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The disjunct distributions of the Lusitanian flora, which are found only in southwest Ireland 

and northern Iberia, and are generally absent from intervening regions, have been of great 

interest to biogeographers.  There has been a long debate as to whether Irish populations 

represent relicts that survived the Last Glacial Maximum (LGM; ca. 21ka), or whether they 

recolonized from southern refugia following the retreat of the ice, and if so, whether this was 

directly, due to long distance dispersal, or successively, in the manner of a “steeplechase”, 

with the English Channel and Irish Sea representing successive “water-jumps” that have to be 

successfully crossed.  In the present study, we used a combined palaeodistribution modelling 

and phylogeographical approach to elucidate the glacial history of the Irish spurge, 

Euphorbia hyberna, the sole member of the Lusitanian flora that is also thought to occur 

naturally in southwestern England.  Our findings suggest that the species persisted through 

the LGM in several southern refugia, and that northern populations are the result of 

successive recolonization of Britain and Ireland during the postglacial Littletonian warm 

stage, akin to the “steeplechase” hypothesis. 

 

ADDITIONAL KEYWORDS:  Euphorbia hyberna – Irish spurge – Last Glacial Maximum – 

Lusitanian flora – palaeodistribution modelling – phylogeography
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INTRODUCTION 

 

The present-day distributions of many species are the result of climatic fluctuations during 

the Quaternary period (ca. 2.5 MYA – present; Webb & Bartlein, 1992; Comes & Kadereit, 

1998; Hewitt, 2003; Provan & Bennett, 2008).  During the most recent (Weichselian) glacial 

period in Europe (ca. 115 KYA – 20 KYA), these species persisted in refugia associated with 

the southern peninsulas of Iberia, Italy and the Balkans, although fossil and genetic data also 

indicate survival in more northerly, or “cryptic”, refugia (Taberlet et al., 1998; Hewitt, 1999; 

Stewart & Lister, 2001; Bennett & Provan, 2008; Provan & Bennett, 2008).  Phylogeographic 

analyses in particular have allowed the reconstruction of various patterns of postglacial 

recolonization from one or more of these refugia that have led to current-day species 

distributions (Taberlet et al., 1998; Petit et al., 2003). 

 Ireland represents a particularly interesting biogeographical case-study in postglacial 

recolonization.  As an island on the western fringe of the European continent, it has been 

isolated from Britain by postglacial sea-rise for ca. 15 KY, twice as long as Britain itself has 

been isolated from mainland Europe (Edwards & Brooks, 2008).  Ireland has a relatively 

impoverished flora, having only ca. 800 species compared to nearly 1,200 in Britain and 

3,500 in France, and with only 18 of these not found in Britain compared to 375 British 

species absent from Ireland (Reid, 1913; Webb, 1983).  This has been attributed to the 

recolonization of Britain and Ireland during the postglacial Littletonian warm stage being 

somewhat akin to a “steeplechase”, with the English Channel and Irish Sea representing 

successive “water-jumps” that have to be successfully crossed (Mitchell & Ryan 1992; Jones, 

2011). 

 The so-called “Lusitanian” element of the Irish flora comprises a number of species that 

exhibit a disjunct distribution, being found in southern and western Ireland, as well as in 
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northern Spain, but mostly absent from intervening countries (Matthews, 1926; Praeger, 

1933, 1939; Baker, 1959; Webb, 1983).  The Lusitanian distribution has been the subject of 

debate for many years, with some botanists claiming it to be the result of persistence in 

separate Irish and Iberian refugia during the last glaciation (Forbes, 1846; Praeger, 1933), 

whilst others favoured long-distance dispersal from a southern refugium, claiming that full 

glacial conditions precluded in situ survival in Ireland (Reid, 1913).  Recently, the first 

phylogeographic studies on three plant species exhibiting Lusitanian distributions, Daboecia 

cantabrica, Pinguicula grandiflora and Saxifraga spathularis, concur with the latter 

hypothesis and suggest that they achieved their current distributions as a result of 

recolonization from a range of refugia in Iberia and the Bay of Biscay following the last 

glacial maximum (LGM; ca. 21 ka; Beatty & Provan, 2013, 2014). 

