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Understanding the spatial integrity and connectivity of jellyfish blooms is important for 

ecologists and coastal stakeholders alike.  Previous studies have shown that the distribution of 

jellyfish blooms can display a marked consistency in space and time, suggesting that such 

patterns cannot be attributed to passive processes alone.  In the present study, we have used a 

combination of microsatellite markers and mitochondrial COI sequences to investigate 

genetic structuring of the scyphozoan jellyfish Rhizostoma octopus in the Irish and Celtic 

Seas.  The mitochondrial data indicated far higher levels of population differentiation than the 

microsatellites (ΦST[MT] = 0.300 vs ΦST[NUC] = 0.013).  Simulation studies indicated that the 

low levels of nuclear differentiation were not due to limited power as a result of low levels of 

polymorphism.  These findings, supported by palaeodistribution modelling and mismatch 

distribution analysis, are consistent with expansion of R. octopus from a single, limited 

refugium after the Last Glacial Maximum, followed by subsequent isolation, and that the 

discrepancy between the mitochondrial and nuclear markers is a result of the nuclear loci 

taking longer to reach mutation-drift equilibrium following the expansion due to their 

fourfold larger effective population size.  The populations studied are most likely not well 

connected via gene flow, and thus genetically as well as geographically distinct, but our 

findings also highlight the need to use a combination of organellar and nuclear markers to 

give a more complete picture of population demography and structure, particularly for 

species with large effective population sizes. 

 

ADDITIONAL KEYWORDS:  Jellyfish, microsatellites, mitochondrial COI, 

palaeodistribution modelling, population genetics, Rhizostoma octopus
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INTRODUCTION 

 

The application of population genetics approaches has provided many insights into the levels 

and patterns of gene flow in marine organisms.  Traditionally, it had been viewed that there 

were few barriers to population connectivity in the marine realm, particularly for organisms 

with planktonic or partially planktonic life cycles (Palumbi, 1994; Norris, 2000).  Subsequent 

molecular studies on marine populations utilising mitochondrial DNA (mtDNA), however, 

indicated that intraspecific genetic structuring does exist (e.g. Chow et al., 1997; Zane et al., 

1998; Keeney et al., 2005; Darling, Kucera & Wade, 2007).  More recently, the development 

of microsatellite markers has offered further opportunities to study genetic structuring, since 

theoretical studies have suggested that the use of multiple, multi-allelic loci should offer 

greater power than mtDNA to detect population subdivision, particularly at low levels 

(Larsson et al., 2009), and this has been largely borne out by empirical studies (Iacchei et al., 

2014; Godhe et al., 2014; but see Provan et al., 2009).  It has also been demonstrated, 

however, that population demographic changes such as those associated with the climatic 

fluctuations of the Pleistocene (ca. 2.58 MYA – 11 KYA) can give rise to apparently 

contradictory signals of population subdivision across different markers (Lukoschek, Waycott 

& Keogh, 2008; Larmuseau et al., 2010).  Thus, depending on the demographic history of the 

populations under study, the use of both mtDNA and microsatellites may be required to gain 

a complete picture of patterns of gene flow. 

 Within this context, there is international interest in the drivers, overall abundance and 

connectivity of jellyfish blooms (i.e. Phylum Cnidaria, Class Scyphozoa; Hamner & Dawson 

2009; Brotz et al., 2012; Condon et al., 2013).  These blooms represent the concentration of 

many free swimming medusae in a particular area either through rapid population growth (a 

true bloom) or advection from another area (an apparent bloom; Graham, Pag & Hamner, 
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2001; Graham et al., 2003).  True blooms are associated typically with species displaying 

metagenic life-histories comprising free-swimming and sexually reproducing medusae and 

benthic polyps that reproduce through asexual strobilation (e.g. Graham, Pag & Hamner, 

2001; Richardson et al. 2009; Gibbons & Richardson 2013).  In most cases, a given cohort of 

medusae will persist from spring through to autumn, whilst the asexually reproducing polyps 

can survive for many years (Thein, Ikeda & Uye, 2012). This inter-annual persistence of an 

asexually reproducing sessile life stage can lead to the regular re-occurrence of blooms in 

specific locations(Houghton et al., 2006a,b; Lilley et al., 2008), population structuring (e.g. 

