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Abstract  13 

Climate change caused by the release of greenhouse gases in the atmosphere due to various 14 

anthropogenic activities will impact many aspects of the human and natural world, but effects on 15 

agricultural production could be of particular significance. Estimates of annual damages in 16 

agriculture due to temperature increase or extended periods of drought, for example, will be 17 

more costly compared to those in other sectors and activities. Yield losses, as a result of climate 18 

change, are caused either through the direct effects of climate change components on crops or 19 

through indirect effects such as increased inputs in crop production necessary for the control of 20 

weeds, for example. To counteract the effects of climate change various adaptation strategies 21 

have been suggested. It has been suggested by several authors that the farmers’ primary response 22 

to climate change would be to seek and crop cultivars that are most adapted to highly variable, 23 

extreme climatic conditions and pest changes brought forth by global warming.  24 
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Here we review the effects of climate change on crop cultivars alongside with these on weeds. 25 

Increases in marketable yield, mainly through increases in biomass, of cereals, particularly those 26 

that exhibit C3 photosynthetic pathway, range between 8-70%, these of row, cash and vegetable 27 

crops between 20-+144% and these of flowers between 6-35%. Nevertheless, the positive effects 28 

of elevated CO2 on yield will most probably be affected by the availability of other resources 29 

such as water or nutrients. Temperature increases will decrease crop yields of temperature-30 

sensitive crops such as maize, soybean, wheat, and cotton or specialty crops such as almonds, 31 

grapes, berries, citrus, or stone fruits at regional and local scale. Additionally crops like rice, 32 

which is expected to yield better under increased CO2, will suffer serious yield losses under high 33 

temperatures. Significant crop yields reductions that occur under drought stress for tomato, 34 

soybean, maize, cotton are strongly demonstrated. Nevertheless, reviews on C4 photosynthesis 35 

response to water stress in interaction with CO2 concentration revealed that elevated CO2 36 

concentration lessens the deleterious effect of drought on plant productivity. Weeds with C3 37 

photosynthetic pathway are likely to respond more strongly than C4 types to CO2 increases 38 

through biomass and leaf area increases. The positive response of C3 crops to elevated CO2 may 39 

make C4 weeds less competitive for these crops whereas C3 weeds in C4 or C3 crops, 40 

particularly in tropical regions, could become a problem. Temperature increases will mainly 41 

affect the distribution of weeds, particularly C4 type, by expanding the geographical range they 42 

can be established. This will enhance further yield losses and will affect weed management 43 

systems negatively. In addition, the expansion of invasive weed species such as itchgrass, 44 

cogongrass and witchweed facilitated by temperature increases will increase the cost for their 45 

control. Under water- or nutrient shortage scenarios, an r-strategist with characteristics in the 46 

order S-C-R, such as Palmer amaranth, large crabgrass, johnsongrass and spurges will most 47 
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probably prevail. It is becoming obvious that selection of cultivars that secure high yields under 48 

climate change but also by competing weeds successfully is of major importance. Traits related 49 

with a) increased root:shoot ratio, b) vernalization periods, c) maturity, d) regulation of node 50 

formation and/or internode distance, e) harvest index variations and f) allelopathy merit further 51 

investigation. The cumulative effects of selecting a suitable stress tolerator-competitor cultivar 52 

will be reflected in reductions of environmental pollution, lower production costs and sustainable 53 

food production. It is therefore imperative to expand research efforts to investigate how crop-54 

weed interference under various abiotic stresses and cropping systems influences cultivar 55 

performance and subsequent yield outcome. 56 

 57 
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1.0 Introduction  100 

Climate change refers to long term changes in the state of the climate (IPCC, 2014). These 101 

changes are identifiable i.e. the mean or the variability of climate change components such as 102 

increase of temperature or elevated atmospheric CO2 levels can be assessed by the application of 103 

appropriate analytical and statistical methods (IPCC, 2014). The release of greenhouse gases 104 

(carbon dioxide, methane, nitrous oxide) due to various anthropogenic activities is very likely to 105 

be one of the major causes of recent climatic change (Glover et al., 2008). Plausible climate 106 

change scenarios include higher atmospheric CO2 concentrations, higher temperatures and 107 

changes in precipitation (Adams et al., 1998; Trenberth et al., 2007).  108 

Climate change will impact many aspects of the human and natural world (IPCC 2007), but 109 

effects on agricultural production could be of particular significance (Cline, 1992). According to 110 

Cline (1992) estimates of annual damages in agriculture due to temperature increase, for 111 

example, will be more costly to US economy compared to those in other sectors and activities 112 

such as forestry, electricity, water availability or water pollution, air pollution, human mortality 113 

and morbidity, leisure activities, migration, human amenities and urban infrastructure. The 114 

multifaceted climate alterations necessitates the adaptation of crop plants to tolerate increased 115 

heat, extended drought periods (Figure 1a) (Gala Bijl and Fisher, 2011), or increased flooding in 116 

tropical places. Additionally, the expected changes in the distribution, abundance, and severity of 117 

pests and weeds (Bazzaz and Carlson, 1984; Ziska and Runion 2007; Ziska 2014) will affect 118 

cropping systems and pest control methods (Anonymous, 2008). Although climate changes 119 
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compel agriculture to be adequately productive (Tokatlidis, 2013), its effects on agricultural 120 

production can be positive in some agricultural systems and regions and negative in others 121 

(Gregory et al., 2005; Obirih-Opareh and Adwoa Onumah, 2014).  122 

To counteract the effects of climate change various adaptation strategies have been suggested. 123 

These, according to IPCC (2014), are the processes of adjustment to actual or expected climatic 124 

changes and its effects. In agricultural production systems adaptations seek to lessen or avoid 125 

damages caused by climate changes or exploit beneficial opportunities (IPCC, 2001; Adger et al., 126 

2002). Farmers, throughout history, responded to changes in environment by adopting new crop 127 

cultivars and by adjusting their cultural practices (Gala Bijl and Fisher, 2011). At the farm level, 128 

these adaptations include alterations in planting and harvest dates, changes in cropping sequence, 129 

better management of water for irrigation, optimized use of fertilizers and adoption of various 130 

tillage practices (Adams et al., 1998). In addition, studies in Australia showed that crop 131 

responses to climate change are strongly cultivar-dependent (Wang et al., 1992). Asfaw and 132 

Lipper (2011) predicted that the farmers’ primary response to climate change would be to seek 133 

and crop cultivars that are most adapted to highly variable, extreme climatic conditions and pest 134 

changes brought forth by global warming.  135 

Weed interference, in addition to climate change, enhances the risk for further crop yield losses. 136 

Despite the advanced technological achievements for weed control, crop yields are suffering 137 

great losses due to weed competition (Figure 1b). Overall, weeds caused the greatest potential 138 

loss (34%), with animal pests and diseases being, usually, less important (losses of 18 and 16%) 139 

(Oerke, 2006). Competitiveness, adaptation, and stress tolerance are the characteristics by which 140 

weed species secure their survival in a variety of environmental conditions. Competitiveness, 141 

within the context of this paper, pertains to the ability of an organism (weed species in this case) 142 
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to perform better in acquiring resources in relation to another organism (crop plants) within the 143 

same habitat. Adaptation is a change or a process of change by which an organism becomes 144 

better suited to a ‘new’ environment whereas tolerance is the ability of an organism to survive 145 

and reproduce under adverse environmental conditions. Weediness, which comprises traits that 146 

secure the survival and dispersal of weeds, even under severe environmental conditions, can be 147 

described through various morphological, phenological, or physiological characteristics. One of 148 

the main components of integrated weed management strategies for farmers is to grow crops able 149 

to offset the competitive ability of weeds. The utility of crops with weed-suppressive ability 150 

particularly in low input agricultural systems, or in situations when chemical weed control is not 151 

possible, can be proved valuable (Gibson et al., 2003; Benaragama et al., 2014). However, 152 

selection for weed-suppressive cultivars is difficult because this trait is a manifestation of the 153 

joint activity of many genes, controlling many traits. As reports have shown, a combination of 154 

characteristics, instead of a single trait, interact for enhanced weed- suppressive ability (Andrews 155 

et al., 2015). These traits are related to: a) crop morphological performance at early stages (i.e. 156 

rapid emergence, rapid root and shoot growth, early groundcover, early biomass accumulation, 157 

rapid leaf area development); b) crop growth characteristics (i.e. height, growth habit, tillering 158 

ability, leaf width, maturity date); c) crop physiological performance (i.e. ability for efficient 159 

water and nutrients uptake; and d) potential allelopathic properties (Korres and Froud-Williams, 160 

