant one,
emerging clearly in analyses even without adjustment for
ontogeny.

Season is a dominant and consistent influence on
immune gene expression
Focussing on the immune system we considered genes
with predicted orthology to those in the ImmPort [17]
comprehensive list of immune-associated genes. In total,
244 immune-associated genes out of 3648 were seasonally-
biased (differentially expressed in the same direction at
both sites). Of these, greater absolute numbers of genes
were winter-biased (150) than summer-biased (94). As with
the full gene list, immune-associated genes that were
consistently seasonally differentially-expressed tended, very
strongly, to be synchronously expressed across localities
(Fig. 2a).

(See figure on previous page.)
Fig. 1 Distinctive immunological and genome-wide gene expression signatures occurred at seasonal extremes. a Gene sets with significant summer
(red) or winter (blue) expression bias as indicated by gene set enrichment analysis (GSEA). Ranked differential gene expression was compared, separ-
ately for the RHD and FRN sites, to global KEGG and REACTOME gene sets, and sets are shown where the combined FDR P value was significant
(<0.05); gene set names are truncated but shown in full in Additional file 2: Table S2; stars indicate immunologically-relevant gene sets; the central den-
drogram indicates the degree of overlap between gene sets. b Analyses of selected gene sets (Additional file 3: Table S3) representing immunological
pathways and organismal signatures of stress, reproduction, growth and metabolism. Individual colour panels correspond, left to right, to the order of
gene sets in Additional file 3: Table S3. These sets were considered by GSEA for RHD and FRN separately, and by gene overlap (hyper-
geometric distribution) for the overall summer and winter-biased gene sets (defined as those genes having significant expression dif-
ferences, in the same direction, at both FRN and RHD)

Fig. 2 Extremes of season were the dominant predictor of immune gene expression. a Scatterplot of log2 winter-summer fold expression change
(log2 fold Δ) for all immune-associated (ImmPort list) genes with significant seasonal difference (individual P < 0.05) at both RHD and FRN sites.
Overwhelmingly such genes were regulated in the same direction across sites. b Season was overwhelmingly the most important predictor of
immune gene expression, in comparison to site, sex and body size (analysis based on all ImmPort list genes, n = 3648). Bar chart summarizes
results from general linear models (LMs) fitted to each individual log2 immune-associated gene expression variable; bars are the mean observed F
value (± 1 SE) for each model term (BL, body length; Se, season), expressed as a proportion of the critical value (P = 0.05) and relate to models
lacking interaction terms in the case of the main effects. c Principal co-ordinates (PCO) ordination of immune-associated gene expression (all
ImmPort list genes), indicating strong divergence between summer and winter samples along similar site-specific trajectories; plot showing scatter
of individual points against the 3 major axes (PCO-1-3) and concentration ellipsoids containing 50 % of points
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We also asked how important seasonal influences on
the expression of immune-associated genes were in
comparison to other sources of variation (site, sex, body
size). To answer this we again considered LMs fitted to
expression data for all 3648 immune-associated genes,
initially with main effects for season, site, sex and body
length and then with all 2-way interactions involving
season. As for the analyses of genome-wide expression
above, the broad pattern in these models was for season
to be the dominant influence on immune gene expres-
sion (Fig. 2b), compared to individual sex, body size or
site. Also, the interactions of season with other terms
tended to be small compared to the main effect of sea-
son, indicating consistent seasonal effects across site, sex
and age. Moreover, PCO ordination of all ImmPort list
genes (whether seasonally expressed or not) revealed
clear differentiation between summer and winter sam-
ples along similar trajectories between sites (Fig. 2c).
These observations are consistent with overarching
temporal environmental drivers acting similarly on the
immune system across different habitat types and life-
history stages.

Adaptive immunity genes are summer-biased and innate
immunity genes are winter-biased
The 244 consistently seasonally-biased genes from the
ImmPort list were individually evaluated to identify those
with core immunological functions (the ImmPort list
tending towards inclusivity) (Additional file 7: Table S5).
Such “core” genes in the summer-biased set included
those involved in, or regulating, adaptive effector re-
sponse pathways (rag1, rag2, cd8a, zap70, ccr7, il4, igh@
irf4b, foxp3b, rorc, satb1), corroborating the summer
bias in lymphocyte responses suggested by GSEA ana-
lyses. One weakly expressed classical major histocom-
patibility class (MHC) IIa locus (from chromosome VII
[18]) was also detected more strongly in summer, al-
though this was not the case for other more highly
expressed MHCIIa loci; the chromosome VII locus is
hereafter referred to as mhcIIa. There were also
summer-biased genes involved in immunological cell ad-
hesion (itgb2) and toll-like receptor (TLR)-mediated sig-
nalling (tirap).
In the winter-biased set there was a lack of genes

clearly promoting adaptive immunity. However, there
were several genes involved in regulating or suppressing
lymphocyte activity (orai1, apoea, tnfrsf21, bnip3, rnf128,
itm2a, tgfbr2) [19–25]. In addition there were genes as-
sociated with innate immune cell activity (nfkbiz,
zbtb16b, lsp1, cd302) and interleukin (IL) 1 family sig-
nalling pathways (three il1r gene cluster members,
il1rap), and genes like those up-regulated by type I inter-
ferons in mammals (ifi44/ifi44l-like) or involved in TLR

signalling pathways leading to the production of type I
interferons (tbk1). Key elements of non-classical comple-
ment pathways (cfd, masp2) were also winter-biased.
Although selected on the basis of Cuffdiff outputs [26],

all of the core immune genes were highly significantly
seasonally-biased when analysed in confounder-adjusted
LMs with terms for season, site, sex and body length.