Pitt & Kingsford, 2000) and eventual phylogenetic differentiation.  As efforts to incorporate 

jellyfish more effectively into ecosystem and fisheries models gather momentum (Pauly et al. 

2008; Brotz et al. 2012; Fleming et al. In Press), such information is important when 

considering the temporal and spatial integrity of seemingly isolated bloom events (Lee  et al. 

2013). 

 The utility of population genetics to elucidate the connectivity or discreteness of jellyfish 

blooms has been shown, with studies having revealed population structuring (Dawson, 

2005a), cryptic speciation (Dawson & Jacobs, 2001; Holland et al., 2004) and even 

anthropogenic introductions (Dawson, Gupta & England, 2005).  Almost all such studies of 

scyphozoan jellyfish population genetics have employed a limited number of markers (with 

the exception of Aglieri et al. [2014]), with most studies relying mainly on the mitochondrial 

COI gene (eg Holland et al., 2004), although some have additionally employed data from the 

nuclear ribosomal DNA cistron (e.g. Dawson & Jacobs, 2001; Stopar et al., 2010).  The 

development of microsatellite markers for several jellyfish species (Coughlan, Seymour & 

Cross 2006; Peplow et al. 2009; Reusch et al. 2010; Bolte et al. 2013; Meek et al. 2013), 

potentially offers the opportunity to study fine-scale genetic structuring, although to date, 

there has only been a single published study on scyphozoans (Aglieri et al. 2014). 
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 In the present study, we used a combination of recently developed microsatellite markers 

and COI sequences to investigate genetic structuring of Rhizostoma octopus, a scyphozoan 

jellyfish with a generally predictable and temporally stable geographical distribution, 

including regular but apparently discrete blooms of adult jellyfish in bays in the Irish Sea 

(Doyle et al. 2006; Houghton 2006b).  Previous genetic analyses within the genus have 

provided conflicting results, with Ramšak, Stopar & Malej (2012) finding little partitioning of 

genetic diversity between blooms of R. pulmo in the Mediterranean Sea, whilst Lee et al. 

(2013) found notable population structure in R. octopus in the Irish Sea and from La 

Rochelle, France, although levels of differentiation were far less pronounced in the nuclear 

gene studied (calmodulin) compared to the mitochondrial cytochrome oxidase subunit 1 

(COI) gene.  The use of microsatellites, with their potentially increased resolution, should 

allow us to determine whether any fine-scale structure exists in R. octopus, even in cases 

where such levels may be extremely low (Wirth & Bernatchez, 2001), but also whether there 

are any discrepancies between mtDNA and microsatellites, possibly resulting from 

demographic changes during the Pleistocene. 
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MATERIALS AND METHODS 

 

SAMPLING AND DNA EXTRACTION 

Samples were collected from four locations throughout the Irish and Celtic Seas (Table 1 and 

Figure 1) in August / September 2011.  Genomic DNA was extracted using a modified 

version of the Porebski, Bailey & Baum (1997) CTAB phenol/chloroform protocol whereby 

extracted DNA which had been subjected to phenol and chloroform wash was stored in a 1:1 

supernatant:isopropanol state at -20°C until needed for PCR, then pelleting and the alcohol 

wash were carried out before elution. Long term storage of eluted DNA resulted in loss of 

high molecular weight (genomic) DNA and reduced amplification success. 

 

MICROSATELLITE GENOTYPING 

Microsatellites were developed from R. pulmo sequences deposited in GenBank (for 

accession numbers see Table 2).  Forward primers included a 19 bp M13 tail 

(CACGACGTTGTAAAACGAC) and reverse primers included a 7 bp tail (GTGTCTT).  

PCR was carried out in a total volume of 10 μl containing 100 ng genomic DNA, 10 pmol of 

6-FAM- or HEX-labelled M13 primer, 1 pmol of tailed forward primer, 10 pmol reverse 

primer, 1x PCR reaction buffer, 200 μM each dNTP, 2.5 mM MgCl2 and 0.25 U GoTaq Flexi 

DNA polymerase (Promega).  PCR was carried out on a MWG Primus thermal cycler using 

the following parameters: initial denaturation at 94 °C for 5 min followed by 45 cycles of 

denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s (55 °C for RpMS-4), extension at 

72 °C for 30 s and a final extension at 72 °C for 5 min.  Genotyping was carried out on an 

AB3730xl capillary genotyping system (Life Technologies; Carlsbad, California, USA).  