2002; Korres, 2005; Mason and Spaner, 2006). 161 

Climate change, in combination with an increasing world population, is predicted to escalate the 162 

global need for farmland, a resource that is already in high demand (Barrow et al., 2008) 163 

dwindling rapidly. The adoption of stress-tolerant cultivars that can withstand adverse climatic 164 

changes and produce high yields is an effective strategy against the unprecedented risks of 165 
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climate change on crop productivity (Ciais et al, 2005) and the increasing demand for higher 166 

food production (Larson, 2013) particularly in low-input farming systems that are common in 167 

marginal areas (Darwin and Kennedy, 2000). Furthermore, stress-tolerant cultivars that exhibit 168 

attributes of increased suppressive ability against weeds would secure yield production even 169 

more either directly by dominating over weeds or indirectly by reducing crop management inputs 170 

(Korres and Froud-Willliams, 2002). To our knowledge, information that enables the evaluation 171 

of the relative strengths and weaknesses of both crops and weeds under various climate change 172 

scenarios is negligible. This paper aims to cover this gap and to discuss the benefits of selecting 173 

stress tolerant cultivar as a tool for integrated weed control under various climate change 174 

scenarios.  175 

2.0 Effects of climate change on crops  176 

2.1 Effects of elevated CO2 177 

2.1.1 Effects of elevated CO2 on crop physiological characteristics 178 

Increasing levels of atmospheric CO2 due to various anthropogenic activities will directly 179 

influence photosynthesis, transpiration, and respiration, the main processes by which elevated 180 

CO2 can be sensed directly by the plants and ecosystems (Drake et al., 1997). C3 and C4 plant 181 

types exhibit different responses to CO2 enrichment. The current amount of CO2 in the 182 

atmosphere is inadequate to saturate the ribulose 1, 5-biphosphate (RuBisCO) enzyme that drives 183 

photosynthesis in C3 plants (Taiz and Zeiger, 1991; Chijioke et al., 2011). Therefore future 184 

increases in CO2 concentrations up to 57% by 2050 (Hulme, 1996), or even at higher levels (600-185 

800 ppm) (Schmidhuber and Tubiello, 2007), will most probably favor C3 plant types (Table 1). 186 

In contrast C4 type plants are likely to respond less to elevated CO2 levels as they possess an 187 

innate concentrating mechanism that increases CO2 level at the site of RuBisCO to 2000 ppm. 188 
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Hence, predicted increases in atmospheric CO2 concentrations, from a current ambient level of 189 

about 370 ppm, are less relevant to the photosynthetic capacity of C4 plants which, most 190 

probably, will respond only marginally (Poorter and Navas, 2003). The association of 191 

photosynthesis rate and intercellular CO2 concentration was compared in soybean (C3) and 192 

maize (C4). Photosynthesis in soybean was stimulated by 39% under elevated CO2 concentration 193 

but not in maize (Leakey et al., 2009). 194 

2.1.2. Effects of elevated CO2 on crop yields 195 

Carbon dioxide is fundamental for plant production, and increases of atmospheric CO2 196 

concentrations have the potential to enhance the productivity of agro-ecosystems (Table 1) 197 

(Adams et al., 1998). Elevated CO2 is expected to increase plant yield through root mass and leaf 198 

area increases (Table 1) and to alter plant chemical composition, hence the rate of nutrient 199 

cycling in soil (Campbell et al, 1997). Increases in marketable yield of cereals, particularly those 200 

that exhibit C3 photosynthetic pathway, range between 8-70%, these of row, cash and vegetable 201 

crops between 20-144% and these of flowers between 6-35%. The quality of agricultural 202 

products may be altered also by elevated CO2. Nitrogen content, for example, in some non-203 

nitrogen fixing plants grown at elevated CO2, was found reduced (Ainsworth and Long, 2005; 204 

Erbs et al., 2010). These changes could affect the nutritional value, taste, and storage quality of 205 

some fruits and vegetables (Chijioke et al., 2011; Vermeulen et al., 2012).  206 

2.2 Effects of temperature increases 207 

2.2.1 Effects of temperature increases on crop physiological characteristics 208 

Temperature increases result in altered phenology of leaf development, flowering, harvest and 209 

fruit production, decreased vernalisation period, and in asynchrony between flowering and 210 

pollinators (Baldocchi and Wong 2008). In addition, increased temperatures result in higher 211 
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respirations rates, shorter seed formation periods, and lesser biomass production; hence, lower 212 

yields (Stone and Nicolas, 1995; Adams et al., 1998). Key stages of crop development, seasonal 213 

temperature incidents, day-night temperature fluctuations and geographical scale are the major 214 

parameters that should be taken under consideration when the effects of temperature on crop 215 

yields are evaluated. Only few days of extreme temperatures at the flowering stage can 216 

drastically reduce yield in many crops (Wheeler et al. 2000). Pre- and post-anthesis heat 217 

incidents at 35 ºC led to significant yield loss of barley, wheat, and triticale (Zheng et al., 2002; 218 

Porter and Semenov, 2005; Ugarte et al., 2007). Increases in spring temperatures have been 219 

shown to induce earlier spring flowering (Pope et al., 2013), reductions in pollen germination, 220 

flowering and ovule size with subsequent fruit yield declines due to smaller, deformed and fewer 221 

fruit production in perennial crops (Pope, 2012; DeCeault and Polito, 2008). Each crop species 222 

exhibits an optimal temperature for vegetative growth with growth decreasing as temperatures 223 

diverge from this optimum. Similarly, there is a range of temperatures within which a plant will 224 

set seeds and outside of which the plant will not be able to reproduce. Maize, for instance, will 225 

fail to reproduce at temperatures above 32 oC and soybean above 38 oC (Figure 2). 226 

Consequently, the trend in India toward more production of wheat, rice, and barley, and less 227 

production of maize and millets, is likely to accelerate, whereas in the USA, production might 228 

shift away from maize into soybean (C3) for forage (Parry, 1990). High temperatures (above 35 229 

°C) in combination with high humidity and low wind speed caused a 4 °C-increase in rice 230 

panicle temperatures, resulting in floret sterility (Tian et al., 2010).  231 

2.2.2 Effects of temperature increases on crop yield 232 

Crop yields particularly these of temperature-sensitive crops such as maize, soybean, wheat, and 233 

cotton (Schlenker and Roberts, 2009), or specialty crops such as almonds, grapes, berries, citrus, 234 
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or stone fruits (Lobell and Field, 2011; Lobell et al., 2006) will be decreased with temperature 235 

increases at regional and local scale (Bonfils, 2012; Lobell et al., 2006). Night temperature 236 

increases resulted in rice and wheat grain yield losses (Lobell et al., 2005; Peng et al., 2004; 237 

Mohammad et al., 2009). Thus, even a C3 crop like rice which is expected to yield better under 238 

increased CO2, will suffer serious yield losses under high temperature. Since the majority of 239 

global rice is grown in tropical and semi-tropical regions, it is likely that higher temperatures 240 

would negatively affect its production in these areas due to an increase in floret sterility that 241 

would subsequently decrease yields (Prasad et al. 2006a, b). The detrimental effect of high 242 

temperature on rice yield will be exacerbated by increased CO2 in the atmosphere. 243 