A set of highly co-expressed winter- and summer-biased
immune genes can be identified that may lie close to a
regulatory axis for seasonal immunity
As the regulatory influence of genes on other genes may
be reflected in patterns of co-expression, we analyzed
these patterns in our transcriptomic data to identify
candidate seasonally-biased genes with high regulatory
importance. Given the prominence of the seasonal signa-
ture characterized above, we used unadjusted data for
these analyses in order to preserve the overall context of
co-expression. We selected 30 of the seasonally-biased
genes with well-defined immune system functions (core
immune genes, see above) as hubs for co-expression net-
works constructed using an information theory based al-
gorithm (ARACNe). These hubs included most of the
core genes, but excluded those with very strongly linked
functions (e.g., rag1 was included, but rag2 excluded). In
an initial analysis of the hubs alone (Network 1, Fig. 3),
summer and winter-biased genes overwhelmingly segre-
gated to different regions of the network, interfacing
principally through a relatively small number of genes
(“key genes”) that were also highly interconnected within
their respective summer or winter-biased sets. This set
of highly connected interfacing genes may lie close to
the regulatory axis that controls seasonal changes in im-
mune function and comprised orai1, cd302, tbk1 and
il1r-like in the winter-biased set and colec12, mhcIIa,
foxp3b, cd8a, zap70, and rag1 in the summer-biased set.
Remarkably, some of these summer-biased genes (cd8a,
zap70 and perhaps mhcIIa [classical chromosome VII
locus]) are involved in the T-cell – APC immunological
synapse determining T-cell activation. Furthermore, the
winter-biased orai1 codes for a calcium channel that is
necessary for T-cell proliferation [27] and that is re-
cruited to the T-cell receptor complex during activation
[28]. Loss-of-function mutations affecting mammalian
orthologues of six of the genes cause either severe im-
munodeficiencies (orai1, cd8a, zap70, mhcIIa, rag1) or
autoimmunity (foxp3), reflecting their potential degree
of influence upon the adaptive immune response.
A different ARACNe network (Network 2) including

all summer- and winter-biased genes (immune associ-
ated and non-immune associated) was also constructed,
using the same hub genes as above. When gene modules
from this analysis were considered in terms of the de-
gree of gene overlap (Fig. 4), modules associated with
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winter-biased hubs were largely segregated from those
associated with summer-biased hubs. The strongest
similarity across winter- and summer-biased modules
was between those associated with the hubs orai1 and
cd8a, tending to confirm that genes interacting with
orai1 and cd8a might be close to the axis of seasonal
regulation.
A third ARACNe network (Network 3) was con-

structed from all immune associated genes (whether sea-
sonally biased or not) and, again, the same set of
seasonally-biased immune hub genes used above. In this
network, there was a dominant cluster of large, overlap-
ping modules (a meta-module). Most of these were
enriched in both summer- and winter-biased genes and
associated with hubs that were winter-summer inter-
facing nodes in Network 1. This dominant meta-module

(Fig. 5a) is consistent with the existence of a coherent
regulatory unit involved in seasonal immune function.
Finally, we constructed a small (bearing in mind sam-

ple size considerations) three-variable structural equa-
tion model (SEM) of the form shown in Fig. 5b. We
used this to further assess the influence of individual
winter-summer interfacing (key) genes from ARACNe
Network 1 on the seasonal transition in immune func-
tion. In this analysis two of the variables were derived as
the first components from separate principal compo-
nents analyses (PCAs) of summer and winter-biased
core immune genes (but excluding key interface genes).
Each component thus represented the major axis of co-
variation within the respective summer or winter-biased
gene set. The third variable was the expression of a key
winter-summer interfacing gene, each of which, in turn,

Fig. 3 ARACNe networks of seasonally-biased core immune genes. Winter- and summer-biased nodes segregate to different regions of networks
and interface via a small set of central nodes that are highly connected amongst themselves and also within their respective winter- or summer-
biased set. a Network 1. Nodes sized according to their betweenness-centrality (a measure of centrality and thus potential influence within a
network); network shown with a force-directed layout, modified to highlight edges (dashed) between summer and winter-biased genes (entire
network stretched laterally with winter and summer regions displaced from each other vertically). b Network 1 re-analyzed with summer-biased
timeless added as an extra node; nodes sized according to eccentricity (an inverse centrality measure) and shown with an unmodified force-
directed layout. Edges from timeless connect to winter-summer interface genes and further winter-biased genes
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was evaluated in the model. All of the winter-summer
interfacing immune genes, except tbk1, negated the dir-
ect effect of winter-biased on summer biased genes
(these were significantly associated in a univariate
model) and themselves showed significant associations,
of opposite sign, with the summer and winter-biased
genes. This supports the linking role of these genes indi-
cated by the ARACNe analyses.

Consistent seasonality confirmed by year-round Q-PCR
measurement of key genes over a new annual cycle
Arbitrarily selecting 5 (orai1, tbk1, il1r-like, cd8a,
foxp3b) from the 10 key genes identified in Network 1
above, we confirmed their seasonal expression bias by
quantitative real-time PCR (Q-PCR) in an independent
sample set. Whole-fish gene expression measurements
were made for 478 individuals sampled in a regular
monthly design over a new annual cycle (2013–2014) in
our original localities (FRN, RHD) and also in semi-
natural artificial habitats populated by stock from FRN.
All of the genes showed highly significant confounder-
adjusted seasonal patterns (Fig. 6a), overall, with a clear
peak in the predicted season.