 Irish spurge (Euphorbia hyberna) is the sole member of the Lusitanian flora that also 

occurs naturally, although very sporadically, in southwestern England (Devon and Cornwall) 

and in central and southern France, as well as in northern Spain and southwestern Ireland 

(Figure 1a).  Unlike the previously studied Lusitanian plant species named above, which have 

minute, dust-like seeds conducive to long-distance dispersal, E. hyberna has large (3-5 mm) 

seeds with far less capacity for dispersal.  Consequently, given its occurrence in the 

intervening countries between Ireland and Spain, we employed a combined palaeodistribution 

modelling and phylogeographical approach to test whether the species persisted during the 

LGM in northern refugia, or whether the colonization of Ireland could have taken place in the 

sequential fashion of the Littletonian plant “steeplechase”.  We analysed the distribution of 

genotypes at one chloroplast and one nuclear marker from samples across the species’ range 

in combination with the palaeodistribution model to identify the locations of glacial refugia 

during the LGM, and to elucidate how postglacial recolonization has resulted in the species’ 

current-day distribution.
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MATERIALS AND METHODS 

 

STUDY SPECIES 

Euphorbia hyberna is a monoecious perennial which can be found growing in woodland 

glades, hedgerows and on shaded stream banks, and is most easily recognized from April to 

June when it flowers.  The yellow-green flowers are formed on tall stems which can be up to 

60 cm tall, and lack petals and sepals.  The sap is poisonous, containing phorbyl esters, and 

can cause irritation to the skin.  In England, the species is classed by the IUCN as 

“Vulnerable”, based on data from The Vascular Plant Red Data List (IUCN, 2001). 

 

SAMPLING AND DNA EXTRACTION 

Samples of E. hyberna were collected from six locations across the species’ Irish range in 

Counties Cork and Kerry. Leaf samples were also obtained from herbarium specimens from a 

further 19 locations in Ireland, three locations in England, eight locations from France, and 

from 36 locations spanning the species’ entire Spanish distribution (see Fig.1 and Supporting 

Information Table S1 for details of locations and numbers of samples). DNA was extracted 

from field-collected material using a modified CTAB (cetyl trimethyl ammonium bromide) 

protocol (Doyle & Doyle, 1987) and from herbarium samples using Qiagen DNeasy kits. 

 

PALAEODISTRIBUTION MODELLING 

We modelled suitable climate envelopes for E. hyberna at the LGM (ca. 21 ka) in order to 

predict potential refugia, using an ensemble modelling (EM) approach (R Biomod2 package; 

Thuiller et al., 2012).  Species occurrence data (412 spatially unique records; Fig.2a) were 

obtained from the Global Biodiversity Information Facility data portal (http://www.gbif.org/).  

Ten different distribution models using as explanatory covariates the first four principle 
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component (PC) scores from 19 BIOCLIM variables (WorldClim data set 1950–2000; 

Hijmans et al., 2005) were generated at 2.5 arc-minute resolution extracted from an area 

bounded by 15°W to 30°E and 35°N to 60°N.  These first four principal components 

accounted for 99% of the variation in the climate data.  We used this approach because using 

the BIOCLIM variables directly failed even when selecting from the 19 variables by 

removing the most strongly correlated ones (r>0.7).  While the current-climate models looked 

plausible and had good AUC (area under the curve) of the ROC (Receiver-Operator 

Characteristic) scores (AUC>0.8), the resultant palaeoclimatic projections were very different 

from each other; this was traced to instability caused by the strong cross correlations still 

present between the explanatory variables (Dormann et al., 2013).  The ten models were 

screened for performance using the conventional 70/30 training/validation data partition.  

Each model was run ten times using this partition.  Eight models passed this filter (FDA, 

flexible discriminant analysis, did not converge and we excluded SRE, surface range 

envelope, because it had a consistently lower AUC goodness-of-fit measure (Supporting 

Information Table S2).  These remaining eight models (ten replicates of each) were then 

combined using the ROC measure to give an EM, using the median measure, and propagating 

the uncertainty from the training/test split from the 80 fitted models.  The rationale for an EM 

approach is that such a composite model often outperforms individual models (Seni & Elder, 

2010), though it is by no means settled how best this can be done for species distribution 

modelling.  This EM was then supplied with reconstructed LGM data [Community Climate 

System Model (CCSM); Palaeoclimate Modelling Intercomparison Project Phase II: 

http://pmip2.lsce.ipsl.fr/] to identify potential E. hyberna refugial areas.  We calculated a 

multivariate environmental similarity surface (MESS; Elith et al., 2010) to ensure that the 

species range projected at the LGM climate was not outside the current climate – in other 

words, that the LGM projections were not extrapolations outside current climate space. 
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CHLOROPLAST TRNS-TRNG SEQUENCING 

In total, 200 samples were sequenced for the chloroplast trnpS–trnG intergenic spacer.  A 

product was initially amplified and sequenced using the universal trnS-trnG primers 

described in Zhang et al., (2005), and a pair of species-specific primers were subsequently 

designed: Eh-trnS 5′-CATCTCTCCCGATTGAAAAGG-3′ and Eh-trnG 

5′-TAAACTATACCCGCTACGATACAA-3′.  For herbarium samples from which the 

complete product could not be amplified in a single polymerase chain reaction (PCR), the 

region was amplified as two or three overlapping fragments using the primers described in 

Supporting Information Table S3. PCR was carried out on a MWG Primus thermal cycler 