2.3 Effects of water deficit 244 

2.3.1 Effects of water deficit on crop physiological characteristics 245 

Physiological responses of plants to drought stress are complex and vary with plant species and 246 

the degree or time of the exposure to drought (Bodner et al, 2015; Evans et al., 1991). Under 247 

drought conditions, photosynthesis inhibition occurs because of stomata closure and reductions 248 

in the CO2:O2 ratio in leaves (Jason et al., 2004).  249 

2.3.2 Effects of water deficit on crop yield 250 

Significant crop yields reductions occur under drought stress through dry weight accumulation 251 

reductions in all plant organs and shorter plant life cycles (Blum, 1996). Pace et al. (1999) 252 

recorded significantly fewer nodes, lower dry weights of stems and reduction in height and leaf 253 

area between water-stressed and well-watered cotton plants (Table 3). In addition, water deficit 254 

at flowering may limit the viability of pollen, the receptivity of its stigma, and seed development 255 

(Blum, 1996). Reduced yields, especially in rain-fed cropping systems, is the norm under 256 

drought conditions (Kramer, 1983), the severity of which may increase due to changing world 257 
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climatic trends (Le Houerou, 1996). One possible scenario is that the irrigated wetland rice (13 258 

Mha of cultivated land) in Asia may experience physical water scarcity by 2025, while the 259 

irrigated dry-season rice (22 Mha of cultivated land) may suffer economic water scarcity 260 

(human, institutional, and financial capital limit access to water even though water in nature is 261 

available locally to meet human demands) (Tuong and Bouman, 2003). Deleterious effects of 262 

water deficit on crops such as tomato (Ragab et al., 2007), soybean (Sakthivelu et al., 2008; 263 

Hamayun et al., 2010), maize (Khodarahmpour, 2011) and many others is well known.  264 

2.4 Interactive effects of climate change components on the physiology of crop plants and 265 

yield 266 

In previous sections the effects of climate change components on crop plants were examined 267 

individually although environmental changes occur concurrently (Albert et al., 2011) with 268 

management practices (Tubiello and Ewert, 2002). For instance, crop yield response to elevated 269 

CO2 levels is relatively greater in rain-fed than in irrigated crops, due to a combination of 270 

increased water-use efficiency (Table 4) and root water-uptake capacity (Tubiello and Ewert, 271 

2002). In addition, the projected increases in atmospheric CO2 concentration will increase crop 272 

growth and consequently nitrogen uptake by the crop, thus potentially will increase the need for 273 

fertilizer applications if production is to be maximized (Olesen and Bindi, 2002). Elevated CO2 274 

resulted in a sustained larger N pool in above-ground biomass of grasses during a 5-year study 275 

on long-term enhancement of N availability under CO2 concentration increases, suggesting that 276 

more N was taken up each year from the soil under elevated CO2 (Dijkstra et al., 2008). Also, 277 

increased soil moisture under elevated CO2 supported higher rates of N mineralization, thereby 278 

reducing N constraints on plant growth. More of the mineralized N ended up in the above-ground 279 

biomass of needle-and-thread [Hesperostipa comata (Trin. & Rupr.) Barkworth] (C3) than in 280 
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blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] (C4) under elevated CO2 281 

(Dijkstra et al., 2008). Therefore is possible that C3 species exhibit a higher plant N acquisition 282 

and utilization under elevated CO2 concentrations. Ghannoum (2009) reviewed the C4 283 

photosynthesis response to water stress in interaction with CO2 concentration and reported that 284 

elevated CO2 concentration lessens the deleterious effect of drought on plant productivity. This is 285 

due to reduced stomatal conductance, CO2 assimilation rate, and intercellular CO2 levels 286 

(Ghannoun, 2009; Ripley et al., 2007) therefore, saturating CO2 concentration keeps the 287 

photosynthetic capacity unchanged and limits reductions in plant productivity.  288 

3.0 Effects of climate change on weeds  289 

Compared with crops, weeds have more variable characteristics as they have not been subjected 290 

to the same degree of selection for specific favorable traits (e.g. lack of seed dormancy, uniform 291 

growth, high yields). Hence, weeds tend to exhibit greater potential capability to adapt to stress 292 

than crop plants. The high genetic diversity among weedy plants allow them to achieve a greater 293 

competitive fitness against crops as a consequence of climate change (Dukes and Mooney, 294 

1999). The major categories under which climate change will affect weed populations include 295 

species abundance and richness, geographic range, and phenology (Anonymous, 2013; Curtis 296 

and Wang, 1998).  297 

3.1 Effects of elevated CO2  298 

3.1.1 Direct effects of elevated CO2 on weeds 299 

There is an acknowledged consensus regarding the direct impact of increased CO2 on plant 300 

physiology (Ziska, 2004). Many weeds respond positively to elevated CO2 due to decreased 301 

stomatal conductance (Bunce, 1998) and subsequent improvements in water-use efficiency 302 

(Patterson et al., 1999; Ziska and Runion, 2006). C3 plant types are likely to respond more 303 
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strongly than C4 plant types to CO2 increases (Southworth et al., 2002; Ziska, 2004) (Figure 3) 304 

through biomass and leaf area increases (Walthall et al., 2012). Nonetheless, results from various 305 

studies indicate significant and wide variations in response to elevated CO2 due to interactions 306 

with temperature, light, water, and nutrients. CO2 enrichment enhanced the growth and biomass 307 

production of annual fescue [Vulpia myuros (L.) C.C. Gmel.] (C3 type), Santa Maria feverfew 308 

weed (Parthenium hysterophorus L.) (C3/C4 intermediate type), and green amaranth 309 

(Amaranthus viridis L.) (C4 type)(Scott et al., 2014; Naidu and Paroha, 2008). Other direct 310 

effects of elevated CO2 is the production of excess pollen in ragweed (Ambrosia artemisiifolia 311 

L.) (Wayne et al., 2002) and the accelerated maturity rate in wild oat (Avena fatua L.) 312 

(Anonymous, 2008). 313 

3.1.2 Indirect effects of elevated CO2 on weeds 314 

Weed reproductive capacity will most probably be enhanced by increased CO2 (Patterson et al., 315 

1999; Ziska and Runion, 2006). In case of the green amaranth, a 274 percent increase in flower 316 

production under elevated CO2 (550 ± 30 ppm) in controlled environmental conditions was 317 

reported by Naidu and Paroha (2008). Reproductive capacity is linked to resource capture 318 

(DeFelice et al., 1988; Benvenuti and Steffani, 1994; Bello et al., 1995) which is related to 319 

increased biomass and leaf area (Korres, 2005). Therefore, increases in biomass with elevated 320 

CO2 levels will enhance weed reproductive output as these two traits are positively correlated 321 

(Korres and Froud-Williams, 2002; Korres et al., 2015). Hence, increases in reproductive output 322 

will result in increases of weed abundance. Disruptions of soil and native plant populations for 323 

urban or rural development, emissions that increase atmospheric CO2 concentrations, and 324 

nitrogen deposition to the ground surface which enhance weed growth (Johnson and California 325 

Invasive Plant Council, 2013), and roadside activities which lead to the spread of weeds (Korres 326 
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et al., 2015) will further enhance weed abundance. In addition, Ziska et al. (2004) observed that 327 

elevated CO2 concentrations increased root biomass of Canada thistle (C3 plant type), suggesting 328 

that perennial weeds might be more difficult to control at these higher CO2 levels.  329 

3.1.3. Effects of elevated CO2 on crop-weed interference 330 

Some of the world's most troublesome weed species are C4 types and are found in C3 crops 331 

(Edwards and Huber, 1981). The positive response of C3 crops to increased CO2 may make such 332 

weeds less competitive (Table 5). In contrast, C3 weeds in C4 or C3 crops, particularly in 333 

tropical regions, could become a problem (Table 5), although the final outcome will depend on 334 

other climate change components (Morison, 1989). Despite the fact that many weed species 335 

exhibiting a C4 photosynthetic pathway show less response to atmospheric CO2 relative to C3 336 

crops, in most agronomic situations, a mix of both C3 and C4 weeds occurs. As stated earlier 337 

increases in CO2 concentrations will enhance C3 weed growth particularly for those species that 338 

reproduce by vegetative means (Ziska and George, 2004; Ziska, 2003). Consequently, the 339 

abundance of perennial weeds such as common couch [Elytrigia repens (L.) Desv. Ex. Nevski], 340 

heartshape pickerelweed [Monocharia vaginalis (Burm. F.) Presl], cosmopolitan bulrush 341 