Allele sizes were scored using LIZ size standards and were checked by comparison with 

previously sized control samples. 
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MTDNA SEQUENCING 

A 639 bp region of the R. octopus mtDNA COI gene was amplified using the primers Ro-

COI-F 5’-CAACAAATTCTAAGATATTGGAAC-3’ and Ro-COI-R 5’-

GGGTCGAAGGAAGATGTATTA-3’.  PCR was carried out on a MWG Primus thermal 

cycler using the following parameters: initial denaturation at 94 °C for 3 min followed by 40 

cycles of denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, extension at 72 °C for 1 

min and a final extension at 72 °C for 5 min.  PCR was carried out in a total volume of 20 μl 

containing 200 ng genomic DNA, 10 pmol of each primer, 1x PCR reaction buffer, 200 μM 

each dNTP, 2.5 mM MgCl2 and 0.5 U GoTaq Flexi DNA polymerase (Promega).  5 μl PCR 

product were resolved on 1.5% agarose gels and visualised by ethidium bromide staining, and 

the remaining 15 μl were EXO-SAP purified and sequenced in both directions using the 

BigDye sequencing kit (V3.1; Applied Biosystems) and run on an AB 3730XL DNA analyser 

(Life Technologies; Carlsbad, California, USA). 

 

DATA ANALYSIS 

Tests for linkage disequilibrium between pairs of microsatellite loci in each population were 

carried out in the program FSTAT (V2.9.3.2; Goudet, [2002]).   Levels of polymorphism 

measured as observed (HO) and expected (HE) heterozygosity  averaged over loci for nuclear 

microsatellites, and as haplotype (H) and nucleotide (π) diversity for mtDNA, were calculated 

using the ARLEQUIN software package (V3.5.1.2; Excoffier & Lischer, [2010]).  Inbreeding 

coefficients (FIS) were estimated using FSTAT.  Levels of interpopulation differentiation 

were estimated from allele (microsatellite) and haplotype (mtDNA) frequencies using Φ-

statistics, which give an analogue of F-statistics (Weir & Cockerham, 1985) calculated within 

the analysis of molecular variance (AMOVA) framework (Excoffier, Smouse & Quattro 

1992), also using the ARLEQUIN software package.  Population-pairwise Φ ST values were also 
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calculated using ARLEQUIN.  Significance of   values was tested using 1,000 permutations.  A 

median-joining network showing the relationships between the mtDNA haplotypes was 

constructed using the NETWORK software package (V4.5.1.6; www.fluxus-engineering.com).  

In addition, tests for population expansion based on Tajima’s D and Fu’s FS and a mismatch 

distribution analysis, which identifies characteristic “waves” in the shape of the distribution 

resulting from expansion (Rogers and Harpending, 1992),  were carried out in ARLEQUIN.  

 To identify possible spatial patterns of gene flow, the software package BAPS (V5; 

Corander, Waldmann & Sillanpää, [2003]) was used to identify clusters of genetically similar 

populations using a Bayesian approach.  Ten replicates were run for all possible values of the 

maximum number of clusters (K) up to K = 4, the number of populations sampled in the 

study, with a burn-in period of 10 000 iterations followed by 50 000 iterations.  Multiple 

independent runs always gave the same outcome.  To further identify possible spatial patterns 

of gene flow, a principal coordinate analysis (PCoA) was carried out in GENALEX (V6.1; 

Peakall & Smouse, 2006).  Inter-individual genetic distances were calculated as described in 

Smouse & Peakall, 1999, and the PCoA was carried out using the standard covariance 

approach. 

 Because of the genetic homogeneity revealed by the microsatellite loci studied, and to 

compare the relative power of microsatellites and the mtDNA to detect low levels of 

population differentiation, simulations were carried out using the POWSIM software package 

(V4.0; Ryman & Palm, 2006).  Simulations were carried out for an effective population size 

of Ne = 1 000 to yield FST values of 0.0050, 0.0075, 0.0100, 0.0125, 0.0150, 0.0175 and 

0.0200.  Although R. octopus may have a larger effective population size, this is not relevant 

to the analysis, since Ne only determines the time necessary to reach the target FST.  Thus, the 

use of larger values of Ne is unjustified as the difference between, say, Ne = 1 000 and 10 000 

(and higher) is not important at values of FST as small as those tested in the simulation (Nils 
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Ryman, personal communication).  In all cases, 1 000 replicates were run and the power of 

the analysis was indicated by the proportion of tests that were significant at P < 0.05 using 

the observed allele frequencies for both the four microsatellite loci and the single mtDNA 

COI region studied (for FST = 0 this corresponds to the Type I [α] error).  For the mtDNA, 

sample sizes were adjusted as recommended by Larsson et al., (2009). 

