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Increasing the rumen-stable protein content of feedwould lead to improved nitrogen utilisation in cattle, and less
nitrogenous waste. Red clover (Trifolium pratense L.) is a high protein ruminant feed containing high polyphenol
oxidase (PPO) activity. PPOmediated protein-quinone binding has been linked to protecting plant proteins from
proteolysis. To explore the mechanism underlying the effect of PPO on protein protection in fresh forage feeds,
proteomic components of feed down-boli produced from wild-type red clover and a low PPO mutant, at point
of ingestion and after 4 h in vitro incubation with rumen inoculum were analysed. Significant differences in
proteomic profiles between wild-type and mutant red clover were determined after 4 h incubation, with over
50% less spots in mutant than wild-type proteomes, indicating decreased proteolysis in the latter. Protein
identifications revealed preferentially retained proteins localised within the chloroplast, suggesting that PPO
mediated protection in the wild-type operates due to the proximity of target proteins to the enzyme and
substrates, either diffusing into this compartment from the vacuole or are present in the chloroplast. This
increased understanding of protein targets of PPO indicates that wider exploitation of the trait could contribute
to increased protein use efficiency in grazing cattle.
Biological significance: One of the main challenges for sustainable livestock farming is improving capture of
dietary nitrogen by ruminants. Typically up to 70% of ingested protein-N is excreted representing a loss of
productivity potential and a serious environmental problem in terms of nitrogenous pollution of lands and
water. Identification of key characteristics of rumen-protected protein will deliver target traits for selection in
forage breeding programmes. The chloroplastic enzyme PPO catalyzes the oxidation of phenols to quinones,
which react with protein. Little is currently known about the intracellular protein targets of the products of
PPO activity or the mechanism underlying protein complexing, including whether there is any specificity to
the reaction. Here we have determined significant differences in the proteomes of freshly ingested down boli
corresponding to the presence or absence of active PPO. These results show that in the presence of PPO the forage
protein is less amenable to proteolysis and provide the novel information that the protected proteins are
putatively chloroplastically located. These data also contribute to a growing evidence base that a chloroplastic
PPO substrate exists in red clover in addition to the currently known vacuolar substrates.
rystwyth Uni
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1. Introduction

The rapid breakdown of proteins from forage feed and the inefficient
capture of the breakdown products by rumen microbiota is the
foremost source of nitrogen loss from cattle production systems [1,2].
The inadequate utilisation of dietary protein by ruminants results in
high economic losses to farmers and has huge negative implications
for the environment in ruminant agricultural systems [3]. Dietary
protein from forage materials is degraded by proteolytic rumen micro-
organisms [4] and in fresh forage feeding systems by endogenous
versity, SY23 3FG,

en access article under
plant proteases, particularly during the initial phase of protein degrada-
tion [5–8]. As these plant enzymes couldmake a significant contribution
to rumen function [6–8] understanding forage based-mechanisms by
which to manipulate rates of protein breakdown in ingested feed
would be advantageous in terms of mitigating the environmental im-
pact of N-deposition resulting from livestock farming systems.

Red clover (Trifoliumpratense L.) provides a high-protein feed for graz-
ing livestock and during conservation is prone to lower levels of protein
degradation compared with other legume feed sources such as alfalfa
[9]. Despite alfalfa and red clover being of similar protein content [10], be-
tween 44 and 87% of protein is degraded during ensilage of alfalfa where-
as only 7–40% of protein is degraded in red clover [11]. This reduction in
the extent of postharvest proteolysis in red clover is due to the activity
of polyphenol oxidase (PPO) [12]. PPO is a copper metallo-protein that
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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catalyses the oxidation of endogenous phenols to quinones in the pres-
ence of oxygen [13]. These reactive o-quinones can then form covalent
bonds with the nucleophilic groups of proteins, such as sulfhydryl,
amine, amide, indole or imidazole groups due to their electrophilic nature
[14,15]. The digestibility of these complexed plant proteins is greatly re-
duced, and consequently the amount of non-degraded dietary protein
flow to the small intestine is increased, which is advantageous to the effi-
ciency of a ruminant production system [16]. PPO occurs in either an ac-
tive or a latent state. In red clover PPO is typically found in its latent
form, with the active enzyme accounting for approximately 20% of the
total PPO [17]. Activation and activity of latent PPO is prevented by the
differential compartmentalisation of the enzyme which is present in the
chloroplast and the known substrates, phaselic acid and clovamide,
which are reputed to be present in the vacuole [18–20]. Proposed roles
for PPO include defence mechanisms, oxygen regulation, electron trans-
port and involvement in the Mehler reaction [21–24] plus a complex in-
volvement in plant–microbe interactions [23,24].