(Ebersberg, Germany) using the following parameters: initial denaturation at 94 °C for 3 min 

followed by 45 cycles of denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, extension 

at 72 °C for 1 min and a final extension at 72 °C for 5 min. PCR was carried out in a total 

volume of 20 μL containing 200 ng genomic DNA, 10 pmol of each primer, 1× PCR reaction 

buffer, 200 μM each dNTP, 2.5 mM MgCl2 and 0.5 U GoTaq Flexi DNA polymerase 

(Promega, Sunnyvale CA). 5 μL volumes of PCR products were resolved on 1.5% agarose 

gels and visualized by ethidium bromide staining, and the remaining 15 μL were ExoSAP-

purified and sequenced in both directions using the BigDye sequencing kit (v3.1; Applied 

Biosystems, Foster City, CA) and run on an AB 3730XL DNA analyser (Life Technologies; 

Carlsbad, CA).  Sequence lengths ranged from 548 bp – 563 bp, and the overall alignment 

was 628 bp in length. 

 

SINGLE-COPY NUCLEAR DNA (SCNDNA) SEQUENCING 

Primers to amplify an anonymous single-copy nuclear DNA locus (Eh-E04) were developed 

using the ISSR cloning method described in Beatty, Philipp & Provan (2010). The 214 bp 

region was amplified in 200 individuals using the following primers: Eh-E04-F 
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5′-TTCCAAATTCCAATTCTGTGC-3′ and Eh-E04-R 

5′-CATCATCATTCAATTAACAAATAAA-3.  PCR and sequencing were carried out as 

described above.  

 

PHYLOGEOGRAPHIC ANALYSIS 

For the scnDNA locus, potential recombination was assessed using the Hudson & Kaplan 

(1985) test in the DnaSP software package (V5.10; Librado & Rozas 2009).  As no evidence 

of recombination was detected, haplotypes were resolved for individuals exhibiting two or 

more heterozygous positions using the PHASE program (V2.1; Stephens & Donnelly 2003) 

implemented in DnaSP.  DNA sequences were aligned in BIOEDIT (V7.0.9.0; Hall, 1999).  

Median-joining networks for both regions were constructed using the NETWORK software 

package (V4.5.1.6; www.fluxus-engineering.com).  Any reticulations in the networks were 

broken following the rules described in Pfenninger & Posada (2002).   

 To identify groups of populations in Spain and France associated with potential refugial 

areas, we performed a spatial analysis of molecular variance (SAMOVA) using the software 

package SAMOVA (V1.0; Doupanloup, Schneider& Excoffier, 2002) for both of the data 

sets. This program uses a simulated annealing approach based on genetic and geographical 

data to identify groups of related populations. The program was run for 10,000 iterations for 

K = 2 to 10 groups, from 200 initial conditions, and the most likely structure was identified 

using the maximum value of ΦCT, the proportion of genetic variation between groups of 

populations, that did not include any groups of a single population. 

 Levels of haplotype diversity (H) and nucleotide diversity (π) at both the chloroplast and 

scnDNA locus were calculated for mainland European, English and Irish samples using 

DnaSP.  To account for differences in sample sizes, effective numbers of haplotypes (he) 

were also calculated using HAPLOTYPE ANALYSIS 1.05 (Eliades & Eliades, 2009).
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RESULTS 

 

PALAEODISTRIBUTION MODELLING 

The current climate species distribution ensemble model (Fig.2) and its component eight 

distribution models based on current climate (Supporting Information Fig. S1) have what is 

usually considered to be high AUC values (Supporting Information Table S2; EM 

AUC=0.974) and, as is often the case, good visual congruence between current distribution 

records and areas of suitable climate (except the individual MARS model).  Example model 

projections for the component eight models for the LGM are given in Supporting Information 

Fig. S2, and the climatic data (PC scores) used are mapped in Supporting Information Figs. 

S3 and S4.  Notable in Fig.2 is the general spread of climatically suitable areas beyond the 

current Euphorbia hyberna range, such as north western Ireland, western Britain and 

Belgium.  There are also a few Eurphorbia hyberna records in areas of apparently low 

current climatic suitability, such as northern Italy and Slovenia.  In contrast to the current 

EM, the paleodistribution EM is spatially rather more coherent in that there is a wide band of 

suitable climate extending from northern Spain and southwest France across the Bay of 

Biscay and up to the south and west of Ireland and the LGM ice sheet (Fig. 2).  Within this 

range of suitable past climate there are areas identified by the EM as particularly suitable and 

so more likely as potential refugia.  These include in Spain the four main areas of Castile and 

León, northern Galicia, northern Aragon and Cataluña, and in France a small area on the 

island of Corsica, a large area centered on the Poitou Charentes region, and a smaller one in 

the Maritime Alps.  Finally, there are three suitable regions in the area now covered by the 

Atlantic: in the Bay of Biscay at the western tip of Brittany, larger area to the south of this, 

and an isolated area well to the south of Ireland.  The multivariate environmental similarity 

surface (MESS; Supporting Information Fig. S5) indicated that only a small amount of 



Page | 10 

 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

extrapolation into novel climate space occurred, and that this was primarily in the north 

where the ice sheet was present. 