Tissue-specific expression of key genes suggests intense
seasonality in the gill
We also considered seasonality of key genes (see above)
within specific tissues (Fig. 6b, c) at a new locality on the
River Stour in eastern England (STO). All of these genes,
except for orai1, were primarily expressed in organs with
known concentrations of lymphoid tissue (Fig. 6b). Fur-
thermore, all of the many instances of significant tissue-
specific seasonal bias (13/25 comparisons) occurred in
the same direction as predicted by the whole-fish tran-
scriptomic study (Fig. 6c). Outside of the thymus, ex-
pression of T-cell-associated genes (cd8a, foxp3b) was
highest in the gill, lower in head kidney, spleen and in-
testine and negligible in skeletal muscle (Fig. 6b, c). This
is consistent with a strong concentration of T-cell activ-
ity in the gill. Moreover, the summer bias of T-cell-
associated genes was seen primarily in the gill (Fig. 6c).
In the case of orai1, whose expression is important in
mammalian T-cells [27] but not narrowly characteristic
of them, high expression occurred in skeletal muscle
(consistent with a known physiological importance in this
tissue [29]) (Fig. 6b, c). This gene was, however, also ro-
bustly expressed (Fig. 6b) and winter-biased (Fig. 6c) in
the organs with greatest T-cell-specific expression, thymus

Fig. 4 ARACNe network (Network 2) of all seasonally-biased genes, specifying core immune genes and timeless as hubs. Nodes, shown in a
modified force-directed layout, represent gene module sizes associated with hubs and edges are Jaccard similarity coefficients for module
composition (cut-off, 0.1). Modules associated with winter and summer-biased immune hubs segregate to different regions of the network, with
the strongest winter-summer module similarity between orai1 and cd8a. The module associated with the summer-biased timeless is primarily
similar to modules associated with winter-biased hubs. For larger modules the heat map (bottom left) shows significant odds ratio gene overlaps
with gene sets representing organismal signatures of metabolism, growth, reproduction and stress
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and gill, supporting a possible role in seasonal immuno-
regulation. Genes from innate signalling pathways (tbk1,
il1r-like) tended to be winter-biased in all tissues (Fig. 6c).
Overall, gill most closely reflected the pattern of seasonal
bias seen in whole-fish mRNA pools (Fig. 6c).

Seasonal immune gene expression links to wider life
history signatures
Some seasonal immune functions in vertebrates are con-
trolled by photoperiodic time measurement [30, 31] and
the circadian molecular clock may also have a role in
co-ordinating circannual biological rhythms [2, 32]. A
scan of the seasonally-biased genes for those involved in
such processes revealed that timeless (a clock-associated
gene) occurred within the summer-biased set. When
added to the ARACNe networks above timeless was, re-
markably, most strongly connected to key winter-
summer interface genes, with more connections to
winter-biased genes (Fig. 3b). However, other genes in-
volved in clock machinery or photoperiodism did not

show the same tendency and timeless is known to have
physiological functions in mammals that are independ-
ent of any role in biological clocks [33].
In order to place the seasonal variation in immune

pathways within an even wider organismal context, we
next tested the larger gene modules from the ARACNe
network of all seasonally-biased genes (Network 2) for
overlap with the gene sets representing other life history
components and responses to stressors (Fig. 4; see
Additional file 3: Table S3). The modules formed by
summer-biased hubs cd8a and zap70 contained genes
associated with organismal growth. In contrast, modules
for winter-biased hubs contained genes associated with
metabolism and responses to stress (oxidative stress, or-
ganismal stress and temperature change). To explore
these associations further, we then constructed an add-
itional network (Network 4) including seasonally-biased
core immune genes, timeless, and representatives from
the wider organismal gene sets. The latter were selected
on the basis that they were relatively differentially

Fig. 5 ARACNe network (Network 3) of all immune-associated genes (ImmPort comprehensive list of immune-related genes), specifying
seasonally-biased core immune genes as hubs. a Nodes, shown in a modified force-directed network, represent gene module sizes associated
with hubs and edges are Jaccard similarity coefficients for module composition (cut-off, 0.1). Node colours indicate modules significantly enriched
in winter-biased genes, summer-biased genes or both (see key). Modules associated with hubs that were winter-summer interface nodes in
Network 1 tended to be large, to share a high degree of similarity in composition, and to contain significant enrichments of both winter- and
summer-biased genes. b Form of simple structural equation model (path analysis) used in assessing the influence of winter-summer interface
(key) genes from Network 1; W, main axis of covariation in winter-biased core immune genes (represented by the first principal component of
a principal components analysis); S, main axis of covariation in summer-biased core immune genes; grey circle, expression of individual
winter-summer interfacing gene
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seasonally expressed in GSEA analyses. In the resulting
network (Fig. 7), in which all genes were specified as
hubs, those representing growth processes were again
associated primarily with summer-biased adaptive im-
mune genes (especially cd8a and zap70). Apart from
some connections to growth-related genes (especially for
orai1 and cd302), mostly the edges emanating from
winter-biased genes were to timeless and to genes repre-
senting metabolism and oxidative stress. Notably,
winter-summer interfacing (key) genes from Network 1
showed especially high numbers of non-immune edges
(statistical associations) in Network 4 (Fig. 7a, c) (and
there was a general tendency for immune genes with
many edges to other immune genes to also have many
edges with non-immune genes). As connectivity may re-
flect regulatory influence, this reinforces the potential
regulatory importance of key winter-summer interface

genes from Network 1. In fact, only two non-interface
genes showed high numbers of non-immune edges in
the network. These were the innate winter-biased genes
il1rap, which showed a pattern of edges similar to il1r-
like, and, more distinctively, tnfrsf21, which was the
main immune node with connections to general stress
responses.

TLR signalling pathways show seasonal modulation
Finally, given the importance of tbk1 in gene co-
expression networks (and its role in TLR-mediated sig-
nalling) and also the contrasting seasonal expression of
tirap (associated with other TLR-mediated signalling
pathways) we examined TLR signalling pathways in
more detail (Fig. 8a). This used genes from the KEGG
TLR-signalling pathway supplemented by a few further a
priori selected genes associated with TLR function in