PPO has been well studied in red clover in relation to production of
silage feeds for ruminants [25-27], with recent studies focusing on ge-
nomic and transcriptomic analysis of themembers of the PPOmultigene
family [28,29]. However, little is currently known about the specificity
of protein targets involved in quinone-protein complexing reactions
mediated by PPOwhich potentially limits our ability to increase protein
stability in forages. Identification of core features of the endogenous
protein targets would allow quality traits to be included in selective
breeding programmes for forage crop improvement. Ruminants are
extremely inefficient in their use of forage protein. Typically up to 70%
of the ingested protein is not incorporated into milk or meat product
but is excreted leading to widespread environmental pollution and
availability of substrates for N2O production. In real terms this equates
to a loss of approximately 150 g N per head of cattle per day, or
54.6 kg per head per year [30]. Hence, even an apparently insignificant
increase (i.e. ~5%) in protein stability in the rumen would result in a
significant improvement to protein use efficiency; the increased
availability of protein for uptake by the animal in post-rumen digestion
would decrease the need for on farm supplemental protein feeds and
thereby decrease production of nitrogenous wastes.

In order to understand the potential benefit that could be conferred
by PPO activitywithin the rumen system in the grazing contextwe have
taken a proteomic led approach to explore the effect of PPO on protein
complexing in ingested forage. Comparisons of 2D gels were made
based on the null hypothesis that protein profiles from wild-type and
mutant samples would be the same if all protein is degraded to the
same extent regardless of the presence or absence of PPO. We have
compared the proteomes formed from wild type red clover and a
naturally occurring mutant line, which contains low PPO activity
through a lack of PPO4 expression in the leaves [17], both in terms of
the immediate effect of masticative ingestion and after fermentation
in the presence of a rumen microbial inoculum.

2. Materials and methods

All experimentation involving animals was conducted in accordance
with the U.K. Animals (Scientific Procedures) Act 1986. Six Holstein-
Friesian non-lactating dairy cows, each fitted with permanent rumen
cannula had free access to a perennial ryegrass pasture diet prior to
commencement of the experiment.

2.1. Plant materials

Freshly cut plant material from red clover wild type (Trifolium
pratense cv Milvus; WT, Aa 4381) and a low PPO mutant (M) lacking
expression of PPO4 (Aa 4521) [13,17] were obtained from adjacent
plots at Trawscoed Research Farm, Aberystwyth, which had been cut
and fertilised 4 weeks prior to harvesting. Forage was harvested from
plots with a Haldrup 1500 plot harvester (J. Haldrup a/s, Løgstør,
Denmark) and cut to 5 cm above the soil to allow regrowth.

2.2. Preparation of rumen fluid inocula

Approximately 200ml rumen fluid from each cowwas removed and
combined and passed through two layers of muslin. This was prepared
as a 10% inoculumwith Van Soest buffer for use in in vitro fermentations
as described previously [31] and kept at 39 °C until required.

2.3. Collection of feed down boli

Food was removed from animals 16 h prior to offering the test
forages. Each cow was offered fresh forage in a randomised cross-
over design. Water was available ad libitum throughout the experi-
ment. Immediately before bolus collection rumen contents were
emptied from each animal and kept warm until replaced. Newly
ingested down boli were collected at the oesophageal junction,
accessed from a rumen cannula. The first three boli from each animal
and treatment were discarded to avoid contamination from
previously ingested forage. Boli numbers four and five were retained
for analysis.