 

PHYLOGEOGRAPHIC ANALYSIS 

18 and 14 haplotypes were identified for the chloroplast trnS–trnG intergenic spacer and the 

anonymous Eh-E04 single copy nuclear locus, respectively (Figs. 3a/b; GenBank accession 

numbers XXX – XXX and XXX – XXX).  The SAMOVA analyses based on the scnDNA 

locus did not identify more than a single group comprised of more than one individual, but 

the analysis based on the chloroplast trnS-trnG region identified K = 4 groups (ΦCT = 0.728; 

Fig. 1).  Some degree of geographical structuring of haplotypes was evident for both loci, but 

particularly for the chloroplast trnS–trnG intergenic spacer (Fig. 3a).  The dark blue, light 

blue, pink and white haplotypes were restricted to the eastern part of the main continental 

distribution of E. hyberna, around the Pyrenees, whilst the yellow, light yellow, brown and 

purple haplotypes were only found west of this region.  This was broadly reflected in the 

distributions of the haplotypes displayed by the anonymous Eh-E04 single copy nuclear locus 

(Fig. 3b).  For both loci, the distribution of the green haplotype was of particular note.  This 

haplotype was found in England, along with the ubiquitous red haplotype, but in mainland 

Europe was restricted to a single location in the extreme northeast of the Basque Country in 

Spain, adjacent to the Bay of Biscay.  All diversity statistics for the two markers indicate a 

decrease in levels of genetic diversity from mainland Europe, through England, to Ireland, 

where both loci were monomorphic (Table 1).
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DISCUSSION 

 

The EM for the current climate and distribution (Fig. 2) suggests that Euphorbia hyberna is 

not climatically limited with respect to future expansion into much of Britain and Ireland.  

Belgium is another notably climatically suitable but unoccupied area.  These unoccupied but 

apparently suitable areas serve as a reminder that apparently suitable locations need not be 

occupied, since species have requirements and traits other than climate that must be present 

for effective recolonization and population persistence.  E. hyberna has large, globose seeds, 

with no obvious modifications to aid dispersal, and absence from climatically suitable regions 

may occur due to low capacity for dispersal, or simply because its other niche requirements, 

such as suitable substrate and/or nutrients, are not met.  Alternatively, such areas may be 

attributable to the modelling approach, despite the high AUC scores.  In general, it is 

becoming apparent that model uncertainty is not well dealt with by current species 

distribution models, including those used here, particularly uncertainty caused by structural 

model misspecification (e.g. ignoring autocorrelation in explanatory covariates), response 

variable quality (e.g. variation in spatial recording effort), and low-quality predictive 

covariate data or predictive covariate data that represents an extrapolation (Beale & Lennon, 

2012).  For this reason the paleodistribution model results here, and elsewhere, are best taken 

as a broadly indicative rather than as definitive of potential refugia locations, despite the high 

AUC score (Beale, Lennon & Gimona, 2008). 

 The paleodistribution model identified a number of potential refugia at the LGM, several 

of which overlap the current distribution of E. hyberna.  These areas are comparable in size 

and climatic suitability (by definition) to the current distribution.  The ensemble model is of 

nominally good fit but of course there is no way to establish from modelling alone if any 

particular putative refugium was occupied at the LGM; several may have been unoccupied as 
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a consequence of unsatisfied non-climatic niche requirements.  However, based on a 

combination of this palaeodistribution modelling and the spatial structuring observed in 

genetic data from two independent loci (particularly the chloroplast data) it appears that the 

species persisted in multiple southern refugia during the glaciations.  The findings of the 

present study further highlight the complex nature of refugial persistence in the Iberian 

Peninsula.  The previous concept that each of the three southern peninsulas of Iberia, Italy 

and the Balkans represented a single refugial area has now been superseded by the idea of 

“refugia-within-refugia”, originally proposed for Iberia, but now with several examples from 

the other peninsulas (Gomez and Lunt, 2007).  The potential persistence of E. hyberna in 

separate eastern and western refugia, as suggested by the genetic data and to some extent the 

palaeodistribution model, which indicated an area of suitable habitat in Galicia, mirrors the 

patterns found for D. cantabrica (Beatty & Provan, 2013).  The existence of two SAMOVA 

groups (shown in blue and pink in Fig. 1) apparently associated with the Pyrenees could be 

explained by divergence of these groups in separate microrefugia / microhabitats within, or in 

close proximity to, this region.  A previous phylogeographical study on white oaks (Quercus 

spp.) in Iberia also identified two lineages (designated Lineage A and Lineage C) restricted to 

the eastern Pyrenees that were hypothesized to have originated in separate Cataluñan refugia 