[Scirpus maritimus L.], hedge bindweed [Calystegia sepium (L.) R. Br.], Canada thistle [Cirsium 342 

arvense (L.) Scop], perennial sowthistle [Sonchus arvensis L.], horsenettle [Solanum carolinense 343 

L.], most of them found in rice or soybean cropping systems, may increase, since elevated CO2 344 

stimulates greater rhizome and tuber growth (Chandrasena, 2009).  345 

3.2 Effects of temperature 346 

3.2.1 Effects of temperature on weed physiological characteristics  347 

Soil temperature is the primary determinant of seed germination and survival particularly when 348 

soil freezes (Zimdahl, 2007). Various responses to temperature fluctuations have been reported 349 
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for seed germination of weed species. Common chickweed (Stellaria media L.) survives well in 350 

cold climates (King, 1966), whereas some of the most troublesome weeds in soybean, maize, and 351 

cotton respond to temperature gradients to varying degrees (Ehleringer, 1983). Barnyardgrass 352 

(Echinochloa spp.) is a weed of warm regions that requires high temperatures for dry matter 353 

production and growth (Maun and Bennett, 1986). Similarly prickly sida (Sida spinosa L.) needs 354 

high temperatures for its development (Anonymous, 2001). The spatial distribution of 355 

johnsongrass [Sorghum halepense (L.) Pers.] in colder climates is restricted by its rhizome 356 

intolerance to temperatures below -3 oC (Warwick and Black, 1983). Similarly, morningglories 357 

are frost intolerant (Halvorson and Guertin, 2003; Zia Ul-Haq et al., 2012) but their germination 358 

occurs over a wide range of temperatures (15-35 oC) (Cole and Coats, 1973-cited in Halvorson 359 

and Guertin, 2003) with optimum germination temperature at 24 oC (Crowley and Buchanan, 360 

1980-cited in Halvorson and Guertin, 2003). In addition, Ziska et al. (2007) reported 88% 361 

increase in biomass and 68% increase in leaf area of itchgrass [Rottboelliia cochinchinensis 362 

(Lour.) W.D. Clayton] in response to a 3 oC-increase in temperature. 363 

3.2.2 Effects of temperature on weed distribution 364 

The geographical range of many weed species is largely determined by temperature and it has 365 

long been recognized that temperature determines successful colonization of new environments 366 

by weedy species (Woodward and Williams, 1987). Warming will affect the growth, 367 

reproduction and distribution of weeds. Increased temperatures could, for example, alter the 368 

latitudinal distinction between Midwest and Midsouth regions within the USA, altering the weed 369 

geographical limitations. The greater soybean and maize losses experienced in the Midsouth are 370 

associated with a number of very aggressive weed species of tropical or sub-tropical 371 

environments such as prickly sida and johnsongrass (Osunsami, 2009; Riar et al., 2013). 372 



17 
 

Obviously, increased temperatures will facilitate the spread of these species into other areas of 373 

the Midwest with subsequent effects on soybean and maize production (Walthall et al., 2012). 374 

Temperature increases are likely to be particularly important in affecting the relative plant 375 

growth of C3 and C4 plants, potentially favouring C4 weeds (Dukes and Mooney, 1999), such as 376 

smutgrass (Sporobolus indicus L. R. Br.). This again could provide suitable conditions for more 377 

robust growth of some species, which are currently limited by low temperatures, whereas the 378 

distribution of some tropical and sub-tropical C4 species could shift northwards (Ziska and 379 

Runion, 2006; Chandrasena, 2009), thus exposing temperate-zone agriculture to previously 380 

unknown aggressive colonizers. 381 

In addition, Ziska et al. (2007) stated that an expansion of invasive weed species such as 382 

itchgrass, cogongrass [Imperata cylindrical (L.) P. Beauv.] and witchweed [Striga asiatica (L.) 383 

Kuntze] will be facilitated by temperature increases. They also reported an increase in biomass 384 

and leaf area of itchgrass by 88 and 68% respectively in response to a 3 oC-increase. On the 385 

contrary, additional warming could restrict the southern range of other cooler-climate invasive 386 

weeds such as wild proso millet (Panicum miliaceum L.) or Canada thistle (Ziska and Runion, 387 

2007). 388 

3.3 Effects of water deficit  389 

3.3.1 Effects of drought on weed physiological responses  390 

Under more frequent and severe drought stress events due to climate change, the competitive 391 

balance would shift in favor of deep-rooted plants (Stratonovitch et al., 2012). Early emerging 392 

species, such as the shallow-rooted Sandberg’s bluegrass (Poa sandbergii Vasey), which uses the 393 

resources that are available in the upper soil profile early in the growing season and during 394 

periods of light precipitation, will be suppressed (Daudenmire, 1970 cited in Sheley et al., 1996). 395 
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In addition, dry soil conditions prolong the longevity of weed seeds due to unfavorable 396 

conditions for seed predators (Storrie and Cook 2007) and unfavorable conditions for 397 

germination. Weed seeds such as black bindweed (Polygonum cilinode Michx.) can last up to 398 

seven years in the soil under dry conditions (Storrie and Cook, 2007). A summary of the 399 

potential impacts of drought stress on some of the most important Australian weeds are shown in 400 

Table 6 where a trend of establishment in higher latitudes is expected (Anonymous, 2008).  401 

3.3.2 Weed adaptation strategies under water deficit and other unfavorable conditions 402 

As reported by Wiese and Vandiner (1970), species with greatest growth under high soil moisture 403 

conditions will be the most adversely affected by the combination of competition and water 404 

shortage. On the contrary, the more competitive species under semi-drought conditions are likely 405 

to be those that produce little growth in moist soils. Based on the competitive exclusion 406 

principle, the species that uses a resource more efficiently will eventually, either wholly or 407 

partially, displace the other species. This opportunistic behavior characterizes the r-strategists, 408 

those with short life cycle and high energy investments into reproduction and dispersability, as 409 

opposed to K-strategists (Sheley et al., 1996; Hardin, 1960). Grime (1979) extended the r- and K- 410 

classification strategies into stress tolerators (S), competitors (C), ruderals (R) or combinations of 411 

the above strategies. Under high stress intensity that can limit plant growth, as in the case of 412 

water or nutrient shortage, stress tolerators (S) can perform adequately. Based on the ability of 413 

adjacent organisms to exploit the same resource competitors (C) will perform best whereas 414 

ruderals (R) can withstand physical damages. Most weeds of annual agricultural systems exhibit 415 

ruderal-competitive characteristics, whereas most weeds of rangeland and forest ecosystems 416 

exhibit stress tolerance-competitive characteristics. Typically, succession is evolved from ruderal 417 

to competitive and finally to stress tolerator species (Korres, 2005). Hence, under water- or 418 
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nutrient shortage scenarios, an r-strategist with characteristics in the order S-C-R, will most 419 

probably prevail. In a recent weed survey (Korres et al., 2015), the preference of Palmer 420 

amaranth, large crabgrass (Digitaria sanguinalis L. Scop.), johnsongrass, and spurges 421 

(Euphorbia spp.) for disturbed habitats was reported. In the same survey, giant ragweed 422 

(Ambrosia trifida L.), yellow nutsedge (Cyperus esculentus L.), barnyardgrass, and hemp 423 

sesbania [Sesbania herbacea (Mill.) McVaFugh] exhibited a strong preference for moist habitats. 424 