2.4. Bolus incubation and sample preparation

Each retained bolus was individually placed in muslin and sealed
with an elastic band. The boli were rinsed in water for 45 s (boli were
immersed five times and gently squeezed while still in the water, the
whole process repeated a total of five times). Each bolus was then
drained, divided into quarters and weighed. One quarter was immedi-
ately frozen in liquid nitrogen as an untreated sample and a second
quarterwas used for drymatter (DM)determination, conducted bydry-
ing samples to a constant weight at 105 °C prior to N determination by
the Dumas method [32]. The remaining two quarters were placed
individually into each of two 250 ml Duran bottles containing 100 ml
of the 10% rumen fluid inoculum. One quarter bolus was removed
immediately from one bottle (0 h sample) while the other was flushed
with CO2 and capped tightly for 4 h incubation at 39 °C (Fig. 1). This time
period was chosen to specifically assess the effect of PPO during the ini-
tial stages of colonisation and feed degradation in the rumen [33–35].
After exposure to rumen fluid the boli were removed from the bottles,
drained in a sieve and rinsed with 100 ml deionised water before they
were lyophilised to a constant weight and stored at −20 °C prior to
protein extraction. At both 0 and 4 h post incubation a 4 ml subsample
of buffered rumen fluid was also removed from the bottles and
preserved with 1 ml orthophosphoric acid containing 20 mM 2-ethyl
butyric acid and stored at 4 °C prior to determination and quantification
of volatile fatty acids (VFA) by GC against known standards as described
previously [36].

2.5. PPO quantitation

PPO activity was determined spectrophotometrically by measuring
the initial linear rate of change in absorption at λ 420 nm according to
the method of [17] on subsamples of each boli. One PPO activity unit
was determined as a change of 0.01 in the absorbance per min, and
was expressed as per gram of fresh weight of the sample (U/g FW).
The active pool of PPO was determined by adding 20 μl of desalted
protein fraction to a cuvette containing 1.135 ml of a reaction buffer
(88 ml of McIlvaine buffer (pH 7), containing 1.2 ml of 0.15mM copper
sulphate and 1.6ml of water) with the reaction initiated by the addition
of 10 mM methylcatechol as the substrate. Total PPO activity (active
plus latent pools) was determined as described above except that
0.26% SDS (w/v) was also included in the reaction mixture. Significant
differences (P N 0.05) between PPO levels were determined by ANOVA
analysis using Genstat, [37].



Fig. 1. Diagrammatic representation of the collection and in vitro incubation of feed down boli.
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2.6. Protein sample preparation for 2DE

Proteinwas extracted from 0.5 g DWof the bolus samples recovered
after 0 and 4 h incubation. Samples were ground twice into a fine
powder under liquid nitrogen and then incubated overnight at
−20 °C in 5 ml of extraction buffer; 20% TCA, 1% phosphotungstic acid
(PTA), and 0.2% DTT in ice cold acetone. Extracts were then centrifuged
at 21,000×g at 4 °C for 30min and the resultingpelletwashedwith 0.2%
DTT in cold acetone and incubated at -20 °C for 1 h. This wash process
was repeated twice before the protein extracts were air dried and re-
suspended in 8 M urea, 2 M thiourea, 4% CHAPS, 50 mM DTT and 0.8%
pharmalytes pH 3–10 (Amersham, Little Chalfont, Buckinghamshire,
U.K.) according to [38]. Quantification of protein content in prepared
samples was conducted by the method of [39] with reference to a BSA
standard.
2.7. 2DE and image analysis

To determine whether the protein distribution was different
between genotype and/or treatment times an equal volume of protein
was applied for each sample. Changes were determined in relative
abundance of individual spots. A total of 150 μg of protein from the re-
suspended protein extracts were passively rehydrated overnight on
7 cm non-linear IPG strips (pH 3–10) and then focused to 10,000 VH
using the Protean IEF cell (BioRad Ltd, Hemel Hempsted,UK) as
described previously [40]. The use of 7 cm strips is consistent with
previous studies into the plant proteome [41–43]. Equilibration of
each IPG strip was conducted for 12 min in 2.5 ml equilibration buffer
(50 mM Tris-HCl pH 8.8, 6 M urea, 30% glycerol v/v and 2% SDS w/v),
with the presence of DTT (Melford, Ipswich, U.K.) at 10mg/ml followed
by a second equilibrationwith IAA (iodoacetamide) (Sigma, Gillingham,
U.K.) at 25 mg/ml. Proteins were separated in the second dimension
using the Mini Protean system (BioRad Ltd, Hemel Hempsted, UK) at
180 V using 14% T, 3.3% C polyacrylamide gels. Gels were visualised
via Coomassie blue staining (PhastGel Blue R, Amersham Biosciences,
U.K.) and images captured using a GS-800 calibrated densitometer
(Biorad Ltd, Hemel Hempsted, U.K.) and analysed using Progenesis
(PG220 v.2006. Nonlinear Dynamics, Newcastle upon Tyne, UK).
Analysis was performed on three biological replicates using normalised
spot volumes to identify spots showing a ±2 fold change in protein
abundance. Protein abundances were further analysed using a two
way ANOVA (Genstat) [37].