 

PALAEODISTRIBUTION MODELLING 

Palaeodistribution modelling was carried out to determine the potential suitable range for R. 

octopus at the Last Glacial Maximum (LGM; ca. 21 KYA) using the maximum entropy 

approach implemented in the MAXENT software package (V3.3.3; Phillips, Anderson & 

Schapire, 2006).  Species occurrence data between 1950 and 2000 were downloaded from the 

Global Biodiversity Information Facility data portal (www.gbif.org) and from the Ocean 

Biogeographic Information System (www.iobis.org), and supplemented with our own 

population data from the current study (117 spatially unique occurrences in total).  Current-

day bioclimatic data (MARSPEC; Sbrocco & Barber, 2013) were obtained at 5 minute 

resolution and models were generated using cross-validation of ten replicate runs under the 

default MAXENT parameters.  Model performance was assessed based on the area under the 

receiver operating characteristic curve (AUC).  Models were projected onto reconstructed 

bioclimatic data for the LGM (ensemble of five models: CNRM, ECBILTCLIO, FGOALS, 

HadCM and MIROC-322; Sbrocco, 2014).  To identify potential areas where the model may 

have extrapolated beyond current climatic conditions, which could lead to unreliable 

predictions, we carried out a multivariate environmental similarity surfaces (MESS) analysis 

(Elith et al. 2010) in MAXENT.   
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RESULTS 

 

POPULATION GENETIC ANALYSES 

No evidence of linkage disequilibrium was detected between any of the four nuclear 

microsatellite loci analysed.  Between 13 (Rp-MS1) and 25 (Rp-MS5) alleles were detected, 

with a total of 73 (mean = 18.25 per locus).  Within-population levels of observed (HO) and 

expected (HE) heterozygosity ranged from 0.658 (Solway Firth) to 0.777 (Carmarthern Bay; 

mean = 0.729) and from 0.805 (Tremadoc Bay) to 0.852 (Carmarthen Bay; mean = 0.822) 

respectively (Table 1).  Levels of FIS were significantly different from zero in three of the 

four populations, and ranged from 0.074 (Tremadoc Bay) to 0.188 (Solway Firth; mean = 

0.075).  Summary statistics by locus are given in Supplementary Table S1. 

 A total of 27 mitochondrial COI haplotypes were identified (Figure 2).  Nineteen of these 

were found in a single individual, and three of the remaining eight, including the two most 

common haplotypes, were found in more than one population.  Within populations, between 

three (Tremadoc Bay) and 15 (Carmarthen Bay) haplotypes were detected (mean = 8.25).  

Levels of haplotype (H) and nucleotide (π) diversity ranged from 0.178 (Tremadoc Bay) to 

0.920 (Carmarthen Bay), and from 0.001 (Tremadoc Bay) to 0.006 (Solway Firth) 

respectively (Table 1). 

 The analysis of molecular variance (AMOVA) revealed a small but significant overall 

differentiation based on nuclear microsatellites (ΦST[NUC] = 0.013; P < 0.001), and a much 

higher level based on the mtDNA COI (ΦST[MT] = 0.300; P < 0.001; Table 3).  Population-

pairwise ΦST values ranged from zero (three pairs) to 0.046 (Tremadoc Bay / Celtic Sea) for 

nuclear microsatellites, and from zero (Carmarthen Bay / Celtic Sea) to 0.579 (Tremadoc Bay 

/ Celtic Sea) for the mtDNA COI (Table 4).  The BAPS analysis indicated that all the 

individuals analysed were grouped into a single genetic cluster (100% probability).  This was 
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reflected in the PCoA, which showed no evidence of geographical structuring of individual 

multilocus genotypes (Figure 3).  The values for both Tajima’s D and Fu’s FS were 

significantly negative (-1.434 [P = 0.049] and -16.077 [P < 0.0001] respectively), consistent 

with sudden population expansion.  The mismatch distribution analysis (Figure S1), which 

resulted in a Harpending’s raggedness index of 0.045 (P = 0.297), also did not reject the 

sudden expansion model. 