(Olalde et al., 2002).  E. hyberna is most commonly found in oak woodland, and it is possible 

that the two taxa, E. hyberna and Quercus spp., could have persisted together during the 

LGM.  The general west / east distribution of the pink and blue groups respectively along the 

Pyrenees, could indicate persistence in separate microrefugia in the Pyrenees.  Such refugia 

could be difficult to identify using the palaeodistribution model at the resolution used, 

particularly given that mountainous regions can provide a range of spatial and elevational 

habitats that could conceivably promote divergence of lineages (Bennett & Provan, 2008; 

Médail & Diadema, 2009; Holderegger & Thiel-Egenter, 2009; Stewart et al., 2010). 
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 Our findings strongly suggest that the present disjunct distribution of E. hyberna has 

resulted from recolonization of England and Ireland from a southern refugium, possibly in the 

region of the Bay of Biscay (see below).  A similar scenario for the postglacial recolonization 

of Ireland was found in the two previous phylogeographic studies on plants exhibiting 

Lusitanian distributions (Beatty & Provan, 2013, 2014).  In general, Irish populations 

exhibited lower levels of genetic diversity than those in Spain, with E. hyberna completely 

lacking any private haplotypes, classic signatures of postglacial recolonization rather than 

glacial persistence (Provan & Bennett, 2008).  Thus, although the palaeodistribution model 

indicated possible suitable habitat for E. hyberna along the edge of the continental shelf as far 

as the limits of the British-Irish ice sheet at the LGM, the phylogeographic evidence indicates 

that if such a refugium did exist on land that is now submerged, and was the source of the 

northern populations, it must have been situated much further south. 

 The fact that E. hyberna is the only plant with a Lusitanian distribution that also occurs 

naturally in England means that alternative theories on the postglacial recolonization of 

Lusitanian species can be examined.  In the previous phylogeographic studies on elements of 

the Lusitanian flora, the extremely disjunct distribution of present-day populations meant that 

it was not possible to differentiate between recolonization as a result of long-distance 

dispersal, and a more gradual “stepping-stone” pattern of recolonization followed by 

subsequent extirpation of the species from intervening areas (Beatty & Provan, 2013, 2014).  

The sequential decrease in genetic diversity observed in continental, English and Irish 

populations of E. hyberna in both markers studied is entirely consistent with the 

“steeplechase” scenario following the end of the Weichselian glaciation (Matthews, 1926; 

Mitchell & Ryan 1992; Jones, 2011).  At both loci, the haplotypes indicated in green, which 

in Spain are restricted to populations in the extreme north, close to the French border and 

adjacent to the Bay of Biscay, are found along with the most common red haplotype in 
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England, but only the latter is present in Ireland.  Our evidence that E. hyberna colonized 

Ireland in the fashion of the Littletonian plant “steeplechase” thus raises the intriguing 

possibility that other Lusitanian species might have achieved their present-day distributions 

in a similar manner, with no need to invoke extreme long-distance dispersal events.  A similar 

scenario was originally proposed nearly 100 years ago based on biogeographical data (Stapf, 

1914, 1916), but the present study represents the first test of this hypothesis at the 

intraspecific level (although see Valtueña, Preston & Kadereit, 2012 for a species with a 

similarly disjunct distribution, despite not being strictly a Lusitanian one). 

 There also remains the possibility that the present disjunct distribution of E. hyberna (and 

other members of the Lusitanian flora) might be due to anthropogenic transport.  The 

extremely low levels of genetic variation in Irish populations could be consistent with a 

single, recent introduction, and there are many documented cases of the introduction, 

deliberately or accidentally, of mammals into Ireland by humans since Mesolithic times 

(reviewed in Montgomery et al. 2014).  The role of humans in the introduction of the 

Lusitanian flora, however, has rarely been considered.  With the exception of the Strawberry 

tree, Arbutus unedo, which has been planted as an ornamental, botanists generally now 

believe that anthropogenic introduction of these species to Ireland is unlikely, and that natural 

postglacial recolonization is the best explanation for their present-day distributions (Sealy 

1949).  Although no macrofossil or palynological evidence exists for E. hyberna in Ireland, at 

least one other member of the Lusitanian flora, Daboecia cantabrica, is known to have been 

present as far back as the Gortian (Holsteinian) interglacial (ca. 428-302 ka; Woodell 1958; 

Coxon 1996). 