2.8. Protein identification and database searching

Spots of interest, determined as increase or decrease in protein
abundance, unique or landmark were subjected to trypsin digestion
according to the method of [44] with slight modification [45]. Mass
spectrometry was performed using an Agilent 6550 QTOF LC MS/MS
(Agilent, Cheshire, UK).

Peptides were analysed using Mass Hunter software (Agilent, UK)
and tandem mass spectra (MS/MS) queries were performed using the
MASCOT database search engine v2.1 (Matrix Science, London, U.K.)
[46] on the Swiss-Prot database. Searches were restricted to the
Viridiplantae taxonomy with trypsin specificity (one missed cleavage
allowed), the tolerances for peptide identification were set as 0.3 Da.
Fixed modification was set as cysteine modification by iodoacetamide
and methionine oxidation was set as variable modification. Search
results were evaluated manually and quality MS data confirmed for
two peptides and above with E value P b 0.05 for each peptide (overall
P b 0.0025).

Putative protein identifications were subjected to bioinformatic
sequence interrogation using Expasy Prosite for motif and sequence
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analysis (http://www.expasy.org/[accessed January 2015]), specifically
interrogating SMART (Simple Modular Architecture Research Tool),
Motif search, ELM (Eukaryotic Linear Motif resource), Prosite, Scratch
protein predictor and Top pred (Mobyle portal) KEGG (Kyoto
encyclopedia of genes and genomes) [47] database searching was also
conducted on protein identifications to determine potential related
biochemical pathways.

3. Results

3.1. PPO activity levels and VFA concentrations in wild-type versus mutant
genotypes

Comparison of the active pool of PPO in boli formed from the wild-
type red clover plants and the mutant red clover genotype at both 0
and 4 h of anaerobic incubation demonstrated significantly higher
activity (P b 0.01) in the wild-type (Fig 2). However, the wild-type
also showed a significant reduction (P b 0.01) in PPO activity post
incubation. No significant difference in the level of PPO activity
(P N 0.05) was determined post incubation for the mutant genotype.
Total VFA concentration was unaffected (P N 0.05) by the presence of
PPO, but was affected by time (P b 0.05) with mean values of 51.9 and
157.3 mM for 0 and 4 h respectively, indicative of a normal
fermentation.

3.2. Comparison of wild-type vs mutant proteomes

In themutant the 4 h incubation resulted in a decrease in drymatter
content from 12.5% to 9% whereas in the wild type the dry matter con-
tent was unaffected by incubation (recorded as 8% at both 0 and 4 h).
Loss of total nitrogen as a result of the 4 h incubation was observed to
be greater in the mutant (26% ± 0.9 SEM) than in the wild-type
(55% ± 1.14 SEM) indicating differential loss of protein from mutant
and wild type (Fig 3). Two dimensional proteomic analyses were used
to specifically determine which proteins were affected by the presence
or absence of PPO. The distributions of proteins within the protein
profiles were examined and the relative abundance of spots present in
150 μg of protein extract computed to identify protein spots with
altered relative abundance according to time or genotype. Reproducible
2Dprofiles were generated from bothwild-type andmutant genotypes;
matching between replicate gels averaged over 70% using Progenesis
software. Genotype and time-dependent differences in 2D profiles
were observed (Figs. 4 and 5, Suppl. Table S1). In the wild-type,
Fig. 2. PPO activity (units/g Fw) in boli fromwild-type andmutant genotypes at 0 h and after 4
significant differences are shown as NS between bars.
incubation for 4 h resulted in no overall change in total spot number
(112 spots) of the averaged 2D profile compared with the total spot
number of the wild type at 0 h (Fig. 4), but in terms of normalised
spot volume 25 of those spots had decreased abundance at 4 h
compared with the wild type protein profile at 0 h. In the mutant
genotype, 4 h incubation resulted in a decrease in total spot number
as compared with the profile observed for the 0 h time point (from
172 average spot numbers at 0 h to a total of 55 average spot numbers
at 4 h) with 117 of the spots present at 0 h no longer present on the
protein profile at 4 h. Of those spots present in both mutant and
wildtype after 4 h incubation, 12 were determined to be of decreased
abundance in the mutant profile as compared to the wildtype profile.