 The simulation studies suggested that the nuclear microsatellite data were able to detect 

FST values of as low as 0.0100 at least 90% of the time, and 0.0125 at least 98% of the time 

(Figure 4).  The mtDNA COI locus had much lower power, only 9% and 16% for the same 

two values, and could only detect FST = 0.05 in 88% of the simulations.  At the lowest values 

of FST (≤ 0.01) used in the simulations, the power of the nuclear microsatellite loci was 

generally five- to ten-fold that of the mtDNA COI locus. 

 

PALAEODISTRIBUTION MODELLING 

For all models, AUC values were high (mean AUC = 0.995).  The modelled current-day 

distribution was a largely accurate prediction of the current range of R. octopus, highlighting 

coastal areas of northwestern Europe as most suitable (Figure 5a).  The palaeodistribution 

model indicated extensive suitable habitat in the Mediterranean at the LGM, but very little in 

the northeast Atlantic, with the only suitable habitat being limited to a small area in the Bay 

of Biscay adjacent to the palaeocoastline (Figure 5b).  The MESS analysis did not indicate 

any areas in the model where extrapolation beyond current climatic conditions had occurred. 
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DISCUSSION 

 

Although the results from the two sets of markers in the present study revealed differing 

levels of population structuring, they can be interpreted as being generally consistent with 

population expansion following the LGM and subsequent divergence, with limited gene flow 

between the regions studied. Our findings are broadly comparable with those from a previous 

study on R. octopus (Lee et al. 2013), and highlight an emerging trend from the currently 

limited number of microsatellite-based population genetic analyses in gelatinous zooplankton 

(Bolte et al., 2013; Aglieri et al., 2014), namely that blooms can readily be traced to 

relatively isolated, self-sustaining populations.  From an ecological perspective such 

information is insightful given that scyphozoa have often been viewed as transient 

components of marine food webs, with very little spatial integrity or trophic relevance (Doyle 

et al., 2006; Houghton et al., 2007).  The growing body of evidence to show that jellyfish 

blooms can persist in large numbers in particular locations over time (through processes in 

addition to advection) promotes the much needed inclusion of such species in ecosystem 

models (Pauly et al., 2008; Doyle et al., 2014). 

 Discrepancies between the levels of genetic structuring revealed by nuclear and organellar 

markers have been reported in a wide range of species (reviewed in Karl et al. 2012).  These 

can be the result of a variety of processes, including sex-biased dispersal (Cano, Mäkinen & 

Merilä, 2008), homoplasy at microsatellite loci (Estoup, Jarne & Cornuet, 2002), selection 

(de Innocentiis et al., 2001), or differences in effective population size (Paulmbi, Cipriano & 

Hare, 2001).  The observed disparity between levels of population differentiation revealed by 

nuclear and mitochondrial markers in the present study, which differ by more than an order of 

magnitude (ΦST[NUC] = 0.013 vs. ΦST[MT] = 0.30), can be explained most readily by the last of 

these.  For diploid species, such as R. octopus, the effective population size of the haploid 
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mitochondrial genome is half that of the diploid nuclear genome.  In addition to this, in 

idealized populations of dioecious taxa with even sex ratios, the effective population size of 

the mitochondrial genome could be assumed to be 0.25 of the effective population size of the 

nuclear genome, leading to differences in the time required for reciprocal monophyly via 

lineage sorting (Maynard Smith 1987; Paulmbi, Cipriano & Hare 2001; Hudson & Coyne 

2002).  A lack of resolving power due to insufficient polymorphism in the microsatellites is 

not supported by the simulation analyses, which indicated that the microsatellites had far 

greater power than mtDNA over a range of simulated FST values based on the empirical allele 

frequencies. 

 Differences in FST and its equivalents between nuclear and mitochondrial markers can be 

further exaggerated where populations have undergone recent expansion.  In such 

circumstances, nuclear loci will take longer to reach mutation-drift equilibrium.  This has 

been suggested previously for other marine species with large effective population sizes 

(Lukoschek, Waycott & Keogh, 2008; Larmuseau et al., 2010).  The results of the 

palaeodistribution modelling indicate an extremely restricted area of suitable habitat for R. 

octopus in the northeast North Atlantic during the LGM compared to its current distribution.  