Fig. 6 Corroborative whole-fish and tissue-specific Q-PCR gene expression measurements. a Temporal variation from October 2013 to September
2014 in whole-fish gene expression for winter-summer interface (key) genes from Network 1, n = 478. Relative expression (RE) (normalized to
endogenous control genes and indexed to a calibrator sample) is indicated on the y-axis. Plots show thin-plate-spline smoothers for time fitted in
a generalized additive model (GAM) with fixed effects for habitat, sex and length; shaded areas represent 95 % confidence regions. Samples were
derived from FRN, RHD and artificial outdoors habitats stocked from FRN. The other key gene examined, il1r-like, also demonstrated significant
seasonal variation (P = 0.0019) with peak expression in December (not shown), if log10 transformed. b Tissue-specific expression of key genes at
STO (summer, n = 5; winter n = 10). Heat map showing relative gene expression across tissues; significant differences occurred for all genes
(P <0.001). c Tissue-specific seasonal variation in key genes at STO. Mean relative expression (RE) ± 1 SE is shown on the y-axis. P values (c) relate
to directional (1-tailed) t-tests of seasonal shifts in the same direction as the whole-fish RNAseq study; 13/25 of these tests were significant but, in
comparison (post-hoc), 0/25 of 1-tailed tests in the opposite direction were significant. The calibrator sample for tissue-specific analyses was
pooled whole-fish RNA from 20 individuals in September. The STO samples showed no significant difference in fish length between winter and
summer and were balanced for sex ratio (see Additional file 8: Table S6)
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fishes (tlr18, tlr21, tril). There was a clear seasonal
modulation. Most seasonally-biased genes (including
myd88 and toll-like receptors 5, 7, 8 and 18) tended to
be winter-biased, although some (e.g., tril, tirap, nfkb1)
were strongly summer-biased. There was considerable
discrimination between summer and winter samples
when TLR signalling gene expression was ordinated
using PCO (Fig. 8b).

Discussion
We have demonstrated seasonal re-adjustments of im-
mune system gene expression in naturally-occurring
freshwater teleosts. These occurred most intensely in the
gill and were substantial (greater than variation between
habitats and life-history stages) and over-arching (with
consistent trajectories across habitats and life-history
stages). In keeping with some previous suggestions about
seasonal immune function in teleosts [34], we found that
genes marking adaptive immune processes were
summer-biased (expressed more strongly in summer),
whilst certain innate immune genes were winter-

biased. However, as set out below, our observations
provide considerable new insights into the control of
seasonal immune responses.
Transcriptomic analyses (based on whole-fish samples)

indicated that summer-biased genes included many cen-
trally involved in lymphocyte responses. For example,
the recombination activating genes (rag1, rag2) and
genes associated with particular adaptive cell popula-
tions: T-cells (zap70), cytotoxic T-cells (cd8a), helper T-
cells (foxp3b, il4) and B-cells (igh@). In contrast, the set
of winter-biased genes lacked those promoting adaptive
effector responses. In all cases, winter-biased genes asso-
ciated with T- or B-cell responses were regulatory or
even suppressive in nature. This strongly suggests a
regulatory control of adaptive immunity during winter,
rather than, or additional to, a loss of function due to
the kinetic consequences of low temperature in a cold-
blooded organism. Furthermore, there were gene expres-
sion signatures of elevated innate immune functions in
winter: including IL-1 signalling and non-classical com-
plement pathways. A complex modulation of genes

Fig. 7 Association between seasonal core immune genes and wider organismal signatures of growth, metabolism and stress. a ARACNe network
(Network 4) including seasonal core immune genes, timeless, and seasonal genes from curated sets representing growth, metabolism, and aspects
of stress (oxidative stress, stress responses, temperature responses); specifying all genes as hubs; nodes sized according to their betweenness-
centrality. Network shown in an unmodified force-directed layout. b Bar chart showing, for the most highly connected core immune genes in
Network 4, the distribution of edges with genes representing wider organismal signatures (stars indicate winter-summer interface “key” genes in
Network 1). Colour bar outside vertical axis indicates winter- or summer expression bias. c Scatterplot showing, for core immune genes in
Network 4, numbers of edges to other immune genes vs numbers of edges to non-immune genes (Pearson r = 0.65, P = 1.6 × 10−4); point sizes
are proportional to the number of winter-summer edges for the gene in Network 1 (key genes from Network 1 were significantly more likely to
show > 7 non-immune edges in Network 4, compared to other core immune genes, P = 0.006)
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involved in innate TLR-mediated signalling occurred,
with a predominant winter bias.
We designed the sampling for our transcriptomic

study to, as far as possible, reduce correlation between
season and ontogeny, and we also carefully considered,
post-hoc, the possible role of ontogeny in generating ap-
parent seasonal differences. To ensure that an exten-
sively overlapping range of effective ages was present in
our winter and summer transcriptomic samples, we de-
liberately selected a wide range of fish sizes within sam-
ples (to the extent that there were no significant
differences in length between winter and summer sam-
ples). Through monitoring the growth of fishes in artifi-
cial outdoor habitats we confirmed that age predicted
the majority of variation in length, and we adjusted for
length, as a surrogate for age, in statistical models ap-
plied to transcriptomic data. Importantly, the much
greater overall signature of season compared to length
in statistical models applied to genome-wide and im-
mune system-wide gene expression is not consistent
with ontogeny being a major confounder in our study.
Moreover, the balancing of size across seasonal samples,
and the adjustment for length in our statistical model-
ling, also accounts for the possibility that growth allome-
tries in different tissues (for example, proportionately
increased muscle mass with size) may have biased re-
sults for whole-fish samples.
We also considered whether the patterns of gene co-

expression in our transcriptomic data could give insights

into the regulation of seasonal immune function. Infor-
mation theory-based network analyses [35] of expression
in seasonally-biased core immune system genes identi-
fied a small set of genes lying at the interface between
summer- and winter-biased genes. These were highly
networked (statistically associated) amongst themselves
and also each highly networked within the seasonally-
biased group to which they respectively belonged. Re-
markably, several of the interfacing genes have roles in
APC-T-cell immunological synapses (cd8a, zap70, orai1
and perhaps the summer-biased classical mhcIIa locus
[27, 36–38]) and mutations leading to loss of function in
their mammalian orthologues cause primary immuno-
deficiencies [27, 36–38]. Also amongst these interface
genes, foxp3 [39] is a master regulator of regulatory T-cell
function and recombination-activating genes are central
to the production of re-combined adaptive receptors [40].
In mammals loss-of-function mutations in these genes re-
spectively cause lethal autoimmunity and severe combined
immunodeficiency [39, 40]. Other interfacing genes are in-
volved in innate processes that might precede antigen
presentation: innate signalling pathways (tbk1, il1r-like
[41–44]) and antigen internalization via phagocytosis or
endocytosis (cd302, colec12 [45, 46]).
When we added the summer-biased clock-associated

gene timeless to these networks, it proved to be closely
associated with interface genes, and especially with
winter-biased (mostly innate) interface genes. Whilst this
could reflect some co-ordination via a seasonal

