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Highlights 

 

We show that the majority of global dryland plant communities are best fitted by lognormal 

distribution. The lognormal was associated with low annual precipitation, higher aridity, high 

soil carbon content, and higher variability of climate variables and soil nitrate. Our results 

contrast to previous theoretical models that predict log-series distributions governed by high 

species turnover. As the lognormal distribution is linked to higher proportions of species with 

intermediate relative abundance our results suggests that drylands are more resistant to 

functional disturbance because species with intermediate relative abundances can take over 

ecosystem functioning if the environment becomes suboptimal for dominant species, enhancing 

resilience to environmental changes. 
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Abstract 

Theoretical models predict lognormal species abundance distributions (SADs) in stable 

and productive environments, with log-series SADs in less stable, dispersal driven 

communities. We studied patterns of relative species abundances of perennial vascular 

plants in global dryland communities to: i) assess the influence of climatic and soil 

characteristics on the observed SADs, ii) infer how environmental variability influences 

relative abundances, and iii) evaluate how colonisation dynamics and environmental 

filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 

sites containing at least 15 species of perennial vascular plants. The dependence of 

species relative abundances on soil and climate variables was assessed using general 

linear models. Irrespective of habitat type and latitude, the majority of the SADs 

(70.3%) were best described by a lognormal distribution. Lognormal SADs were 

associated with low annual precipitation, higher aridity, high soil carbon content, and 

higher variability of climate variables and soil nitrate. Our results do not corroborate 

models predicting the prevalence of log-series SADs in dryland communities. As 

lognormal SADs were particularly associated with sites with drier conditions and a 

higher environmental variability, we reject models linking lognormality to 

environmental stability and high productivity conditions. Instead our results point to the 

prevalence of lognormal SADs in heterogeneous environments, allowing for more 

evenly distributed plant communities, or in stressful ecosystems, which are generally 

shaped by strong habitat filters and limited colonisation. This suggests that drylands 

may be resilient to environmental changes because the many species with intermediate 

relative abundances could take over ecosystem functioning if the environment becomes 

suboptimal for dominant species. 

 

Keywords: aridity, species abundance, competition, lognormal distribution, log-series 

distribution, habitat filtering, soil fertility, climate 

Category: Community Ecology 
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Introduction 

 

Since its introduction by Raunkiær (1909), species abundance distributions (SADs) 

have been extensively studied by ecologists (reviewed in McGill et al., 2007; Matthew 

and Whittaker, 2014, 2015). They provide an exhaustive description of the distribution 

of species abundances within an ecological community (Magurran, 2004; McGill et al., 

2007; Dornelas et al., 2011; Matthews and Whittaker, 2015), and have been linked to 

differential resource use and competitive strength (Sugihara, 1980; Tokeshi, 1998; 

Pueyo, 2006), disturbance regimes (Gray and Mirza, 1979), stochastic processes (May, 

1975, Šizling et al., 2009), or species-specific dispersal rates (Hubbell, 2001; Zillio and 

Condit, 2007). SADs can be grouped into two particular classes of distributions: the log-

series and the lognormal (Fig. 1; Connolly et al., 2005; Ulrich et al., 2010, 2016). The 

lognormal is characterized by a comparably high number of species with intermediate 

abundance and smaller numbers of very abundant and very rare species (Fig. 1). In turn, 

the log-series lacks a distinct group of very rare species (Fig. 1). Although it is difficult 

to relate these models to a particular underlying mechanism (cf. McGill et al., 2007; 

Ulrich et al., 2010; Cheng et al., 2012; Locey and White, 2013, but see Alonso et al., 

2008), lognormal SADs are more likely to be found in closed communities with low 

temporal and spatial species turnover and a high proportion of species with intermediate 

abundances (a proper ‘middle class’ of species) (Magurran and Henderson, 2003) if 

they are shaped 1) by multiple stochastic processes, independent of niche 

differentiation, resource use, or competitive ability as predicted by the central limit 

theorem of statistics (Preston, 1948; May, 1975; Connolly, et al. 2005; Šizling et al., 

2009), 2) by sequential niche partitioning, where competitive strength with respect to 

dominant niche axes governs the distribution of species abundances (MacArthur, 1957; 

Sugihara, 1980; Tokeshi, 1998; Pueyo, 2006), or 3) by environmental filters, such as 

climate and soil characteristics that select for certain species and species combinations 

and limit colonisation (Green and Plotkin, 2007; Zillio and Condit, 2007; Maire et al., 

2012). On the other hand, log-series SADs are expected to occur 1) in open colonisation 

driven communities with high degrees of dispersal and species turnover (Volkov et al., 

2005; Zillio and Condit, 2007; Hirao et al., 2012) or 2) in incomplete samples from 

larger species pools (Fisher et al., 1943).  
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Species abundance distributions have been theoretically linked to environmental 

conditions and gradients (reviewed in Magurran, 2004; McGill et al., 2007; Dornelas et 

al., 2011). Some authors assume that lognormal SADs prevail in stable, undisturbed 

environments, while log-series SADs will be found in disturbed habitats with higher 

temporal or spatial variability (e.g. Gray et al., 1979; Gray and Mirza, 1979; Hamer et 

al., 1997; Hill and Hamer, 1998; but see Nummelin, 1998). Whittaker (1975) and 

Hubbell (1979) linked lognormal SADs to higher environmental productivity. 