 In conclusion, our findings suggest that the present-day disjunct distribution of Euphorbia 

hyberna did not result from glacial survival in separate northern and Iberian refugia, contrary 

to Forbes’ (1846) original idea on the origin of the Lusitanian distribution, but instead is due 
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315 
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317 

318 

319 

320 

321 

322 

to the recolonization of England and Ireland from a southern refugium, possibly in the area 

around the Bay of Biscay as also previously indicated for Daboecia cantabrica.  Whilst these 

results cast doubt on one early biogeographical hypothesis on the origin of the Lusitanian 

flora, they do provide support for another, namely Stapf’s (1914, 1916) theory of progressive 

dispersal in the fashion of the Littletonian “steeplechase”.  Furthermore, they highlight the 

complex processes responsible for the present-day distribution of genetic variation in the 

Iberian Peninsula, as well as those operating at species’ rear-edges in general, where 

populations often represent reservoirs of unique genetic diversity (Hampe & Petit, 2005; 

Provan & Maggs 2012).
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Table 1.  Diversity statistics by region. 
 

Locus 
Mainland Europe  England  Ireland GenBank 

Accessions N h he H π N h he H π N h he H π 

trnS-trnG 

 

Eh-E04 

114 

 

234a 

18 

 

14 

3.672 

 

1.377 

0.782 

 

0.289 

0.0032 

 

0.0015 

 10 

 

20 a 

2 

 

2 

1.724 

 

1.220 

0.467 

 

0.189 

0.0009 

 

0.0009 

 76 

 

146 a 

1 

 

1 

1 

 

1 

- 

 

- 

- 

 

- 

 

 

a Two gene copies sequenced per diploid individual 

Abbreviations: N, number of individuals studied; h, number of haplotypes; he, effective number of haplotypes; H, gene diversity; π, nucleotide diversity. 
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Figure Legends 

 

Fig. 1.  Present-day distribution of Euphorbia hyberna [shaded; based on Webb, 1983, and 

the Global Biodiversity Information Facility (data.gbif.org)] in Western Europe.  Dashed 

areas show the regions highlighted in Fig. 3a/b.  Coloured circles depict assignment of 

populations to one of K =4 clusters by the SAMOVA analysis. 

 

Fig. 2.  Modelled distribution of Euphorbia hyberna (a) current climate and (b) at the Last 

Glacial Maximum, (LGM, ca. 21 ka). The limits of the ice sheets (after Sejrup et al., 2005) at 

the LGM are also indicated.  Both panels show the modelled species range according to an 

ensemble model based on ten replicates of eight different model types as the coloured areas. 

Within this range there is variation in climatic suitability, as indicated by the colour shading. 

 

Fig. 3.  Haplotype distributions for (a) chloroplast trnS-trnG region and (b) nuclear Eh-E04 

region for Euphorbia hyberna in Western Europe.  Pie chart sizes are approximately 

proportional to sample size, with the smallest circles representing N = 1 (chloroplast locus) or 

N = 2 (nuclear locus) and the largest representing N = 8 (chloroplast locus) or N = 16 (nuclear 

locus).  In the haplotype networks, circle sizes are approximately proportional to haplotype 

frequency.  Open diamonds represent missing haplotypes and small black circles represent 

unique haplotypes i.e. those found in a single individual.  Codes for single-individual 

haplotypes refer to IH codes and barcodes given in Supplementary Information Table S1. 







(a)
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AZE-23781

SANT-110621

FCO-2148

FCO-21473



Table S1  Populations analysed in this study 

Country Location Codea Latitude (N) Longitude (W) N 
trnS-trnG Eh-E04 

Ireland 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fahan 
Valentia Island 
Dingle 
Inishturk 
Black Head 
Rossbeigh 
Derrycunihy 
Derrycunihy 
Glengarriff 
Cape Clear Island 
Sherkin Island 
Gougane Barra 
Alleghaun River 
Gurteenowen 
Drinagh 
Glendore 
Banteer 
Glennaharee East 
Derrybrien 
Glenville 
Ballyhoura Hills 
Glanmire 
Glendine 
Colligan Wood 
Nire Valley 

DBN-95-1990 
DBN-87-1980 
DBN-53-3790 
BIRM-019143 
DBN-20-1961 
DBN-22-1967 
IRDEb 
IRKBb 
IRGGb 
DBN-11-1964 
DBN-55-1975 
IRGBb 
DBN-33-1990 
IRGUb 
DBN-50-1980 
DBN-54-1972 
DBN-75-1977 
DBN-102-1969 
DBN-18-1992 
DBN-48-1988 
DBN-104-1969 
DBN-63-1976 
DBN-46-1964 
IRCWb 
DBN-23-1962 

52.106499 
51.923101 
52.144635 

53.7 
51.639034 
52.057273 
51.966667 
51.971333 

51.75 
51.438435 
51.466159 
51.835167 
52.387281 
51.86905 
51.615221 
51.566787 
52.130557 
52.048487 
53.050328 
52.046378 
52.29625 
51.905429 
52.005661 
52.133333 
52.277012 

-10.410695 
-10.321638 
-10.270301 

-10.1 
-10.042036 
-9.974015 
-9.583333 
-9.581667 
-9.566667 
-9.494109 
-9.417596 