3.3. Identifications and functional characterisation of differentially
abundant proteins

Landmark spots or spots presenting differences in protein
abundance (increased, decreased or absent; Fig. 4) were putatively
identified (Table 1) following in gel tryptic digestion and subsequent
QTOF LCMS/MS analysis. Out of the 31 spots excised for mass
spectrometry all were assigned to the kingdom plantae. Of the 31
proteins identified five corresponded to ribulose bisphosphate carbox-
ylase/oxygenase (Rubisco) large subunit and one to the small subunit.
Five spots corresponded to oxygen evolving enhancer proteins and
five proteins were putatively identified as ATP synthase subunits. The
remaining proteins identified within this dataset were fructose
bisphosphate, aldolase, oxalate oxidase and chlorophyll a-b binding
protein relating to two protein spots each. Spots identified as malate
dehydrogenase, glyceraldehyde 3 phosphate dehydrogenase, 50S
ribosomal protein, triosephosphate isomerase, sedoheptulose-1,7
bisphosphatase, cytochrome b6-f complex, serine-glyoxylate amino-
transferase and apocytochrome all corresponded to a single spot each.
Overall, the normalised spot volumes were decreased in the majority
of protein spots for both the wild-type and mutant profiles following
4 h incubation (Fig. 4) indicating protein degradation over time. These
included the Rubisco large subunit (spots 1,20,24,25 and 26), malate
dehydrogenase (spot 2), oxygen enhancer proteins (spot 3, 4, 12, 29
and 31), chlorophyll a-b binding protein 215 (spot 5) and chlorophyll
a-b binding protein (spot 13), sedoheptulose 1.7 bisphosphatase (spot
19), oxalate oxidase (spots 21 and 30) and cytochrome B6 f complex
iron (spot 22). After 4 h incubation many of these spots were found to
be decreased in normalised spot volume in the wildtype and absent
from the mutant (Table 1, Fig. 4 and Suppl. Table S1, Fig, S1.). These
h incubation. Significant differences in PPO activity are denoted by ** where P b 0.01, non-

http://www.expasy.org


Fig. 3. Average total protein (nitrogen) content of boli from wild-type and mutant genotypes at 0 h and after 4 h incubation.

71E.H. Hart et al. / Journal of Proteomics 141 (2016) 67–76
included ATP synthase beta proteins (spots 6, 7 and 8), 50s ribosomal
protein (spot 14), triosephosphate isomerase (spot 15), fructose
bisphosphate aldolase (spots 16 and 17) and serine-glyoxylate amino-
transferase (spot 27). An increase in normalised spot volume in both
the mutant and the wild type was observed post 4 h incubation for
Fig. 4. Proteomic profiles of boli formed from wild type and mutant red clover at 0 h and after
images represent gel averages from three biological replicates. Gel A=wild type at 0 h, Gel B=
excised for mass spectrometry.
three spots (numbers 10, 18 and 23) corresponding to chlorophyll a-b
binding protein 8, ATP synthase subunit alpha and RUBISCO small
subunit respectfully (Fig. 4, Suppl. Fig. S1), indicating their relative
preservation within the total protein pool as other proteins were
degraded. It has been proposed previously that PPO mediated
4 h incubation. Gels were run on 3–10 non-linear IPG strips, 14% T, 3.3% C SDS-PAGE. Gel
mutant at 0 h, Gel C=wild type at 4 h, Gel D=mutant at 4 h. Circled spots indicate those



72 E.H. Hart et al. / Journal of Proteomics 141 (2016) 67–76



73E.H. Hart et al. / Journal of Proteomics 141 (2016) 67–76
complexing involves the sulphur amino acids [16]. However, motif
searching within the peptide sequences did not reveal any common
regions or pattern between those proteins that remained in the wild-
type post incubation compared with those that were no longer present
in terms of methionine and cysteine content, with and without the
inclusion of disulphide bridges. Alternatively, bioinformatic searches
indicated that proteins that were preserved in the wild type showed
potential phosphoprotein and acetylation modifications (spots 5, 6, 7
and 27), with several proteins having transmembrane domains (5, 6,
7, 14, 16, 17 and 27).