Consequently, log-series SADs should predominate at unproductive, e.g. arid, sites. 

However, the direct influence of environmental conditions on abundance distributions 

has been very rarely studied empirically. The few existing studies mainly focus on 

community recovery after severe disturbances (Mouillot et al., 2000), gradients of 

environmental pollution (e.g. Gray et al., 1979; Death, 1996; Qu et al., 2008), and 

successional stages (e.g. Whittaker, 1965; Bazzaz, 1975; Zaplata et al., 2013). Taken 

together, current evidence indicates that a directional shift from log-series towards 

lognormal SADs may occur with increasing intensity of interspecific competitive 

interactions and habitat stability (Tilman, 1982; Lan and Bai, 2012).  

Our knowledge about plant species abundance distributions stems mainly from 

work done in forests (Hubbell, 1979; Morlon et al., 2009; Ulrich et al., 2015) and 

temperate grasslands (Bazzaz, 1975; Maire et al., 2012). With the exception of 

Whittaker’s (1965) classical report of a lognormal SAD for Arizona desert plants, 

similar distributions in arid, semi-arid and dry-subhumid regions (drylands hereafter) 

have so far not been studied. Drylands, including a variety of habitat types like 

grasslands, scrublands and savannahs, occupy more than 40% of the terrestrial surface 

area (Safriel and Adeel, 2005) and are vulnerable to human disturbances (Maestre et al. 

2012a) and changing climate (Körner, 2000; Reynolds et al., 2007; Dai, 2013), which in 

turn affect nutrient cycles (Maestre et al., 2012b). We do not know whether the 

abundance patterns observed in forests can be generalised to drylands, and how changes 

in environmental conditions affect the SADs of dryland communities. As plant 

abundances are directly related to important ecosystem functions in drylands, like 

primary production and nutrient cycling (Gaitán et al., 2014; Maestre and Escudero, 

2009), such knowledge can also greatly contribute to our understanding of the 

consequences of global change on ecosystem functioning in these areas (Maestre et al., 

2012a; Maire et al., 2012). 
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Here we evaluate how environmental factors affect the SADs of 91 dryland 

communities from all continents except Antarctica and from three different vegetation 

types obtained within an international, large-scale dryland survey (Maestre et al., 2012b, 

Delgado-Baquerizo et al., 2013). We focus on the gradient between the log-series and 

the lognormal type SAD. Based on the available knowledge, we assumed that highly 

variable environmental conditions would favour unstable and dispersal-driven 

communities (reviewed in Fraterrigo and Rusak, 2008), while water-rich, productive 

environments favour stable, competition driven communities (Whittaker, 1979; 

Hubbell,1979). These assumptions lead to four basic starting hypotheses regarding 

dryland plant communities: (1) arid, and therefore low productive, communities are 

dominated by log-series SADs; (2) woodland communities, typically dominated by a 

few species (reviewed in Carson and Schnitzer, 2011), should follow log-series 

distributions; (3) lognormal SADs dominate in species rich communities; and (4) log-

series SADs are linked to both increased environmental variability and decreased 

importance of habitat filtering.     

      

Materials and methods 

Study sites and sampling protocol 

Field data were obtained from 230 sites established across precipitation gradients in 17 

countries from five continents (Argentina, Australia, Botswana, Brazil, Chile, China, 

Ecuador, Iran, Israel, Kenya, Mexico, Morocco, Peru, Spain, Tunisia, USA and 

Venezuela). Sites were chosen to cover a wide spectrum of abiotic (climatic, soil type, 

slope) and biotic (type of vegetation, total cover, species richness) features 

characterizing drylands worldwide. These sites include the 224 sites used in Maestre et 

al. (2012b) plus six additional sites in Botswana surveyed in 2012. We restricted our 

study to arid, semi-arid and dry-subhumid ecosystems, defined as sites with an aridity 

index (precipitation/potential evapotranspiration) between 0.05 and 0.65. The sites 

cover all major biogeographic regions and three basic vegetation types (open 

woodlands/savannahs, scrublands, and grasslands). All study sites were sampled 

quantitatively following the same protocol. At each site, we surveyed 80 1.5 m × 1.5 m 

quadrats along four 30-m long transects separated eight meters from each other (see 

Maestre et al. 2012b for full methodology). In each quadrat, we measured the cover of 
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perennial plant species and used the total counts to construct the respective vectors of 

relative abundances. Thus all abundance distributions are based on complete censuses. 

A low number of species per site increases the noise in the SAD fits (Wilson et al. 