Fig. 8 Seasonal bias in toll-like receptor (TLR) signalling pathway. a Differential winter-summer gene expression in pathway members (based on
modified KEGG TLR signalling pathway), demonstrating winter bias in some cases and summer bias in others. Categorization of differential
expression is based on overall significance levels in general linear models (LMs) with explanatory terms for site, sex and length (less stringent
criteria than used in initial genome-wide analyses). b Principal co-ordinates (PCO) ordination of gene expression in all pathway members,
revealing considerable winter-summer discrimination; scatter of individual points against the 3 major axes (PCO-1-3) and concentration ellipsoids
containing 50 % of points
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oscillator, though, other genes involved in photoperiod-
ism or circadian rhythms did not enter the networks in
corresponding ways. It is also the case that timeless itself
has a relatively poorly resolved role in the mammalian
circadian clock and is known to have independent
physiological functions [33] (consistent with the links to
metabolic pathways discussed next).
During winter there was a genome-wide signature in-

dicative of elevated metabolic processes and metabolite
transfer and organismal stress, and in summer a signa-
ture of growth and developmental processes. Again
using network analyses of our transcriptomic data, we fi-
nally asked how seasonal changes in immunity might be
related to this background. We found that the winter-
summer interfacing (key) immune genes identified above
were especially highly connected to genes involved in
non-immune seasonal variation, further emphasizing
their relevance in the seasonal control of immunity.
Genes involved in metabolism and oxidative stress inter-
connected densely with winter-biased innate genes, and
amongst these especially to the winter-summer inter-
facing genes tbk1 and il1r-like, and also to il1rap. On
the other hand, genes involved in general organismal
stress responses linked differently to winter-biased im-
mune responses: primarily via tnfrsf21, a protein that
triggers apoptotic pathways [47] and restrains T-cell [48]
and B-cell [49] responses. In comparison, genes involved
in non-immune summer signatures (growth and devel-
opment) networked primarily to summer-biased adap-
tive genes, especially to the summer-biased interface
genes cd8a and zap70. These observations suggest an
unexpectedly strong link between growth processes and
adaptive immunity and that one, or both, may favour
permissive conditions for the other. Taken together, the
above patterns indicate that multiple organismal pro-
cesses are likely to interact with the seasonal regulation
of immunity, additional to the possible influence of any
“hard-wired” circannual oscillator. It might be expected,
then, that predictable seasonal influences will be modi-
fied by less predictable non-cyclical temporal variations
in environmental stressors [30].
To validate our transcriptomic analyses we returned to

our original study localities, an upland lake and river in
mid-Wales, and also considered artificial outdoors habi-
tats stocked from the lake site. Using Q-PCR measure-
ments we confirmed (with very strong statistical support)
seasonality in a panel of the key immunity genes predicted
to be winter- or summer-biased. This year-round monthly
analysis considered whole-fish samples (n = 478) and was
carried out in a new annual cycle that lacked unusually
cold winter or spring weather. Furthermore tissue-specific
analyses (discussed below) at an entirely new locality (a
euryhaline estuarine site in eastern England) found that all
tissues showed seasonal expression changes and these

changes all occurred in the same direction as in the
whole-fish studies at our original sites. Thus, overall we
considered 3 very divergent localities (upland lake, river,
estuarine) across 2 years and found compelling evidence
to support a general pattern such as that indicated in our
initial transcriptomic measurements.
In addition to our analyses of whole-fish mRNA pools,

we also confirmed tissue-specific expression patterns
through Q-PCR measurements of key immunity genes at
a new estuarine locality (considering head kidney, spleen,
thymus, gill, intestine and muscle). As indicated above
we found many significant tissue-specific seasonal ex-
pression differences and all of these were in the direc-
tion predicted by our other whole-fish studies. The most
pronounced seasonal expression profile occurred in the
gill (and this profile most closely reflected seasonal
change at the whole-fish level). Furthermore, the gill
contained the most intense concentration of T-cell
activity outside of the thymus, with elevated expression
of T-cell associated genes such as cd8a and foxp3b, and
expression of these genes was seasonal in the gill but
non-seasonal in the thymus. These observations are con-
sistent with the known responsiveness of immune gene
expression in the teleost gill to environmental stimuli [50],
and also with the recent discovery and characterization of
extensive, T-cell rich, interbranchial lymphoid tissue (ILT)
in teleost fishes [12, 51–53]. Our results suggest the possi-
bility that ILT may have an important role in seasonal im-
mune function.
Finally, and whilst the present study is intended to

characterize the seasonal dynamics of gene expression,
rather than identify environmental causation, we briefly
consider what external agents may drive the responses
that we observed. In highly seasonal temperate zone
habitats, such as the ones we consider here, each of
temperature, diet, photoperiodic responses, pathogen ex-
posures, or other biotic or abiotic manifestations of the
environment, could be involved to unknown degrees. In
the future, by matching detailed field observations with
mesocosm studies and laboratory experiments, we ex-
pect to dissect the relative contributions of these influ-
ences to seasonal immune variation and to the immune
phenotype more generally.

Conclusions
Our results suggest that in wild teleosts, during winter
conditions, adaptive immune activity declines in a man-
ner that involves the expression of regulatory genes af-
fecting lymphocyte function. This is indicative of a
controlled, strategic response rather than a simple kin-
etic tracking of environmental temperature. Seasonal
change is most prominent in the gill, suggesting ILT
may be important in such responses. Further broad at-
tention to seasonal immune function is certainly
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warranted, given the likely practical relevance – through
effects on infectious disease susceptibility and inflamma-
tory status – to health in humans and domesticated ani-
mals and to fitness in natural populations.