Bioinformatic interrogation of protein sequences determined that
the majority of spots identified (88%) were associated with the chloro-
plastic function of the cell (Table 1, Suppl. Table S2), with many of the
proteins located within the thylakoid membrane. The remaining
proteins were located in either the apoplast or the mitochondria.
Variations of normalised spot volumes corresponding to the top 15
most significant spot normalisation volume differences were observed
for spots belonging to both the chloroplastic and non-chloroplastic
regions of the cell (Fig. 5). Although several proteins were determined
to include a transit peptide to the chloroplast region, this was not
exclusive to either those deemed preserved in the presence of PPO or
degraded. Protein identifications were subjected to KEGG (Kyoto
encyclopedia of genes and genomes) (http://www.kegg.jp/kegg/
kegg2.html [accessed January 2015]) pathway database analysis,
which confirmed that most of the identified proteins (over 50%) were
involved in biochemical pathways relating to photosynthesis and
photorespiration (Fig. 6). The remaining proteins were involved in
ATP synthesis, electron transport, translation, glycolysis, oxidoreductase
activity and carbohydrate metabolism (Fig. 6).

4. Discussion

The inefficient utilisation of dietary forage protein could potentially
be improved by decreasing the extent of protein degradation that
occurs within the rumen, and PPO containing forages could be a
sustainable mechanism which contributes to achieving this. The
subsequent increased flow of non-degraded proteins to the small
intestine will improve the nutritional value of the forage feed [31,48],
contributing to overall improved animal productivity. Within the
rumen, protein breakdown occurs rapidly during the first 6 h of
ingestion [31], with transition from primary to secondary microbial
colonisation occurring at 4 h [35]. Therefore, targeting mechanisms to
decrease forage protein degradation within this early post-ingestive
time frame is important if we are to reduce protein losses from
ruminants. Here we have investigated the forage proteomes of a wild-
type and a low PPO mutant red clover to determine if the presence of
PPO can influence the stability of specific proteins under a fresh forage
feeding strategy.

PPO activation is a rapid process. Protein complexing has been sug-
gested to occur in the presence of oxygen during mastication and to
continue within the rumen for a limited time. High molecular weight
protein complexes have been shown to form in red clover over a
15 min period [5,27]. The presence of oxygen initiates the formation
of covalent bonds of o-quinones to the nucleophilic groups of amino
acids [27] and once commenced continues spontaneously [15]. In the
present study, the wild-type red clover exhibited higher levels of PPO
activity than the low PPO mutant at both 0 and 4 h. Nevertheless, PPO
activity decreased in both the wild-type and mutant genotypes over
the incubation period, suggesting a time limitation on any potential
protective effect of PPO. This correlates with recorded oxygen depletion
rates within the rumen, for example [49] determined oxygen levels in
grass boluses to be 5.8 mg O2/L upon mastication, reducing to
Fig. 5.Montage images forwild type 0 and 4 h (WT0,WT4) andmutant 0 and4 h (M0,M4) avera
the greatest difference in spot normalisation volume between wild-type and mutant proteome
location of each protein from putative identifications (Fig. 4, Table 1).
0.05 mg O2/L over a period of 10 min, which was further lowered in
the presence of ruminal microbes which consume O2 [16]. Therefore,
it is unlikely that sustained PPO activity occurs in the rumen so early
events involvingmasticationwill be important to exploiting the protec-
tive potential of PPO containing crops in a fresh forage scenario.

Previous work has determined the inhibition of proteolysis of wild
type red clover compared to the low PPO mutant during ensilage [17,
50] and in the simulated rumen PPO has been demonstrated to reduce
plant-mediated proteolysis in fresh-fed forages [13,51]. However,
realisation of the potential for PPO to protect protein from proteolysis
is likely to depend on the extent of cell damage during mastication as
it is this which enables enzyme and substrates to come in to contact.
Hence, here we have used a more realistic model to those used
previously by using forage down boli captured immediately post
mastication. The resulting proteomic differences in protein profiles be-
tween the wild-type and low PPO mutant in this study demonstrated
the ability of PPO to have a protective effect on the red clover proteins
in the fresh forage down bolus, confirming the indications of previous
studies. Our results clearly showed that significant degradation of
some of the polypeptides contained in the ingested down bolus took
place over the 4 h incubation for both wild-type and mutant red clover
lines. However, significantlymore spotswere lost during the 4 h incuba-
tion in the low PPO mutant compared to the wild-type, in accordance
with the proposed mechanism of protein protection.