1998), while selecting a high minimum number of species greatly reduces the number 

of sites (and vegetation types) considered, making statistical inferences challenging. As 

a compromise, we retained for the purpose of our analyses sites with more than 15 

species of perennial vascular plants (91 sites in total). Nevertheless, and to assess the 

robustness of our analysis, we compared the results obtained from these sites with those 

obtained from an extended data set (166 sites) including at least 10 species (as 

recommended by Ulrich et al. 2010 as the lower limit for reliable fits) and from a 

reduced data set (55 sites) including at least 20 species per site. As the results from 

these three data sets were qualitatively similar, we only report the results obtained with 

the 91 sites having 15 species or more. We show the results obtained with the reduced 

and extended data sets in the electronic supplement S1 (Tables A1-A6, Figs. A1-A4).  

 

Biotic and abiotic factors 

Using a stratified sampling design, we sampled the top 7.5 cm of the soil from up to 

three different microhabitats per site. These microhabitats always included a location 

with bare soil (i.e. devoid of perennial vascular plants), as well as sites dominated by 

perennial vegetation (e.g. under trees, shrubs or grasses, depending on the dominant 

growth forms present at each site). Five samples were collected from each microsite, 

yielding between 10 and 15 samples per site. Soil samples were air-dried at room 

temperature, sieved (< 2 mm fraction) and analysed in the laboratory to obtain a range 

of physio-chemical analyses. In each soil sample we measured pH, organic carbon, 

available phosphorus, and nitrate content as described in Maestre et al. (2012b). These 

variables were selected because they are either appropriate surrogates of overall soil 

fertility and nutrient availability for plants in drylands (carbon and  nitrogen variables; 

Whitford, 2002) or they are surrogates of abiotic variables that control nutrient 

transformations and availability in soils (e.g. pH; Reth et al., 2005). Thus, we expect 

them to be important factors influencing the relative abundance distributions of plant 

species. Soil variables were pooled to a single site-level value by weighting the values 

found underneath vegetation or in bare ground areas by their respective cover within the 

site (cf. Maestre et al., 2012b). As a measure of habitat variability, we calculated for the 
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four soil variables their respective coefficients of variations based on the 10-15 samples 

obtained per site.  

We also obtained climatic data for each site using Worldclim 

(http://www.worldclim.org; Hijmans et al., 2005). From this database, we extracted the 

altitude of each site, the mean annual temperature and precipitation, and annual 

seasonality. As we expected to see changes in relative abundances along climatic 

gradients, particularly along the gradient from moist to dry, we calculated the UNEP 

aridity index as the quotient of annual precipitation and evapotranspiration. To give a 

more readily interpretable result, we used the aridity level (1- aridity), which is directly 

related to aridity (higher values indicate higher aridity conditions). Aridity was 

estimated using the Global Aridity Index (Global-Aridity) dataset (http://www.cgiar-

csi.org/data/global-aridity-and-pet-database; Zomer et al., 2008; Trabucco and Zomer, 

2009), which is based on the interpolations provided by the Worldclim database.  

 

Fitting of relative abundances 

We fitted lognormal (fitnorm) and log-series (fitlser) models to the observed SADs as 

in Ulrich et al. (2010). For this task we used rank-log abundance (Whittaker) plots that 

show the log-transformed species abundances for each species ranked in declining 

abundance order (Fig. 1). These plots are superior to classical distribution (Preston) 

plots for fitting as they do not lose information and are not biased due to the grouping of 

species (Nekola et al., 2008, Ulrich et al., 2010). For each rank-log abundance plot, we 

used a maximisation algorithm (implemented in the software application RAD 2.0, 

Ulrich 2013) that iteratively encapsulates parameter values to find those that minimise 

the average least square differences of observed and predicted relative abundance, 

respectively 

𝑓𝑖𝑡 =
∑ (𝑙𝑛𝐴𝑖,𝑜𝑏𝑠−𝑙𝑛𝐴𝑖,𝑝𝑟𝑒𝑑)

2𝑆
𝑖=1

𝑆
   (1) 

where Ai,obs and Ai,pred are the observed and expected (according to either the lognormal 

or the log-series model) relative abundances of species i in the community of S species, 

respectively. We used least squares differences for fitting as they put comparably high 

weight on rare and abundant species (Connolly and Dornelas, 2011) thus increasing the 

power to discriminate between the lognormal and the log-series models (Ulrich et al., 

2010). In this respect, we note that major axis and reduced major axis have less 

http://www.cgiar-csi.org/data/global-aridity-and-pet-database
http://www.cgiar-csi.org/data/global-aridity-and-pet-database
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discriminative power in the present context as both methods put higher weight on 

species with intermediate abundance.   

As fit (eq. 1) equals the residuals sums of squares we compared the relative fits of 

both distributions using the corrected Akaike information criterion in the form  

𝐴𝐼𝐶𝑐 = 2𝑘 + 𝑆ln𝑓𝑖𝑡 +
2𝑘(𝑘+1)

𝑆−𝑘−1
   (2) 

The lognormal SAD has k = 3 free parameters (richness S, shape, and error), the log-

series is a four parameter model (S, slope , abundance range parameter X, and error). 