Methods
Sampling and habitats
Samples of three-spined sticklebacks (Gasterosteus acu-
leatus L.) for transcriptomic analysis were taken at 9:00–
12:00 h (UTC) in September 2012 and in March 2013,
outside of the breeding season and respectively prior to
the autumnal and vernal equinoxes. Specimens were col-
lected at two contrasting sites in the Ceredigion area,
mid Wales, U.K. (8–10 individuals/site/sampling point).
One site (FRN) was a 7.2 ha upland lake, Lake (Llyn)
Frongoch, 13.7 km from the sea at an elevation of 280 m
(52.3599,–3.8776). The other (RHD) was a non-tidal
minor channel of the River (Afon) Rheidol, 3.5 km from
the sea at an elevation of 10 m (52.4052,–4.0372).
Additional specimens for corroborative tissue-specific

quantitative real-time PCR (Q-PCR) gene expression
studies (September 2012, n = 5; March 2013, n = 10)
were collected from a site (STO) on the river Stour in
Sussex, U.K. (51.9544, 1.0222). The STO site was in a
small, tidal side-channel of the main river at an elevation
of 1 m and 2.2 km inland from the tidal sluice opening
into the main estuary.
U.K. meteorological office records indicate that March

2013 encompassed extended winter conditions and was
the coldest U.K. March since 1962 and joint second
coldest since 1910 [54]. Weather patterns in September
2012 were unremarkable for the time of year. Water
temperatures at the study sites varied across an approxi-
mate range of 13–20 °C in September and 0–5 °C in
March; the FRN and STO samples in March were col-
lected from habitats with superficial ice formation.
To avoid the confounding of variation between Sep-

tember and March with individual ontogeny, all samples
were selected to contain a wide (extensively overlapping)
range of sizes. Sample characteristics are summarised in
Additional file 8: Table S6 (and there was no significant
winter-summer difference in length for any of the
locality-specific sample sets). Given considerations of
timing and environmental temperature, the (widely over-
lapping) potential effective age variation in our samples
is set out in Additional file 4. The use of body size as an
age indicator is validated by data from our outdoors arti-
ficial habitats (see below), where time explains a mini-
mum of 57 % of variation in individual body length over
a 12 month study interval, even given a heterogenous
starting population of wild fishes that varied in length by
a factor of up to × 1.6 (see Additional file 4: Figure S1).
Thus, it was possible to partition the effects of age in

statistical models (described below) through the inclu-
sion of body length as a surrogate term.
In addition, and also for the purpose of corroborative

Q-PCR gene expression measurements, we considered
samples of fishes from FRN (~10 individuals/month),
RHD (~10 individuals/month) and 12 outdoors artificial
300 L habitats (~20 individuals/month) from October
2013 to September 2014. The artificial habitats were lo-
cated on the Aberystwyth university campus and stocked
in August-September 2013 with post-larval fishes from
FRN which were given 2 × anti-parasitic Praziquantel
treatments (24 h at 4 mg l−1; FlukeSolve, Fish Treatment
Limited) to prevent Gyrodactlylus epizootics and main-
tained on a diet of frozen mini bloodworm (Tropical
marine centre) adequate for normal growth. Water
temperature within the artificial habitat units was un-
controlled, or was controlled a small increment (2 °C)
above the ambient temperature in adjoining uncon-
trolled units. U.K. meteorological office climate summar-
ies [55] confirm that this 2013–2014 sampling period
occurred across average autumn temperatures, above
average winter and spring temperatures, lacking frost
conditions, and a summer period lacking extremely hot
weather.
All animal maintenance and sampling of animals in

the field followed U.K. Home Office (HO) regulations
and local (Aberystwyth University) ethical procedures.
Whilst parasite infections are not considered explicitly

in the present study, the river (RHD) and lake (FRN)
populations studied supported divergent and predictable
macroparasite communities (with limited seasonality)
(unpublished data), whose differential influences are
likely to emerge primarily in the site effect of analyses
described below. There was no evidence of infection or
pathology in any of the specific organs used for tissue
comparisons.

Sample handling, nucleic acids processing and library
preparation
Sticklebacks were captured individually using a dip net
and immediately killed by concussion and de-cerebration
and stored in RNAlater™ at ambient temperature. On re-
turn from the field (within 1–2 h) the samples were trans-
ferred to 4 °C overnight and then to -80 °C for long-term
storage. Immediately prior to RNA extraction, sticklebacks
were thawed at 4 °C, dabbed dry with tissue and weight
(mg) and standard length (mm) recorded. For transcrip-
tomic studies, RNA from whole fishes was extracted using
the Isolate II RNA mini kit (Bioline): whole individual
fishes were homogenized in lysis buffer using a
5 mm stainless steel bead (Qiagen, 69989) in a
Qiagen TissueLyser LT system and a standard aliquot
of the homogenate passed through the manufacturer-
recommended protocol. RNA extracts were subjected
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to standard quality control diagnostics and individu-
ally barcoded cDNA libraries (mRNA focussed) for
36 fishes were prepared using the TruSeq RNA
Sample Preparation Kit v2 (Illumina).
For Q-PCR, RNA was extracted from the 2013–2014

monthly samples as above, whilst RNA from the STO
samples was extracted using the RNAqueous-Micro Total
RNA Isolation Kit (Life technologies). All samples were
DNase treated prior to conversion to cDNA with the
High Capacity RNA-to-cDNA Kit (Life technologies).