The rapid breakdown of plant protein in the rumen is attributed to
both rumen microbial activity as well as proteolysis catalysed by plant
enzymes [7,52]. It has been shown that plant protein can be protected
from degradation through the presence of PPO activity, mediated
through the complexing of plant proteins [12,36].While this is generally
considered to result in altered structure of the bound proteins, thus
making them unsuitable for proteolysis (e.g. by removing access to
cleavage site), direct quinone-protease binding will also lead to
decreased proteolysis through inactivation of proteases. Although 31
spots were identified as being affected by the presence of PPO
(Table 1), these did not include candidate protease targets for PPO-
mediated quinone protein binding. The majority of the proteins
detected as being affected by the presence/absence of PPO were
chloroplastic (Table 1) with relatively few of those identified being lo-
cated in the cytosol. PPO has previously been shown to be located in
the thylakoid membrane of the chloroplast [53–55] suggesting that in
the wild-type red clover these chloroplastic proteins may be subjected
to PPO mediated protection to a greater extent due to their proximity
to the enzyme and substrates which must either diffuse into this
compartment from the vacuole or be present in the chloroplast. A
chloroplastic substrate for PPO has been identified in walnut [56] but
to date remains to be identified in red clover [57].

PPO induced quinones are highly reactive and have been shown
to affect protein physicochemical properties and their susceptibility
to degradation [58,59]. Quinones are strong electrophiles binding to
nucleophilic groups of amino acids [60], but exactly how quinone
complexes form still remains largely unknown. Sulphur containing
amino acids (methionine and cysteine) may act as PPO induced qui-
none binding sites to form protein bound phenol [16]. It is well
established that increasing the content of sulphur-amino acids
would increase delivery of what are essential dietary amino acids
for ruminants [48,61] suggesting a possible further role for PPO in
protecting these sulphur containing amino acids from metabolism
within the rumen [62] thereby making them relatively more avail-
able for ruminant nutrition and less prone to wasteful deamination.
However, it is unknown whether the acid conditions within the
lower gut would be sufficient to reverse the quinone binding of
peptides to prevent onset of anti-nutritional effects [63].
ge gels and corresponding normalised volume graphs for the top15protein spots showing
s. Images and graphs for each spot are separated into boxes A and B based on the cellular
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Table 1
Spot numbers corresponding to excised spots from gels (Fig. 4) showing normalised spot volumes for themutant at 0 h (0M), wild-type and 4 h (4WT) andmutant at 4 h (4M) compared
to the wild type at 0 h. Putative identifications of each spot and corresponding protein locations for each identification are shown together with the accession number and Mascot score.
Spots not present (np) are indicated.