We used AICc = fitlognormal – fitlog-series to identify the better fitting model and assigned 

models with AICc > |10| as fitting significantly better, while models with -10 > AICc 

> 10 were considered as possibly fitting equally well (Burnham and Anderson 2002). 

Used in this way AICc < -10 indicates a clear better fit of the lognormal SAD model 

whereas AICc > 10 indicates a clear better fit of the log-series.  

As species differ in their probability in obtaining particular least squares values 

(Connolly and Dornelas, 2011), least squares fitting applied to non-linear data might 

introduce a statistical bias when comparing SADs of different species richness. We 

minimized this possible bias in two ways: first, we always compared the two model fits 

for the same community and second, we included species richness as an extra predictor 

in our analyses. Locey and White (2013) highlighted the problem of comparing SADs 

from communities with different species richness and total abundance. Here we 

minimize this problem, as we always fit both models to the same community and 

subsequently compare the respective relative fits among communities.   

Ulrich et al. (2010) studied a third basic shape, the power function, and found it to 

be rarely realised in natural communities except for some species rich forest tree data. 

Nevertheless, we checked the frequency of power function SADs in the global dryland 

data set. Our data confirmed the results of Ulrich et al. (2010) and revealed a low power 

to discriminate between log-series and power function shapes. Thus, we did not 

consider this model here, but present respective numbers of best and worst fits of all 

three models (lognormal, log-series and the power function) in the electronic 

supplement S1 (Table A7).    

An auxiliary measure of model fit is the skewness of the abundance distribution (). 

The symmetrical lognormal is not skewed. Unsymmetrical lognormal SADs have nearly 

always an excess of rare species, and consequently a negative skewness (McGill, 2003). 

The log-series has an excess of relatively abundant species (associated with a positive 
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skewness) mostly in cases of incomplete sampling. An excess of relatively rare species 

(negative skewness) has been theoretically linked to communities characterised by high 

colonisation dynamics (Zillio and Condit, 2007).  

As an approximate measure of SAD variance, the concept of evenness is closely 

related to the distribution of relative abundances (McGill et al., 2007). We assessed the 

evenness (E) in species abundances using the Shannon diversity metric H:  E = H/ln(S). 

The data used for the present study containing the fits and the respective AICc values 

for each study site are available from figshare (Maestre et al., 2015). 

 

Statistical analyses 

We first evaluated whether dryland SADs generally fit best to log-series 

distributions by qualitatively analysing the proportion of communities fitting better by 

either the lognormal or log-series distributions. To test whether the SADs of different 

vegetation types (grassland, scrubland, woodland) fit better to either the lognormal or 

the log-series model, the respective ΔAICc were compared using one-way ANOVA.  

We used ordinary least squares general linear model analysis (GLM) to link the 

AICc scores (eq. 2) to environmental data. Environmental data included those variables 

directly or indirectly related to site productivity, such as elevation, temperature, rainfall, 

soil pH, organic C, available P and nitrate. We added species richness as an additional 

covariate to exclude the possible influence of richness on the relationship between SAD 

type and environmental variables.  Our SAD fits and predictors were moderately 

spatially autocorrelated (Moran’s I < 0.5). However, the global distribution of our sites 

would cause any spatially explicit modelling, like simultaneous autoregression 

modelling or similar techniques, to artificially concentrate a large part of the variance in 

environmental data in the spatial distance matrix, thereby masking the underlying 

influences of the environment (Hawkins, 2012). However, and to account for the spatial 

structure present in our data, we included the dominant eigenvector of the associated 

geographical distance matrix as an additional predictor in the GLM analyses (Peres-

Neto and Legendre, 2010; Hawkins, 2012). This dominant spatial eigenvector is similar 

to the first component of a PCA with latitude and longitude and covered the large scale 

spatial structure of the sites, explaining 85% of total variance in the geographical 

distance matrix.  
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We selected as the most parsimonious models those with the lowest AICc, using 

the model selection routine of SAM 4.0 (Rangel et al., 2010). To verify our first starting 

hypotheses on the dependence of abundance distributions on the degree of productivity 

we related AICc, skewness, and evenness to latitude (and squared latitude), climatic 

and soil variables. Our second and third hypotheses were then tested by analysing the 

relationships between the AICc of each community, environmental variables, and its 

species richness. 

As our fourth starting hypothesis is about the influence of environmental 

variability, we evaluated separate models using the coefficients of variation of the 

environmental variables (mean and coefficient of variation of temperature, precipitation, 

pH, carbon, phosphorus, and nitrogen) as predictors. Pearson correlation coefficients 

between predictor variables were always lower than 0.7, and therefore multicollinearity 

problems in our analyses are unlikely. Because vegetation type is strongly linked to 

temperature and precipitation, we did not include vegetation type as a categorical 

variable into the regression models to avoid multicollinearity problems. To account for 

possible non-linearity and non-normal error structures, we compared these results with 

those obtained from generalised linear modelling using log-link functions and Poisson 

error structure. As this latter approach did not improve our results and was largely 

consistent with the main analyses shown here, we only present them in the electronic 

supplement (Tables A8 and A9). We used additive variance partitioning to assess the 

effects of single environmental predictors on AICc, skewness, and evenness.  