Next generation sequencing and differential expression
analysis
Individually barcoded Truseq sequencing libraries were
sequenced using 4 lanes of an Illumina HiSeq2500 se-
quencer at IBERS, Aberystwyth University. Libraries for
2 summer individuals and 2–3 winter individuals from
each locality were run on each lane (thus balancing dif-
ferent sampling units across lanes). Following removal of
adaptors, the output paired end reads (~110 bp) were
quality-controlled using FastQC [56] and the leading
10 bp of all reads trimmed prior to analysis via the Cuf-
flinks suite of programmes [26]. Reads were mapped to
the stickleback genome (Broad, gasAcu1) using Tophat
and de novo assembled into transcripts using Cufflinks.
Transcripts from all samples were merged with Cuff-
merge, using the USCS genes annotation (for gasAcu1)
as the reference annotation. Differential gene expression
analyses were run for each of the sites separately using
Cuffdiff with parameters set for geometric library
normalization, pooled dispersion estimation, a false dis-
covery rate of 0.05, a minimum alignment count of 10,
and using multi-read correction and bias correction. For

subsequent analyses, FPKM data for individual loci were
generated with Cuffnorm. Predicted genes with <0.5
FPKM mean expression or >50 % undetectable expres-
sion were excluded from all analyses below.

Q-PCR gene expression measurements
Quantitative real-time PCR (Q-PCR) gene expression
measurements were carried out in a 2-step format with
SYBR Green chemistry. Primers sets (Table 1) used to
assay target (il1r-like, tbk1, orai1, cd8a, foxp3b) and en-
dogenous control genes all featured intron-spanning
primers and were determined to be 100 ± 10 % efficient
under reaction conditions. Samples were run in a 384-
well plate format on a Life technologies QuantStudio
12 K flex real-time PCR system (2013–2014 monthly
samples) or in a 96-well plate format on a Life technolo-
gies StepOnePlus real-time PCR system (STO samples).
All assay plates included a calibrator sample run in trip-
licate, unknown samples run in duplicate and no-
template control wells. A proportion of samples were
also processed with reverse-transcriptase negative con-
trols. For the 384-well plate assays, each assay plate was
pipetted by an Eppendorf epMotion M5073 robot. En-
dogenous control genes, yipf4 and acvr1l, were selected
as an optimally stable pairing for whole-fish analyses by
the NormFinder algorithm [57] applied to the RNAseq
expression data (FPKM). Genes entered into this analysis
were previously filtered from the genome-wide set by a
lack of seasonal expression bias at both RHD and FRN,
an overall coefficient of variation <12 %, detectable ex-
pression in all samples, and mean FPKM > 5. Genes yipf4
and acvr1l were also used as endogenous controls for
within-tissue expression comparisons in different tissues
(spleen and head kidney, thymus, gill, intestine, skeletal
muscle). A lack of tissue-specific seasonal variation in
these genes was indicated by the fact that, for each
tissue, threshold cycle (Ct) difference with respect to
the same gene in the calibrator sample (Ct gene xi
calibrator – Ct gene xi sample), ΔCtcalibrator, did not
show significant winter vs summer variation in gen-
eral linear models (LMs) with explanatory terms for
season and 3 measures of sample quality (log10 RNA
concentration [ng μl−1], 260 nm/280 nm absorbance
ratio, 260 nm/230 nm absorbance ratio and their
quadratic terms). For assays normalized to endogenous
control genes (2013–2014 monthly samples and within-
tissue comparisons in STO samples), relative expression
(indexed to the calibrator sample) was calculated using
the ΔΔCt method. For expression comparisons between
tissues (STO samples), normalization to endogenous
control genes was not used as invariant expression of
individual genes across many tissues is unrealistic. In
these cases tissue-specific expression was derived as
the ΔCtcalibrator values predicted for each tissue by a

Table 1 Primers used for quantitative real-time PCR (Q-PCR)
measurements

Gene Ensembl gene number Primers

cd8a ENSGACG00000008945 F - CCACCCTGTACTGCAATCGA

R - CCGCCTGCTGTTTTCTTTTG

foxp3b ENSGACG00000012777 F - TCTGAACACAGTCATGGGGAGA

R - CCAGGATGAGCTGACTTTCCA

orai1 ENSGACG00000011865 F - GCACCTCGGCTCTGTTGTC

R - CCATGAGGGCGAAGAGGTGTA

tbk1 ENSGACG00000000607 F - AGACGGAGCAGCTGTTCGA

R - GCATATCTCATCATATCTGACGACAT

il1r-like ENSGACG00000001328 F - GAACGCGAGAACTGCAAGAAC

R - GGGACGCTGGTGAAGTTGAA

acvr1l ENSGACG00000010017 F - CACTTTAGCGGAGCTGTTGGA

R - AGAAAAGGAAGTCCGGAACCA

yipf4 ENSGACG00000002189 F - CCCTCAAACGGAGACTTTACGT

R - GGTGCCGCTGAGCTCTTC
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linear mixed model (LMM) with a random term for
individual fish and fixed terms for tissue, season and
sample quality measures (as above). An alternative ap-
proach to normalization in the between tissue com-
parisons, using global normalization (normalization of
each gene to all of the other genes), produced a simi-
lar interpretation. Calibrator samples were created by
pooling cDNA aliquots from all individual samples
for the 2013–2014 monthly analysis, and by pooling
equal cDNA aliquots from 20 whole-fish (sampled in
September) for the STO analysis.

Analyses of RNAseq data
As a small preliminary exercise to assess the relevant infor-
mation content of the Broad gasAcu1 assembly for our
wider study, we arbitrarily selected a panel of 31 immuno-
logical genes-of-interest whose existence would be expected
to be conserved in a lower vertebrate genome and searched
for these in the Ensembl stickleback database and the
gasAcu1 genome assembly. From this list, 26 (84 %) were
associated with predicted database genes (annotated), 3
(10 %) were detectable in the genome assembly but not an-
notated in the database and 2 (6 %) were absent from the
database and genome assembly. In all cases fragments of
the genes (confirmed by sequencing) were amplifiable by
PCR using primers designed from the assembly sequence,
or, in the case of the two missing genes, fragments (also
confirmed by sequencing) were amplified using primers de-
signed from conserved regions in multi-species (teleost)
alignments. After filtering out low expression genes (see
above), the RNAseq dataset contained 20947 predicted loci.
Of these, 16575 (79 %) matched genes in the Ensembl G.
aculeatus database. These data suggested that although a
proportion of real genes were missing in the stickleback
genome assembly, sufficient information was present to
take a broad view of genome-wide expression patterns.
Genes were classified as summer- or winter-biased if