Spot no. Description Accession Species Location Mascot score Abundance

0 M 4WT 4 M

1 Ribulose bisphosphate carboxylase large chain RBL_BYRCR Byrsonima crassifolia Chloroplast 481 2686.8 2368.2 350.8
2 Malate dehydrogenase MDH_PSEM Pseudotsuga menziesii Mitochondria 156 271.1 546.1 604.6
3 Oxygen-evolving enhancer protein 1 PSBO_PEA Pisum sativum Chloroplast 415 1377.4 1180.8 214.9
4 Oxygen-evolving enhancer protein 2 PSBP_PEA Pisum sativum Chloroplast 83 1106.3 850.4 314.5
5 Chlorophyll a-b binding protein 215 CB215_PEA Pisum sativum Chloroplast 137 711.4 481.4 193.0
6 ATP synthase subunit beta ATPB_HYANO Hyacinthoides non-scripta Chloroplast 350 656.6 813.1 652.3
7 ATP synthase subunit beta-2 ATPBN_ARATH Arabidopsis thaliana Mitochondria 141 397.6 506.2 293.3
8 ATP synthase subunit alpha ATPA_BUXMI Buxus microphylla Chloroplast 214 455.2 358.8 588.9
9 ATP synthase subunit alpha ATPA_BUXMI Buxus microphylla Chloroplast 163 283.2 313.1 113.7
10 Chlorophyll a-b binding protein 8 CB28_PEA Pisum sativum Chloroplast 155 319.9 np np
11 Glyceraldehyde-3-phosphate dehydrogenase A G3PA_PEA Pisum sativum Chloroplast 63 400.6 344.7 136.3
12 Oxygen-evolving enhancer protein PSBP_WHEAT Triticum aestivum Chloroplast 231 np 4441.1 np
13 Chlorophyll a-b binding protein CB23_ORYSI Oryza sativa indica group Chloroplast 72 526.7 318.7 221.5
14 50s Ribosomal protein L12 RK12_ORYSJ Oryza sativa subsp. japonica Chloroplast 216 279.4 775.2 501.2
15 Triosephosphate isomerase TPIC_SECCE Secale cereale Chloroplast 84 374.3 354.5 82.2
16 Fructose-bisphosphate aldolase ALFC_ORYSJ Oryza sativa japonica group Chloroplast 360 152.4 174.1 291.7
17 Fructose-bisphosphate aldolase ALFC_ORYSJ Oryza sativa japonica group Chloroplast 345 125.3 np np
18 ATP synthase subunit alpha ATPA_LOLPR Lolium perenne Chloroplast 643 np np 527.8
19 Sedoheptulose-1.7-bisphosphatase S17P_WHEAT Triticum aestivum Chloroplast 479 131.5 np np
20 Ribulose bisphosphate carboxylase large chain RBL_LOLPR Lolium perenne Chloroplast 485 887.3 650.9 160.2
21 Oxalate oxidase GER2_WHEAT Triticum aestivum Apoplast 108 75.7 np np
22 Cytochrome b6-f complex iron-sulphur subunit Q7X9A6 Triticum aestivum Chloroplast 42 334.2 np np
23 Ribulose bisphosphate carboxylase small chain RBS_FAGCR Fagus crenata Chloroplast 28 730.8 581.6 1216.2
24 Ribulose bisphosphate carboxylase large chain RBL_LOLPR Lolium perenne Chloroplast 627 458.1 np np
25 Ribulose bisphosphate carboxylase large chain RBL_LOLPR Lolium perenne Chloroplast 627 2686.8 2368.2 350.8
26 Ribulose bisphosphate carboxylase large chain RBL_LOLPR Lolium perenne Chloroplast 627 271.1 546.1 604.6
27 Serine–glyoxylate aminotransferase SGAT_ARATH Arabidopsis thaliana Apoplast 52 1377.4 1180.8 214.9
28 Apocytochrome CYF_LOLPR Lolium perenne Chloroplast 502 1106.3 850.4 314.5
29 Oxygen-evolving enhancer protein 2 PSBP_WHEAT Triticum aestivum Chloroplast 184 711.4 481.4 193.0
30 Oxalate oxidase GER2_WHEAT Triticum aestivum Chloroplast 127 656.6 813.1 652.3
31 Oxygen-evolving enhancer protein 1 PSBO_WHEAT Triticum aestivum Chloroplast 1684 397.6 506.2 293.3
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In this study, sequence interrogation of red clover proteins showed
the presence of a number of methionine and cysteine residues ranging
from 2 to 5% of the amino acid content in all proteins excised for identi-
fication. Although, no definitive distinction could be observed relating
amino acid content and protein degradability, a large proportion of
those proteins preserved in the presence of PPO contained methionine
Fig. 6. Functional classification of differentially abundant protein identifications from spots
descriptions from Uniprot.
at a level of 2% and above. In contrast to red clover, the legume alfalfa
is high in protein content but with little PPO activity [3] compared to
red clover and has also been shown to be lacking in sulphur containing
amino acids [64]. It is not surprising that many proteins were identified
here as ribulose bisphosphate, considering that this is the most
abundant protein present in plants [65]. However, although the sulphur
excised (Fig. 4). Functional classifications were determined from putative identification
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amino acid content (methionine and cysteine) of these proteins was
relatively high (4%) compared to some other proteins identified in this
study, the majority appeared to be degraded in the wild-type and
mutant profiles to similar extents following incubation.

In conclusion, the results presented here indicate that increasing our
ability to exploit PPOmediated protein complexing could be incorporat-
ed into strategies to ameliorate losses of dietary protein in general, but
could also help with delivery of essential nutrients to enhance animal
health by increasing efforts in targeted improvement of PPO containing
species such as red clover and cocksfoot.
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