 

Results 

General patterns of species abundance distributions in drylands 

At the global scale, the lognormal model fitted definitely better (ΔAICc < -10) for 

58 of the 91 communities with at least 15 species (40.7%; Table 1). Only 10 

communities (10.0%) were definitely better fitted by a log-series (ΔAICc > 10) while 23 

communities (25.3%) scored intermediate (-10 ≤ ΔAICc ≤ 10). Although we found a 

prevalence of lognormal distributions in each vegetation type (Table 1), they differed 

with respect to SAD fit (one-way ANOVA: F3,87 = 3.7, P = 0.02). Tukey post-hoc 

comparisons pointed to grasslands as having a lower proportion of lognormal type 

communities (Table 1). Including sites with as few as 10 species made the results 
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increasingly noisy (electronic supplement S1, Table A1) while at ≥20 species per site 

(Table A2) results were qualitatively identical to those presented above.  

There was a significant latitudinal gradient in AICc indicating better fits of the 

lognormal in the Mediterranean communities (GLM r
2
 = 0.17, P < 0.01). South 

American communities tended to be better fitted by the log-series than European and 

North African communities (GLM r
2
 = 0.11, P < 0.05). Evenness peaked around the 

equator and decreased with increasing latitude (GLM quadratic regression r
2
 = 0.08, P 

[quadratic regression term] = 0.01), while skewness did not significantly vary with 

latitude (r
2
 = 0.03, n.s.).  

 

Assessing the relationships between SADs and site productivity and species richness 

After accounting for the effects of species richness and spatial autocorrelation, 

average annual precipitation was negatively linked to the fit of the lognormal model 

(Table 2, Table A4), and explained 8% of the variance in AICc. Communities best 

described by a log-series occurred along the whole precipitation gradient while better 

fits of the lognormal were largely restricted to values of annual precipitation below 650 

mm (Fig. 2a, ANOVA F1,89 = 5.1, P < 0.05, Fig. A2). Accordingly the GLM analysis 

(Table 2) indicated a positive correlation of log-series fit and annual precipitation. This 

covariance was also visible when using aridity as predictor (Fig. 2b). At aridity levels > 

0.5 there was a trend towards lognormal distributed SADs (GLM r
2
 = 0.05, P < 0.05). 

This trend was supported by the reduced data set (at least 20 species per site included: 

Fig. A2, GLM r
2
 = 0.16, P < 0.01). Among the soil variables, only carbon was 

consistently included in the regression models for AICc (Table 2, Tabs. A3, A4), and 

explained 6% of the variance. AICc decreased with increasing soil carbon content 

(Table 2) indicating a better fit of the lognormal in richer soils. This carbon influence 

was also corroborated by GLM Poisson regression (Table A7). Finally, we found 

AICc to be positively linked to available phosphorus (Table 2, 6% variance 

explanation, and Table A7).   

Positive and negative skewness measure the proportions of abundant and rare 

species, respectively. AICc model selection suggested carbon content (Table 2) was 

affecting skewness, although this variable explained less than 5% of variance and 

consequently was insignificant in the reduced data set (Table A4) and the GLM Poisson 

model (Table A8). Evenness was negatively linked to soil carbon content (11% of 
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variance explained) and these results were consistent regardless of the data subset used 

(Table 2, Tables A3, A4, A6).    

Consistently with our third hypothesis, species-rich communities were associated 

with lognormal SADs, and this result was consistent regardless of the environmental 

predictors included in the model (Tables 2 and 3). Species richness was, indeed, the 

strongest predictor of lognormal SADs and evenness when including average 

environmental conditions, and the second strongest predictor when including variability 

in such environmental predictors. 

 

Evaluating the relationship between SADs and environmental (soil and climate) 

variability 

The relative fit of the lognormal model increased with increasing seasonality in 

temperature (Table 3, A5, A6, A8) while seasonality in precipitation had no significant 

effect (Table 3, supplement S1: Tables A5, A6, A9). Despite of the lack of clear 

regressive trends linking AICc and soil variability (Table 3, Tables A5, A6, A8), our 

data indicate a distinctive model fit with respect to nitrate variability (Fig. 3a, Fig. 

A4A). Communities fitted better by a log-series were largely restricted to low nitrate 

variability. Further, lognormal communities significantly decreased in skewness (Fig. 

3b, r
2
 = 0.17, Fig. A4B) and increased in evenness (Fig. 3c, r

2
 = 0.16, Fig. A4C) at 

higher nitrate variability, while there were no such trends for log-series communities 

(Figs. 3b, c).   