The model did suggest the presence of suitable habitat in the Mediterranean, but whilst this 

area was not isolated from the Atlantic despite the drop in sea levels during the glacial period, 

the Strait of Gibraltar represents a major biogeographic barrier to a range of marine species 

(Baus, Darrock & Bruford 2005 and references therein; Paternello, Volckaert & Castilho 

2007).  Furthermore, climate-induced range shifts and contractions such as those that 

occurred during the Pleistocene are believed to result from population extirpation, rather than 

migration (Dalén et al. 2007; Bennett & Provan 2008; Provan & Bennett 2008).  Our 

findings, including the significant negative values for both Tajima’s D and Fu’s FS and the 

mismatch distribution analysis, are consistent with expansion of R. octopus from a single, 
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limited refugium after the LGM, followed by subsequent isolation, as indicated by the 

mtDNA and the nuclear FIS values, which suggest inbreeding within three of the four 

populations.  Many northern North Atlantic marine species survived the LGM in a range of 

refugia (reviewed in Provan 2013), and the low levels of nuclear genetic differentiation 

observed in R. octopus  are consistent with high historical gene flow, suggesting an extended 

period of genetic connectivity consistent with LGM survival of populations in the same area.  

Population isolation following the expansion would give rise to the observed discordance 

between mtDNA and microsatellites. 

 Despite the discrepancies observed between mtDNA and microsatellites, the case for using 

multiple, unlinked nuclear loci for genetic studies on scyphozoa is strong. As a basic tool, the 

mitochondrial COI marker allows a great deal of information to be gathered and comparisons 

to be made with many other scyphozoan species for which population data sets exist (e.g. 

Dawson, 2005; Holland et al., 2004; Prieto, Armani & Marcias, 2013).  The additional 

potential power of microsatellites, as indicated by the simulation studies, could be useful in 

fine-scale analyses of population structure in other species which appear to have little 

geographically-based population structuring such as the congener, R. pulmo (Ramšak et al., 

2012). With the recent publication of a study of Pelagia noctiluca genetics employing 

microsatellite markers (Aglieri et al., 2014) and the present study, we foresee a shift in 

scyophozoan studies toward including panels of unlinked, high-resolution nuclear markers.  

As in the present study, a combination of organellar and nuclear markers may be necessary to 

give a more complete picture of population demography and structure, particularly for 

species with large effective population sizes.
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Table 1.  Rhizostoma octopus populations studied and summary diversity statistics 

 

Population 
Latitude 

(N) 

Longitude 

(W) 

Nuclear  Mitochondrial 

N HO H FE IS N h H π 

Carmarthern Bay 

Tremadoc Bay 

Solway Firth 

Celtic Sea 

51.745 

52.728 

54.958 

51.783 

4.447 

4.066 

3.217 

6.650 

24 

23 

24 

15 

0.777 

0.765 

0.658 

0.717 

0.852 

0.824 

0.805 

0.808 

0.090** 

0.074NS 

0.188** 

0.117* 

24 

22 

19 

14 

15 

3 

10 

5 

0.920 

0.178 

0.854 

0.659 

0.004 

0.001 

0.006 

0.003 

 

Abbreviations: N, number of individuals studied; HO, observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient; h, number of haplotypes detected; H, 

gene diversity; π, nucleotide diversity.  Significance of FIS - * P < 0.05; ** P < 0.01; NS – non-significant. 



Page | 23 

 

Table 2.  Rhizostoma octopus microsatellite primers 

 

Locus Repeat Primers (5’ – 3’) Size range (bp) GenBank 

Rp-MS1 

 

Rp-MS3 

 

Rp-MS4 

 

Rp-MS5 

 

(GCACGCACACAC)7 

 

 (TGX)14 

 

(ACTACAC) complex 

 

(TACAC) complex 

 

F: CCCTCATACGTTATGTCATGG 

R: CAGCAGTTCTGACAAGTATTTATTATTC 

F: TTTGGTCGTGTCCTGTTTGA 

R: CGCCAAGAGCAGAATCAATA 

F: CCAACTAATAGAAACTAATCTAGACTAAAC 

R: AAAGTATGATTACGTGAAACGA 

F: AAAATTTGCTCTTATTTGATTCTCG 

R: GATGAAAATCGTGGAAGCTG 

148-205 

 