they were significantly biased in the same direction at
both RHD and FRN at an individual error rate (P < 0.05)
based on Cuffdiff output; this represents a combined in-
dividual P <0.0025, in practice a more stringent cut-off
than a False discovery rate (FDR)-adjusted P = 0.05
threshold for a single locality. For unannotated predicted
loci that were seasonally-biased we performed a series of
standardized Blast (tblastx) searches that identified a
small number of additional genes with high confidence.
For analyses involving comparisons to curated gene sets,

we used Ensembl Biomart [58] to convert the identifiers for
annotated stickleback genes to the HGNC symbol for an
estimated orthologous human gene. Where there were
multiple predicted human orthologues (typically related in
broad function), a single estimated orthologue was ran-
domly retained per stickleback gene. Similarly, where more
than one stickleback gene shared the same predicted

human orthologue, only one of these was randomly
retained in the gene list. Thus only annotated stickleback
genes with a corresponding predicted human orthologue
and HGNC symbol were considered in these analyses.
Immune-associated genes were initially defined by hom-

ologous relationships with genes from the relatively inclu-
sive ImmPort comprehensive list of immune-related genes
[17]. Seasonally-biased genes from this list were individu-
ally, manually assessed for core immune functions (evi-
dence of direct involvement in immune effector or
regulatory activity) using links from the gene list report in
DAVID 6.7 and from GeneCards v. 4.0.
Gene set nrichment analysis (GSEA v2.1.0) [59, 60] was

used to investigate whether a priori defined gene sets
showed significant expression differences between winter
and summer samples. Separate GSEA analyses were car-
ried out for FRN and RHD (Fig. 1a), using ranked winter-
summer expression changes (GSEAPreranked), and com-
paring to all KEGG (c2.cp.Kegg.v.5.0.symbols.gmt) and
REACTOME (c2.cp.Reactome.v.5.0.symbols.gmt) pathway
gene sets within the MsigDB database [60]. FDR-adjusted
P values from this analysis were combined for the two lo-
calities by Fisher’s method [61] and combined FDR P
values < 0.05 were considered further. In parallel, more
targeted GSEA analyses were carried out using smaller
numbers of selected REACTOME and GO gene sets to
represent different immunological processes and also
wider organismal processes (growth, responses to stress,
metabolism, reproduction). Applying hypergeometric dis-
tribution tests (Fisher’s exact test) for overlap between
gene sets, these selected gene sets were additionally used
to probe the sets of winter-biased and summer-biased
genes identified above, and sets of genes from modules
identified by network analyses (see below).
The information-theory (mutual information, MI)

based programme ARACNe2 (Algorithm for the con-
struction of accurate cellular networks) [62] was applied
to predict networks of interactions between gene prod-
ucts. Simulation studies [63] indicate this approach re-
tains useful accuracy at sample sizes of the order utilized
here (n = 36 fishes with transcriptomic data). Working
with log2-transformed data we constructed the following
networks: for seasonally-biased core immune genes
alone (Network 1); for the full genome-wide set of
seasonally-biased genes (Network 2); for the full set of
ImmPort list immune-associated genes, whether these
were seasonally-biased or not (Network 3); for the core-
seasonally-biased immune genes and, in addition, groups
of genes from the sets we used to represent wider organ-
ismal processes (selecting those that tended to be
seasonally-biased in GSEA analyses) (Network 4). In
Network 1 and 4 all genes were set as hubs, whilst in
Networks 2 and 3 the seasonally-biased core immune
genes were set as hubs. Networks were constructed with
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the adaptive partitioning algorithm, using a mutual in-
formation (MI) threshold estimated by a pre-processing
run. For the networks shown, P thresholds were set at
1 × 10−5 (Networks 1 and 3), 1 × 10−4 (Network 2) or
1 × 10−6 (Network 4), with correction for the number of
markers in the case of Networks 1 and 4. All networks
shown were bootstrapped (2000 resamples; significance
cut-off for reported edges, P = 1.0 × 10−6). Cytoscape 2.8
was employed to visualize networks (initially using
force-directed layouts, from which the layout of nodes
was sometime modified for clarity of presentation) and
to calculate network statistics (Network Analyzer plugin).
Betweenness centrality [64] was calculated to represent
the centrality of nodes within a network (and thus the
tendency of indirect connections across the network to
route via that node). Eccentricity, the maximum path
length connecting a node to any other node in the net-
work, was also calculated to (inversely) reflect nodes that
lie at the centre of a network. Both of these quantities
might be indicative of the regulatory influence of indi-
vidual nodes by reflecting their tendency to be co-
expressed (and thus perhaps co-regulated) with many
other nodes [65].
Principal co-ordinates analysis (PCO) of log2 trans-

formed FPKM gene expression values was employed to
ordinate individuals across other study variables (LabDSV
package, R). First principal component scores from princi-
pal components analyses (PCAs) on the correlation matrix
were used to represent the major axis of covariation
within genes sets in some analyses. The R package GeneO-
verlap was used to compute overlap statistics amongst
gene sets (significance tests based on a hypergeometric
distribution, odds ratios and Jaccard similarity indices).
For general linear model (LM) analyses of bulk sets of
genes, models were fitted to log2 transformed FPKM data
and statistics extracted using the lm and associated func-
tions in R. For analyses focussing on smaller numbers of
genes, equivalent models were run with transformations
applied on a case-by-case basis based on standard model
diagnostics. Small structural equations models (path ana-
lysis) and generalized additive models (GAMs) were re-
spectively implemented in the R packages Lavaan and
mgcv. All analyses with R used version 3.1.0.

Availability of supporting data
Sequencing data will be available in the European Nucleo-
tide Archive under primary accession number PRJEB13319.
Other supporting data are available as additional files.
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