  

Discussion 

General patterns of species abundance distributions in drylands 

Contrary to our first starting hypothesis (arid communities will be dominated by 

log-series SADs), our study adds dryland plants to the group of communities with a 

prevalence of lognormal abundance distributions (e.g. Tokeshi, 1998; Magurran and 

Henderson, 2003; Connolly et al., 2005; Ulrich et al., 2010). Irrespective of dryland 

habitat type (Table 1), we found that over two thirds of the communities studied were 

fitted better by the lognormal model, which predicts a relative excess of species with 

intermediate abundance. This finding is in line with the only comparable study by 

Whittaker (1965) on desert plant communities, but contrasts to results obtained with 

forest tree communities (Ulrich et al. 2010). Also Leigh (1999), Morlon et al. (2009), 
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and Ulrich et al. (2016) all report on the prevalence of log-series abundance 

distributions in tropical and temperate forest communities. Our results on dry 

woodlands contradict these findings (Table 1) and we reject our second starting 

hypotheses that assumes the tendency towards log-series SADs in woodland 

communities. Our results do not exclude the possibility that abundance distributions of 

dryland vegetation types, in general, differ from more humid forest communities. 

Therefore our results demonstrate caution is needed when making generalisations about 

abundance patterns obtained from single ecosystem types and their transfer to dryland 

plant ecosystems. 

The contrasting results from our forest and dryland sites call for a mechanistic 

explanation. The forest data studied by Morlon et al. (2009) and Ulrich et al. (2016) 

represent to a large extent secondary succession forests and plantations. These are 

generally characterised by small numbers of highly abundant and larger numbers of rare 

species, and thus lack the group of intermediately abundant species that characterizes a 

lognormal distribution (Preston, 1948). Such communities show a comparably low 

degree of evenness, and this community organisation is more in line with a log-series. 

Studies on boreal forests, containing a relatively low number of very abundant species 

(often even mono-stands) also reported log-series distributions (Whittaker, 1960). 

Similarly, in species-rich coral reefs (Connolly et al., 2005) and in tropical and 

relatively pristine forest communities (Hubbell, 1979; Volkov et al., 2003; Cheng et al., 

2012) lognormal SADs seem to prevail. Indeed, our data confirm the positive link 

between lognormal SADs and increased species richness (hypothesis 3).  

While our study sites comprise areas with different degrees of human activities, 

none of the studied sites are subject to intensive management such as cropping, 

fertilization or planting (Maestre et al., 2012b). Thus, our results and those from the 

literature indicate that less impacted ecosystems have a higher probability of following 

lognormal species abundance distributions. Consequently, dryland systems such as 

those studied tend to accumulate a ‘middle class’ of species with intermediate relative 

abundances. Having such a class may make drylands more resistant to functional 

disturbance because these species might take over ecosystem functioning if the 

environment becomes suboptimal for the dominant ones, potentially enhancing the 

resilience to environmental changes (Walker et al., 1999). 
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About a quarter of the communities evaluated (25.3%, Table 1) were roughly 

equally fitted by both models. This pattern is in line with previous reports (e.g. Hughes, 

1986; Magurran and Henderson, 2003; Ulrich and Ollik, 2004; Dornelas and Connolly, 

2008; Vergnon et al., 2012), who observed that SADs may be compound functions that 

capture contrasting parts of local communities and patterns of community assembly. 

These SADs might comprise on the one hand the stable elements of resident species 

following a lognormal distribution, and on the other hand the so-called satellite species, 

which have a high temporal dynamic and are best described by the log-series (Magurran 

and Henderson, 2003). Surprisingly, up to now there has been no systematic empirical 

study on how well the compound model fits SADs in communities across a variety of 

habitat-types and differing environmental conditions. Apart from the dynamics model of 

Hughes (1986) and recent work on speciation driven neutral communities (Vergnon et 

al., 2012) and hidden niche models (Barabás et al., 2013) focusing on multimodality, 

there is also no explicit theoretical model to predict the precise SAD shape.   

The large proportion of intermediate SADs also indicates that lognormal and log-

series SADs mark the endpoints of a continuum within which very different dominance 

structures might be realised (Magurran and Henderson, 2003). We speculate that the 

position within this continuum provides information about the trade-off between species 

interactions and colonisation – extinction dynamics by which a focal community is 

shaped. This trade-off should be triggered by the regional species pool size (the 

colonisation pressure), but also by environmental drivers that act as filters for potential 

colonisers. Both processes position a focal community into this continuum of SAD 

shapes. The fact that a relatively high proportion of our communities ranked 

intermediate on this continuum makes it probable that dryland communities are 

assembled by the interplay of colonisation dynamics and competitive interactions, 

consistent with studies on the formation of vegetation patterns in drylands (Rietkerk and 

Van der Koppel, 2008).  