Obviously, the former group of weeds is assured of a greater probability for survival under water 425 

or nutrient stress conditions in comparison to the latter.  426 

3.4 Interactive effects of climate change components on weed performance and 427 

consequences on weed-crop competition 428 

The influence of climate change on simple competitive outcomes will be difficult to predict 429 

based simply on a single model, as interactions between the various climate change scenarios are 430 

likely to concur and will affect the outcome of the crop-weed competition (Alberto et al., 1996). 431 

The growth of a tropical weed is strongly stimulated by relatively small changes in air 432 

temperature (Patterson et al., 1984), but the potential synergistic effects of rising CO2 on these 433 

weeds relative to tropical crops is unknown. It is believed that increased CO2 and temperature 434 

can negatively impact plant growth. Scott et al. (2014), for example, reported that increases in 435 

both parameters negatively impacted plant growth rates in grassland ecosystems. The effects of 436 

elevated CO2 levels on crops and weeds will alter the weed-crop competitive interactions, 437 

sometimes for the benefit of the crop and sometimes for the weeds. Consequently, the control of 438 

weeds will also likely be affected by these changes (Patterson, 1995; Coakley et al., 1999). 439 

Reduction in transpiration and changes in leaf anatomy and leaf surface characteristics, or greater 440 

root to shoot ratio caused by elevated CO2, could also affect herbicide uptake, thus reducing 441 
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herbicide efficiency (Patterson et al., 1999; Olesen and Bindi, 2002; Poorter and Navas, 2003; 442 

Dukes et al., 2009). This was confirmed by various studies in which increased CO2 concentration 443 

has affected the efficacy of glyphosate on both C3 and C4 weed photosynthetic types (Ziska et 444 

al., 2004; Manea et al., 2011; Ziska et al., 1999) (Table 7). This response to carbon dioxide in 445 

combination with the evolution of glyphosate resistance by many weed species (Heap, 2015), 446 

will affect weed control schemes significantly. Controlling weeds currently costs the United 447 

States, more than $11 billion a year, with the majority spent on herbicides, hence both herbicide 448 

use and costs are likely to increase as temperatures and carbon dioxide levels rise (Karl et al., 449 

2009). 450 

Additionally, little attention has been focused on the interactions between nutrient availability or 451 

drought with rising CO2, on weed-crop competition. According to Newton et al. (1996) the 452 

proportion of weed biomass increased with elevated CO2 equally in wet and dry treatments in 453 

pasture mixture. In another study, reduced weed competition was observed when tomato (C3 454 

crop) and redroot pigweed (C4 weed) were grown under well-watered conditions, but when 455 

drought and high CO2 occurred synchronously, redroot pigweed performed better (Valerio et al., 456 

2011). Under extreme nutrient limitations, stimulation of biomass with additional CO2 may be 457 

minimal. However, under moderate nutrient limitations, more indicative of agroecosystems, the 458 

increase in biomass may be reduced but still occurs (Seneweera et al., 1994). Under a 459 

competitive environment between rice (C3 crop type) and barnyardgrass (C4 weed type), the 460 

proportion of rice biomass increased relative to barnyardgrass with a 200 ppm increase in 461 

atmospheric CO2, but only when soil nitrogen was adequate. If nitrogen was limited in an 462 

enriched CO2 environment, the competitive ability of rice relative to barnyardgrass was reduced, 463 

possibly due to reductions in tiller formation (Zhu et al., 2008). Elevated CO2 can mitigate some 464 
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of the adverse effects of increased temperature and drought and also regulate the adaptive 465 

mechanism of black knapweed (Centaurea nigra L.) (Qaderi et al., 2013). The effects of drought 466 

are likely to vary widely among crops and weeds. In maize, drought has been found to both 467 

decrease interference from naturally occurring weed flora dominated by foxtail species (Setaria 468 

spp.) (McGiffen et al., 1997), and increase the competitive ability of johnsongrass (Leguizamon, 469 

2011). Drought and high temperatures favor the competitive ability of C4 weeds over C3 crops 470 

(Fuhrer, 2003), an advantage which will most probably diminish or possibly be reversed under 471 

increased CO2 concentrations (Bazzaz and Carlson, 1984; Carter and Peterson, 1983).  472 

Spatial-based effects of temperature increases and prolonged drought periods on weeds have also 473 

been anticipated. More particularly, long drought periods interspersed with occasional very wet 474 

years will enhance weed invasion because established vegetation, both native and crops, will be 475 

weakened, leaving some areas open to invasion (Chandrasena, 2009). In general, wetter and 476 

milder winters are likely to increase the survival of some winter annual weeds, whereas warmer 477 

summers and longer growing seasons may permit thermophile summer annuals to grow in 478 

regions further north (Peters et al., 2014). Alterations in temperature and nutrients supply can 479 

reduce photosynthetic rate of Palmer amaranth. The combination of temperature between 36-46 480 

oC with resource supply constraints may restrict the potential distribution range of Palmer 481 

amaranth (Ehleringer, 1983; Ward et al., 2013). 482 

4.0 Cultivar selection against weeds and traits that confer competitiveness  483 

Crop ability to suppress weeds can be considered in two ways, namely a) an ability to tolerate 484 

weed competition which can be measured by the ability of the crop to maintain high yields under 485 

weedy conditions, and b) the ability of the crop to suppress the growth of weeds, usually 486 

determined by comparing different biological characteristics in mixtures with that in pure stands, 487 
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known as weed suppression ability or competitive ability (Callaway, 1992; Korres, 2004 488 

Andrews et al., 2015). However, there is a confusion between cultivar tolerance to weed 489 

competition and cultivar weed suppressive ability (Olesen et al., 2004). Furthermore, crop 490 

tolerance to weed competition varies widely over seasons and locations (Cousens and Mokhtari, 491 

1998; Olesen et al., 2004). Thus, weed suppression criterion has been emphasized here for the 492 

selection of suitable cultivars against weeds under various climate change scenarios.  493 

4.1 Cultivar phenotypic characteristics and weed suppression 494 

Unlike breeding for diseases and pest resistance, little research has been done on breeding crop 495 

cultivars which are more competitive to weeds. Certain crop cultivars are known to be better 496 

competitors with weeds than others (Callaway, 1992). For example, white bean (Phaseolus 497 

vulgaris L.) cultivars differ in their ability to compete with weeds (Malik et al., 1993). Certain 498 

tomato cultivars (Lycopersicon esculentum L.) have considerable tolerance to dodder (Cuscuta 499 

spp.), a severe parasitic weed in many parts of the world (Goldwasser et al., 2001). Cultivars of 500 

small grain cereals with certain characteristics such as short stature, earlier maturity, better 501 

winter hardiness or early season growth have shown differential competitive abilities when 502 

grown in mixtures compared to monocultures (Juskiw et al., 2000). As stated by various authors 503 

breeding crop cultivars with an enhanced ability to suppress weeds would be a sustainable 504 

contribution to improved weed management in many crops (Didon and Bostrom, 2003; Lemerle 505 

et al., 2001; Paolini et al., 1998; Vollmann et al., 2010). Therefore, cultivar selection with traits 506 

that enhance its ability to suppress weeds such as these mentioned above could be explored 507 

under various climate change scenarios. Additionally, the belowground traits such as root length 508 

density, root elongation rate, total root length, and root spatial distribution are important factors 509 

for attributing competition effect (Gealy et al. 2013a; Fargione & Tilman, 2006; Stevanato et al., 510 
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2011). The greater ability to extract water from dry soil may affect or even determine the 511 

competitive ability of a cultivar (Song et al, 2010). Reports have shown that under weed 512 

competition the root:shoot ratio of the crop and weeds was reduced (Kasperbauer and Karlen, 513 

1994; Thomas and Alison, 1975; Stone et al, 1998), particularly of the less competitive species, 514 

although soil water content was not a limiting factor (Thomas and Alison, 1975; Rajcan and 515 