-9.345 
-9.301819 
-9.265833 
-9.149051 
-9.122982 
-8.895895 
-8.780994 
-8.50633 
-8.445829 
-8.438092 
-8.411502 
-7.929738 
-7.683333 
-7.634635 

1 
4 
2 
1 
2 
1 
8 
8 
8 
2 
1 
8 
1 
6 
1 
1 
1 
1 
3 
1 
2 
1 
2 
8 
2           

1 
4 
2 
- 
2 
1 
8 
8 
7 
2 
1 
7 
1 
6 
1 
1 
1 
1 
3 
1 
2 
1 
2 
8 
2 

 

Page | 1 
 



Table S1  (continued) 

Country Location Code Latitude (N) Longitude (W) N 
trnS-trnG Eh-E04 

England 
 
 
France 
 
 
 
 
 
 
 
Spain 

Lynmouth 
Badgworthy Water 
Badgworth 
Pyrénées-Atlantiques 
Ariège 
Ax-les-Thermes 
Aubusson 
Pyrénées-Orientales 
Chanterelle 
Puy de Dome 
Alpes-de-Haute-Provence 
Mazaricos 
Monte Casteso 
Capela 
Outeiro de Rei 
Zamora 
Leon 
Caceres 
Palacios de Compludo 
Orallo 
Igüeña 
El Cabaco 
Puerto de Ventana 
Oviedo 
Val de Samario 

BIRM-019135/37/41/42/44/49/51 
BIRM-019147 
BIRM-019148 
G-00308107 
G-00308108 
AZE-65276 
G-00308109 
G-00308110 
G-00308105 
G-00308104 
G-00308103 
LEB-50433/SANT-110621 
LEB-31789 
FCO-18295 
FCO-21473 
SAL-108244 
COA-27085 
SAL-64349 
LEB-101280 
LEB-23973 
LEB-78704 
SAL-90448 
LEB-35824/41015 
COA-6411 
LEB-60837/61455/61451 

51.2 
51.2 

51.265 
43.250278 
42.933056 

42.76 
46.078889 
42.603333 
45.155556 
45.718889 
44.090833 
42.9389 

43.082449 
43.35 
42.98 
42.15 
42.79 
40.35 

42.452437 
42.963693 
42.715476 

40.57 
43.044764 
43.061419 
42.720058 

-3.8 
-3.7 

-2.873 
-0.879444 
1.501111 

1.96 
1.992222 
2.448889 
2.716111 
3.186944 
6.232222 
-8.9922 

-8.754298 
-8.14 
-7.65 
-6.92 
-6.92 
-6.59 

-6.481113 
-6.425155 
-6.282805 

-6.22 
-6.053467 
-6.01331 
-5.967744 

7 
2 
1 
1 
1 
5 
1 
1 
1 
1 
1 
7 
1 
1 
1 
1 
1 
2 
1 
2 
7 
1 
4 
2 
7 

7 
2 
1 
1 
1 
5 
1 
1 
1 
1 
1 
7 
1 
1 
1 
1 
1 
2 
1 
2 
7 
1 
4 
2 
7 
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Table S1  (continued) 

Country Location Code Latitude (N) Longitude (W) N 
trnS-trnG Eh-E04 

Spain 
 

Gozón 
Llombera 
Redipuertas 
Puebla de Lillo 
Valdore 
Llanaves de la Reina 
Ruesga 
San Cebrián de Mudá 
Zeanuri 
Balmaseda 
Otxandio 
Lagrán 
Aretxabaleta 
Alava 
Améscoa Baja 
Goizueta 
Aranaz 
Leoz 
Ochagavía 
Huesca 
Izaba 
Artiga de Lin 

FCO-02148/LEB-21590 
LEB-54527/54563 
LEB-16558/17188 
LEB-37591/44012 
LEB-14420/14428 
LEB-61452 
LEB-41416 
FCO-28618 
AZE-5283 
AZE-5284 
AZE-5282 
AZE-5280 
AZE-5285 
COA-27906 
AZE-23777/23781 
AZE-23784 
AZE-23783 
AZE-23780 
AZE-23782 
COA-27087 
AZE-23778 
LEB-73975/COA-31229 