 

Environmental triggers of changes in species abundance distributions 

Based on the global positive co-variation of species richness and productivity 

(Whittaker, 1975; Currie, 1991, but see Adler et al., 2011), Whittaker (1975) and 

Hubbell (1979) initiated the idea that SADs are linked to productivity gradients, with 

increasing lognormality at higher levels of productivity. Therefore, we expected to see a 
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negative correlation of ΔAICc with average precipitation and a respective positive 

correlation with aridity (hypothesis 1), as plant cover and productivity decrease with 

increasing aridity (Safriel and Adeel, 2005; Delgado-Baquerizo et al., 2013). This was 

not the case, as rather we found the opposite relationship between ΔAICc and annual 

precipitation (Table 2, Fig. 2a), and also a negative effect of species richness on ΔAICc 

(Table 2). Interestingly, Ulrich et al. (2016) reported a similar negative correlation of 

the fit of the lognormal distribution with precipitation and also with evapotranspiration 

in global forest communities. Therefore, both results do not corroborate the productivity 

hypothesis.  

This finding links the occurrence of lognormally distributed communities to sites 

with higher environmental (in this case water) stress. Ecological theory mainly predicts 

a connection of stress with the log-series, although we note that existing evidence for 

this assumption is scarce (Gray et al., 1979; Gray and Mirza, 1979; Death, 1996; McGill 

et al., 2007; Qu et al., 2008). Our results point to strong effects of habitat filtering, and 

consequently limited dispersal in stressful environments as the major process shaping 

SADs. Average conditions filter specific sets of species (Wiens and Graham, 2005), and 

the abundance rank orders are established in a subsequent step by the interplay of 

species interactions, reproductive success, and local extinction (McGill et al., 2007). 

Therefore, variability in environmental conditions appears to be more important for the 

variation in species composition and abundances between sites than average conditions 

(Violle et al., 2012). Indeed, we a found significant negative correlation between ΔAICc 

and the variability in temperature (Table 3) again indicating a link between 

environmental stress and the lognormally distributed abundances. These results 

contradict our fourth hypothesis (i.e. log-series SADs should be linked to both increased 

environmental variability and decreased habitat filtering), and indicate the existence of 

trade-offs in habitat variability with regard to certain abundance distributions, thus 

complicating the simple environmental variability – lognormal view (Gray et al., 1979; 

Hamer et al., 1997; Hill and Hamer, 1998).  

Accordingly, we found log-series SADs to be limited to soils with low nitrate 

variability (Fig. 3a). As nitrate variability also caused a negative skewness (Fig. 3b) and 

an increased community evenness (Fig. 3c), it apparently forces communities towards 

lognormal abundance structures with a small number of very rare species. These SADs 

are not predicted from colonisation driven models that possess a heavy tail of relatively 
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rare species, for instance neutral models without dispersal limitation (Hubbell, 2001; 

Zillio and Condit, 2007). Our results thus clearly point to variability as a mechanism 

promoting the emergence of lognormal distributions (Fig. 3a) and limiting local 

colonisation dynamics (Figs. 3b, c). Consequently, our findings do not corroborate the 

opposed variability – log-series model that predicts disturbed or unstable sites to have 

log-series distributed communities (Gray et al., 1979; Zillio and Condit, 2007). A 

mechanistic explanation for this result invokes that high small-scale soil variability 

induces the development of a patchy community organisation with many intermediate 

and low abundant species that, when pooled to samples, nevertheless exhibit a higher 

evenness than expected from a homogeneous environment (equivalent to statistical 

averaging, Lehman and Tilman, 2000). Such a patchy distribution of soil nutrients is 

often exacerbated by even light levels of grazing and shifts seen towards increased 

shrub canopy cover (Berkeley et al., 2005). Further this patchy distribution prevents 

species from becoming locally very abundant, thus reducing the number of dominant 

species in line with the spatial storage effect (Sears and Chesson, 2007). An alternative 

explanation for the prevalence of lognormal SADs in more heterogeneous environments 

might be the lack of a strict (transitive) competitive hierarchy in drylands (intransitive 

competition), which increases the co-dominance of a relative large number of species 

and is enhanced by environmental heterogeneity (Soliveres et al., 2015). Temporal 

storage effects (Chesson 2000) could also prevent the dominance of a single species and 

should become more frequent with rainfall or temperature variability, which in our 

study fostered lognormal SADs (Table 3).  

Regardless of the underlying mechanism, the trigger for the negative skewness of 

SADs is not only caused by an increased number of very rare species but also by the 

low number of very abundant species. Indeed, small-scale soil variability is known to 

induce vicariant plant species composition and phylogenetic structure (Schreeg et al., 

2010; Ulrich et al., 2014), reducing the dominance of the most competitive species. In 

turn, dispersion-driven variability in species composition favours log-series abundance 

distributions. Thus variability in community composition induced by environmental 

factors and dispersal might act in opposite directions. We hypothesise that if 

environmental variability also affects composition, the outcome might be unpredictable 

and often intermediate between the lognormal and log-series types of dominance order. 
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The above picture is complicated by the fact that our environmental variables 

accounted for at most 35% of the variances in dominance structure (Table 3). This is the 

point where biotic interactions might step in. As the species found within each plot had 

already passed the abiotic habitat filters captured by our environmental variables, 

observed species composition and dominance structure already contain part of the 

environmental variance, leaving species interactions to explain the residual variance in 

SAD shapes. In this respect, dryland plant communities worldwide are predominantly 

shaped by mutualistic, particularly facilitative, interactions (Soliveres and Maestre 

2014). Interestingly, mutualistic interactions have been largely neglected in the SAD 

literature, which has focused on competition as the major process shaping dominance 

structures (McGill et al., 2007). Many competition based models (reviewed in Tokeshi, 

1998; but see Mouillot et al., 2000) predict lognormal type SADs. As there are no 

models that include the interplay of competition and mutualistic species interactions, it 

remains unclear whether and to what degree the observed residual variance in SAD 

shapes (> 65%) can be explained by both types of interactions. 