Swanton, 2001). However, as stated by Rajcan and Swanton (2001), competition for water 516 

should be viewed as an outcome of the interaction between both soil-plant-atmosphere and the 517 

crop-weed systems, rather than simply as a shortage of available water. 518 

4.2 Implications for allelopathic properties  519 

Weed suppression can vary with management factors such as planting method, seeding density, 520 

flood depth, and nitrogen fertilization whereas in some cases, activated charcoal has reduced the 521 

inhibition of weeds in soils, implicating allelopathic activity as a possible contributing factor 522 

(Kong et al., 2008; Kong et al., 2011). Rondo, for example, a rice cultivar grown in a commercial 523 

organic rice production operation in Texas, USA that combines a high yield potential and a weed 524 

suppression ability is considered as a potential cultivar with allelopathic properties (Gealy and 525 

Yan 2012). Bertholdsson (2010) bred spring wheat for improved allelopathic potential by 526 

conventional breeding. The material used originated from a cross between a Swedish cultivar 527 

with low allelopathic activity and a Tunisian cultivar with high allelopathic activity. 528 

Therefore, research efforts have focused on combining allelopathic activity with other weed-529 

suppressive traits in small grains such a rice (Figure 3). Breeders in Asia showed that allelopathic 530 

traits in rice can be quantitatively inherited (Chen et al., 2008) and weed-suppressive cultivars 531 

have now been developed in that region (Kong et al., 2011; Ma et al., 2006; Pheng et al., 2009a, 532 

2009b). Similar progress has been reported in the USA (Gealy et al., 2013b). Breeding efforts 533 
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with other small grains in Europe, using a dual screening approach of seedling bioassays for 534 

allelopathic potential coupled with field evaluations for general weed suppression, have resulted 535 

in germplasm with improved weed suppression or tolerance (Bertholdsson 2005, 2007, 2010). It 536 

has been reported that early season crop biomass and allelopathic potential were key traits for 537 

improved weed suppression by the crop (Bertholdsson, 2011; Bertholdsson et al., 2012). 538 

Worthington and Reberg-Horton (2013) have reviewed important breeding issues for small 539 

grains associated with optimization of weed-competitive ability and allelopathic traits. Rice traits 540 

such as rapid seedling growth, leaf area, and tiller production, and high yield potential have 541 

improved weed suppression and minimized crop yield loss (Gealy and Moldenhauer, 2012; 542 

Gealy and Yan, 2012; Gibson et al., 2003; Pérez de Vida et al., 2006). Zhao et al. (2006) 543 

successfully selected cultivars for weed-suppressive traits such as yield, early vigor, and height 544 

under weed-free conditions to identify weed- competitive cultivars.  545 

5.0 Traits for developing an ideotype S-C cultivar  546 

The use of tolerant cultivars to a wide range of climatic fluctuations as adaptive tool is widely 547 

spread (Matthews et al., 1994). In Australia, for example, the use of late maturing cultivars 548 

secures high yield outcomes that could be otherwise affected by inconsistent climatic conditions 549 

(Connor and Wang, 1993). A similar strategy, at crop level, is used in Canada and China, where 550 

the diversification of crops counteracts the climatic fluctuations (Hulme et al., 1992; Cohen et 551 

al., 1992).  552 

5.1 Cultivars with deep root system 553 

Adapting a cultivar with a deep root system, particularly in areas which experiencing prolonged 554 

dry periods can be a useful tool (Bodner et al., 2015). Newly introduced wheat cultivars can 555 

better exploit water and nutrients (Korres et al., 2008) mainly due to their greater ability to 556 
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maintain water uptake and consequently to survive longer in dry soils (Song et al., 2009). 557 

Sorghum, for example, seems an attractive option for dry lands where crops frequently encounter 558 

drought stress compared to maize. Sorghum has deep root system, high root density, cuticle and 559 

epicuticular deposition in leaves, and efficient stomata function under water stress (Assefa et al., 560 

2010; Starggenborg et al., 2008; Schittenhelm and Schroetterm, 2014). Traits related to 561 

competitiveness for water and nutrients that could affect the weed suppressive ability of the crop 562 

include root density, root length, water uptake rate and root surface area (Aarssen, 1989; 563 

Callaway, 1992; Mohler, 2001). In the long-term, breeding drought-tolerant cultivars might be 564 

advantageous for weed suppression as well as a means to cope with climatic changes in areas 565 

with prolonged summer dry periods (Bodner et al., 2015). Acquiring and utilizing water and 566 

nutrients more adequately compared to weeds due to their extensive root system, for example, 567 

will enable to crop cultivars to maintain growth even under drought conditions. Cultivars with 568 

high early vigor and earlier maturity can be used as an effective adaptation strategy for areas 569 

with semi-arid continental climates in temperate zones where more frequent generative droughts 570 

are forecasted (Gouache et al., 2012; Bodner et al., 2015). Genetic manipulation using molecular 571 

breeding has resulted in commercialization of drought-resistant crops such as the maize-572 

DroughtGradeTM (Monsanto, St. Louis, USA) that is already used extensively in the US (Waltz, 573 

2014). Differences in resistance to drought are known to exist within genotypes of plant species 574 

(Grzesiak et al., 2012) e.g. in, wheat (Winter et al., 1988; Paknejad et al., 2007), rapeseed 575 

(Richards & Thurling, 1978), oat (Larsson and Gorny, 1988), and triticale (Royo et al., 2000; 576 

Grzesiak et al., 2012). Nevertheless, drought tolerance does not necessarily provide competitive 577 

advantages to the crop. As reported by Cerqueira et al. (2013), two drought-tolerant upland rice 578 

cultivars were affected by the competition of shrubby false buttonweed (Spermacoce verticillata 579 
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L.) regardless of water conditions (presence and absence). In addition, as reported by Chauhan 580 

and Abugho (2013), rain-fed rice plants under weed competition with spiny amaranth 581 

(Amaranthus spinosus L.) and Chinese sprangletop [Leptochloa chinensis (L.) Nees] (C4 types) 582 

did not survive under limited water conditions. On the contrary both weed species, survived and 583 

produced a significant number of tillers and leaves.  584 

5.2 Harvest index and dry mater components  585 

To promote adaptation to high temperatures, plant breeders have suggested phenotypic traits 586 

related to heat tolerance during flowering, high harvest index, small leaves, and reduced leaf area 587 

per unit of ground area (Walthall et al., 2012). Differences between winter wheat cultivars in 588 

harvest index at high temperatures imply that heat-tolerant cultivars maintain higher grain 589 

development, compared to more temperature-sensitive cultivars (Wardlaw and Moncur, 1995). 590 

Lower harvest indices are an indication of injudicious investment of assimilates, a result of 591 

favoring biomass production over commercial yield (Hay and Walker, 1992). Therefore, 592 

genotypes with high harvest indices are expected to be weak competitors because of the relative 593 

fewer resources allocated for stem and leaf expansion (Kawano and Jennings, 1983), traits that 594 

confer competitiveness. Mann (1980) stated that it might be possible to obtain improvements in 595 

harvest index and therefore yield, suggesting further reductions in straw length and maintenance 596 

of above ground biomass. Korres (2000) investigating winter wheat cultivar characteristics for 597 

increased competitive ability, found a negative relationship between number of leaf area/m2 and 598 

infertile tillers/m2. Questions that merit further thought are related to the manipulation of leaf 599 

area and infertile tiller production. If the production of infertile tillers could be manipulated, 600 

would this result in leaf area investments? Would increases in leaf area, hence interception of 601 

photosynthetic active radiation, in response to increased day length as the crop enters 602 
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reproductive development cause higher yield production and enhance competitive ability? Would 603 

leaf area duration be affected and what would be the consequences for grain yield?  604 

However, specific leaf area, a characteristic which is positively correlated with relative growth 605 

rate, is usually reduced by elevated CO2 thereby counteracting the positive response of 606 

photosynthesis (Bruhn et al., 2001). 607 

5.3 Late maturing cultivars 608 

Late-maturing soybean cultivars (group IV) depressed weed seed production and seed weight of 609 

both pitted morningglory (Ipomoea lacunosa L.) and hemp sesbania [Sesbania exaltata (Raf.) 610 