43.59 
42.837471 
42.966384 
43.058921 
42.791403 
43.059661 
42.865368 

42.92 
43.048 
43.177 
43.033 
42.61 
43.005 

42.792351 
42.796 
43.162 
43.162 
42.664 
42.964 
42.79 
42.94 

42.681502 

-5.94 
-5.58183 
-5.452345 
-5.333235 
-5.200889 
-4.792943 
-4.530235 

-4.35 
-3.927 
-3.203 
-2.65 
-2.628 
-2.491 

-2.290801 
-2.138 
-1.788 
-1.751 
-1.517 
-1.142 
-0.8 
-0.8 

0.705355 

6 
5 
5 
5 
2 
2 
2 
1 
2 
1 
1 
1 
1 
1 
8 
4 
3 
2 
3 
2 
2 
5 

6 
5 
5 
5 
2 
2 
2 
1 
2 
1 
1 
1 
1 
1 
8 
4 
3 
2 
6 
2 
2 
5 

 
a IH codes: DBN - National Botanic Gardens of Ireland, Glasnevin; BIRM - University of Birmingham Herbarium; G – University of Geneva 
Herbarium; SANT - Universidad de Santiago de Compostela Herbario; FCO - Universidad de Oviedo Herbario; LEB - Universidad de León 
Herbario; COA - Universidad de Córdoba Herbario; SAL - Universidad de Salamanca Herbario; AZE - Alto do Zorroaga s.n. Herbario. 
b These codes refer to our own, field collected samples 



Table S2 AUC values from nine model types fitted using 70/30 training/test split showing ten replicates of each model. SRE was dropped and 

the remaining eight models used to generate an ensemble model, where the contribution model of each model to the ensemble is weighted by the 

AUC score. 

Model* 
Run 

1 2 3 4 5 6 7 8 9 10 

GLM 

GAM 

ANN 

SRE 

CTA 

GBM 

RF 

MARS 

MaxEnt 

0.918 

0.944 

0.897 

0.802 

0.942 

0.952 

0.866 

0.913 

0.957 

0.913 

0.934 

0.893 

0.797 

0.927 

0.939 

0.831 

0.874 

0.940 

0.907 

0.937 

0.886 

0.792 

0.920 

0.948 

0.859 

0.897 

0.951 

0.894 

0.929 

0.881 

0.761 

0.895 

0.932 

0.845 

0.845 

0.944 

0.878 

0.925 

0.871 

0.774 

0.908 

0.934 

0.858 

0.846 

0.947 

0.916 

0.950 

0.924 

0.785 

0.928 

0.956 

0.834 

0.902 

0.961 

0.914 

0.934 

0.875 

0.776 

0.916 

0.940 

0.839 

0.932 

0.954 

0.891 

0.934 

0.868 

0.788 

0.895 

0.935 

0.834 

0.839 

0.955 

0.924 

0.945 

0.927 

0.796 

0.947 

0.961 

0.847 

0.902 

0.965 

0.920 

0.951 

0.898 

0.757 

0.927 

0.958 

0.867 

0.885 

0.963 

 

* GLM=Generalized Linear Model, GAM=Generalized Additive Model, ANN=Artificial Neural Network, SRE=Surface Range Envelope, CTA=Classification Tree 

Analysis, GBM=Generalised Boosted Model, RF=Random Forests, MARS=Multiple Adaptive Regression Splines, MaxEnt=Maximum Entropy 



Table S3  Internal primers used for sequencing chloroplast trnS-trnG region 

Primer Sequence 

trnS-IN-R 

trnS-IN-F 

 

trnS-IN-R1 

trnS-IN-F1 

trnS-IN-R2 

trnS-IN-F2 

CAATTTTTTATATTCTATTATTATATAGAATTATAG 

CTATAATTCTATATAATAATAGAATATAAAAAATTG 

 

AGAATTCTAAATATAATAGAATTAATAAAT 

CGATATTTATTAATTCTATATTTAGAATTCT 

AGTTATTAAGTTAACTATTTATTTCTATTTG 

AGAATTGAAAATTGAAATATATAGAAATTCA 

 



Supplementary Figures 
 

Figure S1. The eight model types used to generate the ensemble model showing the climate 
suitability for Euphorbia hyberna in the current climate. Here the suitability is shown with no range 
edge cut-off (compare with Fig.1 in the main text). 
 

Figure S2. Similar to Fig. S1 but showing the modelled distribution of  Euphorbia hyberna at the 
LGM. 
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Figure S3. The four covariates used in the species distribution modelling for the current climate. 
These are the first four principal component scores of the 19 variable WorldClim dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4. The four covariates used in the species distribution modelling for the LGM climate. 
These are PC scores based on the current climate PC but using the same variables from the CCSM 
climate dataset. 
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Figure S5. Multivariate environmental similarity surface (MESS) representing the similarity of the 
current climate, from which the species distribution models were constructed, to the LGM climate, 
for which they were projected. The colour scale represents similarity, such that low values (red) 
indicate a relatively large difference in climate while high values (blue) indicate small differences. 
Extrapolation into novel climate space is indicated by values below zero. Such areas only occur in 
the north, mainly where the ice sheet was present. The coloured area represents the projected 
distribution of Euphorbia hyberna at the LGM from the ensemble model. The MESS was calculated 
using the climate within the species range modelled in the current climate as the reference values 
compared with the climate within this LGM distribution (i.e. a comparison of climate within the 
two panels of Fig.2 in the main text). 
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