However, a low impact in terms of variance explanation does not mean that an 

environmental predictor is of low or even no influence. This predictor might severely 

and selectively constrain species abundance and also filter for possible species 

combinations. Consequently, such predictors might invoke strong selective pressures on 

species causing the long-term reshaping of community structure. Unfortunately, 

respective long-term effects of low impact environmental drivers are not well known. In 

this respect we need data on the temporal change in abundance distributions in habitats 

of stable environmental conditions. Such data might allow for an assessment of the real 

impact of environmental drivers on community structure.  

 

Conclusions 

Composition and dominance orders of dryland plant communities are influenced by 

a manifold of possible drivers. Our results do not point to productivity as a driver 

towards lognormal abundance distributions in drylands. Rather, we identified the small 

scale variability in soil characteristics to be of major importance for the maintenance of 

community evenness and the type of SAD. This variability, in combination with arid 

habitat conditions, is supported by the presence of a proper ‘middle class’ of 
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abundances. Factors increasing this small-scale soil variability might therefore also 

contribute to the stability of dryland plant communities.  
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Figure Captions 

Figure 1. Three examples of dryland SADs with best fits. From the left: a site from 

Argentina Pampas and the respective log-series fit, a site from China with the respective 

lognormal fit, and a site from Spain where both models fit nearly equally well. 
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Figure 2. Better fits of the log-series SAD model (open dots) were independent of the 

degree of precipitation (a) while the lognormal model (black dots) generally fitted better 

(two exceptions) below 600 mm annual precipitation. Lognormal SADs were found 

predominately at higher levels of aridity (b). 
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Figure 3. Scatter plots of the effect of soil nitrate variability (CV N) on AICc (A), 

SAD skewness (B), and evenness (C) of the 91 sites having at least 15 species. Black 

and open circles denote sites better fitted by the lognormal SAD and the log-series 

SAD, respectively. Regression lines for black circles: B: r
2
 = 0.21, P < 0.001, C: r

2
 = 

0.25, P < 0.001 
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Tables 

Table 1. Numbers of better fits of the log-series (AICc > 10) and lognormal (AICc < 

-10) SAD models for the vegetation types included in the present study. Intermediate 

fits refer to -10 ≤ AICc ≤ +10.  

 

Vegetation type Better fit of  

 

log-series lognormal intermediate 

Grasslands 4 22 8 

Scrublands 6 21 14 

Woodlands 0 15 1 

Total 10 58 23 
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Table 2. Ordinary least squares (OLS) models to identify relationships between 

environmental variables and the relative fits of the lognormal model (AICc), SAD 

skewness, and evenness. The variables included in the best fit models (lowest AICc) are 

in bold type. Model beta values and r
2
 refer to the beta values and the explained 

variance of the respective model. N = 91  

 

Variable AICc Skewness Evenness 

Spatial eigenvector -0.03 -0.26 0.25 

Elevation 0.01 0.03 0.15 

Species richness -0.24 0.09 0.16 

Temperature 0.06 -0.20 0.07 

Precipitation 0.17 0.23 -0.12 

pH 0.07 -0.11 0.07 

Available phosphorus 0.20 -0.01 0.01 

Organic carbon -0.21 0.17 -0.39 

Nitrate -0.09 -0.02 0.03 

r2 (OLS total model) 0.18 0.15 0.28 

r2 (OLS selected model) 0.16 0.14 0.25 
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Table 3. Ordinary least squares (OLS) models to identify relationships between soil and 

climatic variability and the relative fits of the lognormal model (AICc), SAD 

skewness, and evenness. The variables included in the best fit models (lowest AICc) are 

in bold type. Model parameters and r
2
 refer to the beta values and the explained variance 

of the respective model. N = 91  

Variable AICc Skewness Evenness 

Spatial eigenvector -0.06 -0.28 0.28 

Elevation -0.04 0.07 -0.03 

Species richness -0.21 0.03 0.24 

Temperature seasonality -0.22 0.01 0.01 

Precipitation seasonality -0.07 0.14 0.15 

CV pH -0.04 0.06 -0.12 

CV available phosphorus -0.05 -0.10 0.07 

CV organic carbon 0.13 0.15 0.17 

CV nitrate -0.08 -0.39 0.45 

r2 (OLS total model) 0.14 0.26 0.38 

r2 (OLS selected model) 0.12 0.23 0.35 

 