Rydb. ex A.W. Hill] presumably through increased crop competitiveness (Bennet and Shaw, 611 

2000) due to their ability to maintain vegetative growth longer (Nordby et al., 2002). 612 

Nevertheless, Rosenzweig and Tubiello (2007) suggested that under warmer climates, crops 613 

would tend to mature faster, resulting in less time available for carbohydrate accumulation and 614 

grain production. Responses to specific adaptation strategies for given cropping systems can still 615 

vary considerably, as a function of location and climate change scenario. Adapting longer-616 

maturing cultivars, in a winter cereal production system requires enough precipitation over an 617 

extended growing season to sustain grain filling. If both warmer and drier conditions prevail, 618 

such an adaptation strategy is not applicable. On the contrary, the adaptation of fast growing 619 

species (i.e. those with high sink strength, hence positive response of photosynthesis) has the 620 

advantage of better competition for resources thus faster adaptation to a changed climate. 621 

5.4 Nutrients uptake and utilization 622 

Nutrient utilization, mainly nitrogen, is an important factor for cultivar selection as an adaptive 623 

strategy, but also as a crop competitiveness tools under various climate change scenarios. There 624 

is a general agreement that crop cultivars, particularly of cereals, can differ in their 625 
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responsiveness to nitrogen (Gent and Kiyomoto, 1998; Duan et al., 2007; Benin et al., 2012) 626 

possibly due to greater sink capacity, hence better nitrogen utilization or more extensive root 627 

systems (Lupton et al., 1974; Foulkes et al., 1994). Crop biomass is a component of two 628 

processes namely the amount of accumulated intercepted radiation and radiation use efficiency 629 

(Monteith, 1977; Gallagher and Biscoe, 1978). Foulkes et al. (1994) stated that maximum growth 630 

depends on the acquisition of sufficient nitrogen to form a canopy of sufficient size to intercept 631 

the majority of the incident radiation when adequate moisture to balance evaporation from the 632 

canopy is provided. One of the main traits conferring resistance to drought in winter wheat is the 633 

flowering date (Foulkes et al., 1997). More particularly, cultivars with early flowering are less 634 

prone to drought effects due to shorter life cycle they exhibit. Susceptible cultivars to dry 635 

conditions, especially towards the end to the growing season, uptake and utilize lower nitrogen. 636 

Hence, cultivars with efficient N uptake and utilization that exhibit drought resistance 637 

characteristics can be used for weed suppression and also as adaptive tools in less fertile or dry 638 

soils. 639 

5.5 Heat tolerance-Improvements and expectations  640 

Improvements of heat-stress tolerant germplasm lines have resulted in the development of the 641 

Hoveyzeh rice cultivar from Khuzestan delta in south Iran which attains spikelet fertility at 642 

average day temperatures of 45 ºC (Jennings et al., 1979). Despite the impressive achievements 643 

by plant breeding programs, efforts to generate heat-tolerant crops have not been very successful. 644 

This is mainly because abiotic stress-tolerance in plants is quantitatively inherited and it is found 645 

to be controlled by multiple genes/quantitative trait loci (Blum et al., 1988). Advances in 646 

agricultural biotechnology have been successful in developing heat-tolerance transgenically 647 

under controlled conditions (Grover et al., 2013). 648 
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5.6 A synthesis 649 

Breeding objectives should be re-orientated towards a selection of traditional × modern crop 650 

characteristics that will result in increased weed suppressive ability (Dingkuhn et al., 2010), an 651 

ability to thrive in harsh environments and high yielding potential (Jones et al., 1997; Johnson et 652 

al., 1998). Hybrids of Oryza glaberrima × Oryza sativa share common parental characteristics 653 

such as weed competitiveness, ability to grow under stressful conditions without jeopardizing 654 

their yield (Jones et al., 1997; Johnson et al., 1998).  655 

Priority should be focused on crop traits suitable for climate change scenarios for several 656 

reasons. This is true considering the detrimental effects of increased temperature or extended 657 

drought periods on crop yields, for example, in combination with the enhanced plasticity and 658 

adaptation ability the weed species respond to various environment changes. If an appropriate 659 

trait for climate change adaptation favors the weed suppressive ability of the crop plant then its 660 

selection should be prioritized. The following Table (Table 8), in an attempt to facilitate the 661 

selection process, summarizes the major responses of both crop plants and weeds under various 662 

scenarios of climate change.  663 

As mentioned earlier, increased temperatures will reduce vernalization (i.e. the promotion of 664 

flowering in response to a prolonged exposure to low temperatures) requirements for both crops 665 

and weeds, particularly grasses. This in turn will shorten the vegetative period due to early 666 

reproductive induction (Chauvel et al., 2002), at the vegetative points, of the apex (Chouard, 667 

1960; Chauvel et al., 2002) which will result in biomass reductions for both crop plants and 668 

weeds and consequent yield reductions. As it was stated earlier increases in biomass production 669 

or its components e.g. leaf area, tillers, stem weight etc. are positively related to increased 670 
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competitiveness for both crop plants and weeds as in the case of cereals, particularly winter 671 

wheat, and blackgrass [Alopecurus myosuroides Huds.] (Chauvel et al., 2002).  672 

 Cultivars that retain appropriate vernalization periods under increased temperatures, hence 673 

maintaining vegetative growth stages, can preserve yield production but also to exhibit 674 

suppressive ability against weeds.  675 

 The development of tolerant cultivars to drought with increased root:shoot ratio will result in 676 

enhanced water and nutrient uptake, unaffected growth rates and biomass production, hence 677 

improved weed suppressing ability.  678 

 Traits related with the maturity of cultivars is another option that merits further consideration 679 

for developing cultivars tolerant to drought and enhanced suppressive ability against weeds.  680 

 Traits associated with the regulation of node formation and/or internode distance, particularly 681 

under drought stress conditions, can be used for developing high yielding and competitive 682 

cultivars against weeds.  683 

 Traits or plant attributes related with harvest index variations such as these of infertile tillers 684 

and leaf area as mentioned above merit further investigation since they can influence both 685 

yield production through increased utilization of resources (i.e. PAR) and weed suppressive 686 

ability (e.g. shading).  687 

 Cultivars that exhibit allelophathic attributes should be prioritized in breeding programs. 688 

 7.0. Conclusions  689 

Climate change is predicted to affect agricultural production in many ways. Climate change is 690 

likely to affect the growth of both crops and weeds, sometimes benefiting the crop sometimes the 691 

weeds. Crop yield in many areas will decrease due to increased temperatures or extended 692 

drought periods whereas weed competition, despite the technological advances, will increase 693 
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further crop yield reductions. A dual adaptive approach is needed not only to counteract the 694 

negative effects of climate change but also to enhance crop competitiveness against weeds. As it 695 

has been shown in this paper cultivar selection serves this adaptive approach adequately. 696 

Cultivars with C3 photosynthetic pathway are more suitable for adaptation to elevated CO2 but 697 

also to compete with weeds, particularly those with C4 photosynthetic pathway. In addition, 698 

cultivars with mechanisms to resist drought through increases in root:shoor ratio will gain a 699 

significant advantage under dry conditions in marginal areas. The potential of these cultivars for 700 

weed suppression will more likely enhance, due to their ability to acquire water and nutrients 701 

effectively. However, increased temperatures, accompanied by extended drought periods, favour 702 

the selection of cultivars with longer maturity period which have also proved to be highly 703 

competitive by maintaining longer vegetative growth. Cultivars with allelopathic abilities should 704 

be used in integrated weed management systems since they have shown great potential for high 705 

yield production but also increased weed suppressing ability. This paper investigates the 706 

complex interactions between crops and weeds under various climate change scenarios aiming to 707 

facilitate decision -making processes towards sustainable crop production systems. Developing 708 

cultivars to tolerate climate changes such as drought, temperature increases or nutrient shortage 709 

can reduce fertilizer and irrigation inputs considerably. The incorporation of cultivars with 710 

enhanced weed suppression ability into the system can reduce herbicide inputs substantially 711 