141-212 

 

398-467 

 

237-362 

 

DQ093644 

 

DQ075948 

 

DQ075951 

 

DQ075950 

Forward tailed with CACGACGTTGTAAAACGAC 

Reverse tailed with GTGTCTT 
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Table 3.  Analysis of molecular variance (AMOVA) 

 

Source of variation 

Nuclear 

 

Mitochondrial 

d.f 
Sum of 

squares 
Variance % d.f 

Sum of 

squares 
Variance % 

Among populations 

Within populations 

3 

168 

6.666 

236.979 

0.019 

1.411 

1.33*** 

98.67 

 3 

75 

9.153 

24.417 

0.140 

0.326 

30.02*** 

69.98 

 

 *** P < 0.001 
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Table 4.  Population-pairwise ST values.  Lower diagonal matrix – nuclear; Upper diagonal matrix – mitochondrial.  Values not significantly 

different from zero are shown in italics. 

 

Carmarthen Bay - 0.437 0.100 0.068 

Tremadoc Bay -0.005 - 0.410 0.579 

Solway Firth -0.011 0.039 - 0.206 

Celtic Sea 0.029 0.046 -0.006 - 

 Carmarthen Bay Tremadoc Bay Solway Firth Celtic Sea 
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Figure Legends 

 

Figure 1.  Locations of sites sampled in this study: CB – Carmarthen Bay; TB – Tremadoc 

Bay; SF – Solway Firth; CS – Celtic Sea.  Inset map shows western Europe, highlighting the 

area of the present study. 

 

Figure 2.  Median-joining network showing relationships between the 27 haplotypes detected 

by sequencing the mtDNA COI region.  Circle sizes are approximately proportional to 

haplotype frequency: smallest circle represents a single individual, largest circle represents 24 

individuals.  Each connection represents a single mutation and small open diamonds 

represent missing intermediate haplotypes. 

 

Figure 3.  Results of the PCA.  The first three axes accounted for 23.51%, 21.54% and 

17.44% respectively of the total variation (62.49%). 

 

Figure 4.  Results of the POWSIM analysis.  The Y-axis represents the power of the markers 

to successfully recover the value of FST indicated on the X-axis, expressed as the proportion 

of 1000 simulations (see text for details).  For FST = 0, this is the Type I (α) value. 

 

Figure 5.  Results of the species distribution modelling: (a) current-day model; (b) 

palaeodistribution model for the Last Glacial Maximum (LGM ca. 21 KYA).  Darker blue 

areas indicate those more suitable for R. octopus.  Yellow circles in (a) indicate occurrence 

data used to generate the models. 
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Figure S1.  Results of the mismatch distribution analysis. 
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Table S1  Summary statistics by locus.  Abbreviations: N, number of individuals studied; HO, 

observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient. 

Locus  Population 
Carmarthen Bay Tremadoc Bay Solway Firth Celtic Sea 

 
 
 
Rp-MS1 
 
 
 
Rp-MS3 
 
 
 
Rp-MS4 
 
 
 
Rp-MS5 
 

 
 
 
HO 
HE 
FIS 
 
HO 
HE 
FIS 
 
HO 
HE 
FIS 
 
HO 
HE 
FIS 
 

 
N =24 

 
0.565 
0.685 
0.178 

 
0.833 
0.910 
0.085 

 
0.833 
0.861 
0.033 

 
0.875 
0.953 
0.083 

 
N = 23 

 
0.571 
0.650 
0.124 

 
0.818 
0.886 
0.078 

 
0.905 
0.816 
-0.111 

 
0.765 
0.945 
0.195 

 
N = 24 

 
0.591 
0.629 
0.062 

 
0.750 
0.876 
0.146 

 
0.789 
0.797 
0.009 

 
0.500 
0.919 
0.464 

 
N = 15 

 
0.733 
0.784 
0.067 

 
0.667 
0.851 
0.222 

 
0.667 
0.641 
-0.041 

 
0.800 
0.956 
0.168 

 



Fr
eq

ue
nc

y

Number of mismatches

Observed

Expected
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