(Callaway, 1992; Gealy et al., 2014; Gealy et al., 2003; Korres et al., 2008; Travlos, 2012). This 712 

is even more demanding considering the increase of weed herbicide resistance evolution (Heap, 713 

2015). The cumulative effects from selecting a suitable S-C cultivar will be reflected in 714 

reductions of environmental pollution, lower production costs and sustainable food production. It 715 

is therefore imperative to expand research efforts to investigate how crop-weed interference 716 



32 
 

under various abiotic stresses and cropping systems influences cultivar performance and 717 

subsequent yield outcome. This information could be incorporated into breeding programs for 718 

improving cultivars performance under abiotic (climate change) and biotic (weed competition) 719 

stresses without compromising final yield.  720 
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Table 1. Response of C3 and C4 weeds and crops to doubled atmospheric CO2 levels in relation 1578 

to biomass and leaf area production for both crop plants and weed species with C3 and C4 1579 
photosynthetic pathway  1580 
 1581 

C3 species Biomass Leaf area C4 species Biomass Leaf area 

Range of response (× growth at ambient CO2 concentrations) 

Abutilon 

theophrastii 

1-1.52 0.87-

1.17 

Amaranthus retroflexus 0.9-1.41 0.94-

1.25 

Bromus mollis 1.37 1.04 Andropogon virginicus 0.8-1.17 0.88-

1.29 

Bromus tectorum 1.54 1.46 Cyperus rotundus 1.02 0.92 

Cassia obtusifolia 1.4-1.6 1.1-1.34 Digitaria ciliaris 1.06-1.6 1.04-

1.66 

Chenopodium album 1-1.6 1.22 Echinochloa crus-galli 0.95-1.6 0.98-

1.77 

Datura stramonium 1.7-2.72 1.46 Eleusine indica 1.02-1.2 0.95-

1.77 

Elytrigia repens 1.64 1.3 Paspalum plicatum 1.08 1.02 

Phalaris aquatic 1.43 1.31 Rottboellia 

cochinchinensis 
1.21 1.13 

Plantago lanceolata 1-1.33 1.33 Setaria faberii 0.93-1.35 1-1.4 

Rumex crispus 1.18 0.96 Sorghum halepense 0.56-1.1 0.99-1.3 

Range of response (% increase) 

Triticum aestivum 17-31  Zea mays 3.7-9  

Hordeum vulgare 30  Sorghum bicolor 9  

Glysine max 39     

Gossypium hirsutum 84     

Ipomoea batatas 59-111     

Adopted from Chandrasena (2009); Patterson (1985); Streck (2005). 1582 

 1583 
 1584 

 1585 
 1586 
 1587 

 1588 
 1589 
 1590 
 1591 

 1592 
 1593 
 1594 
 1595 
 1596 
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 1597 

 1598 
Table 2. Effects of doubling CO2 concentration on marketable yield* of major cereal, row, cash, 1599 

vegetable crops and flowers.  1600 

Crop Marketable yield (% increase) 

Maize** 3.7-29 

Sorghum** 6 

Wheat** 8-35 

Barley** 70 

Rice** 25 

Soybean*** 22-45 

Tobacco*** 42 

Potato*** 51 

Tomato*** 20-26 

Lettuce*** 35-44 

Cucumber*** 30 

Sunflower*** 144 

Chrysanthemum**** 6 

Cyclamen**** 35 

Rose**** 8-27 

Adopted from Streck (2005).  1601 

*Values shown in this Table were obtained by the compilation and analysis of the results of more 1602 

than 770 reports about the effects of CO2 enrichment on the economic yield of 24 agricultural 1603 

crops and 14 other species; **cereals crops, *** row, cash and vegetables; ****flowers  1604 
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 1605 

Table 3. Plant height, stem and leaf dry weight, leaf area, and node number in drought-stressed 1606 

and well-watered control cotton plants at the end of the drought (49 days after planting).  1607 

 Treatment 

Plant part Drought* Control 

Plant height 20.0 27.9 

Stem dry weight (g) 1.13 1.39 

Leaf dry weight (g) 1.41 2.16 

Leaf area (cm2) 56 153 

Node number 7.8 9.4 

The drought treatment was imposed by withholding water for 13 d. *Means in a row are 1608 

significantly different at the 0.05 probability level (based on Pace et al., 1999). 1609 
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 1633 

Table 4. Seasonal water use efficiency (g DM/kg water) under various water regimes and 1634 

ambient and double CO2 concentrations in various crop species  1635 

 Ambient CO2 Double CO2 Ratio 

Sorghum  3.08 4.13 1.34 

Wheat (well watered)  5.1 6.3 1.23 

Wheat (water shortage)  6.2 8.9 1.43 

Wheat  2.62 3.45 1.31 

Wheat (well watered)  1.58 2.14 1.35* 

Wheat (water shortage)  1.27 1.86 1.46* 

Faba beans  4.91 7.82 1.59 

Water hyacinth  1.4 2.6 1.85 

Adopted from Morison 1993; *grain only 1636 
 1637 

 1638 
 1639 
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 1644 
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 1646 
 1647 
 1648 
 1649 
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 1659 

Table 5. Response of crop and weed species grown under competition as a function of high CO2 1660 

concentration 1661 

C4 weed vs. C3 crops High CO2 favours Environment 

Sorghum halepense vs. Festuca pratensis Crop Greenhouse 

Sorghum halepense vs. Glysine max Crop Growth 

chamber 

Amaranthus retroflexus vs. Glysine max Crop Field 

Echinochloa glabrescens vs Oryza sativa Crop Greenhouse  

Paspalum dilatatum vs. various grasses Crop Growth 

chamber 

Various grasses vs. Medicago sativa Crop Field 

C3 weed vs. C3 crops   

Chenopodium album vs. Beta vulgaris Crop Growth 

chamber 

Taraxacum officinale vs. Medicago sativa Weed Field 

Plantago lanceolata vs. pasture Weed Growth 

chamber 

Taraxacum and Plantago vs. pasture Weed Field 

Cirsium arvensis vs. Glysine max Weed Field 

Chenopodium album vs. Glysine max Weed Field 

C4 weed vs. C4 crop   

Amaranthus retroflexus vs. Shorghum bicolor Weed Field 
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C3 weeds vs. C4 crops   

Xanthium strumarium vs. Sorghum bicolor  Weed Greenhouse 

Abutilon theophrasti vs. Sorghum bicolor  Weed Field 

Based on Bunce and Ziska (2000), Walthall et al. (2012). 1662 
 1663 
 1664 
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 1703 
Table 6. Potential effects of drought on Australian agricultural weeds 1704 

Weed Impact 

Blackberry (Rubus fruticosus L.) Expected to retreat to higher altitudes due to its 

sensitivity to higher temperatures and drought 

Chilean needle grass [Nassella 

neesiana (Trin. & Rupr.) Barkworth)] 

Expected to increase its range because its increased 

invasiveness ability (long-lived, seed dispersed by 

wind and water) and drought tolerance 

Gorse (Ulex europaeus L.) Establishment into high-rainfall zones due to its 

sensitivity to drought 

Lantana (Lantana camara L.) Establishment into high-rainfall zones 

Adopted from Anonymous (2008) 1705 
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Table 7. Effects of increased CO2 concentration on glyphosate efficacy for various weed species 1728 

with different photosynthetic pathways 1729 

Common name Latin name P/S pathway* Efficacy change 

Canada thistle Cirsium arvense (L.) Scop C3 Reduced 

Dallisgrass Paspalum dilatatum Poir.  C4 Reduced 

Lambsquarters Chenopodium album L. C3 Reduced 

Lovegrass Eragrostis curvula (Schrad.) Nees C4 Reduced 

Quackgrass Elytrigia repens (L.) Gould C3 Reduced 

Redroot pigweed Amaranthus retroflexus L. C4 None 

Rhodes grass Chloris gayana Kunth C4 Reduced 

Smut grass Sporobolus indicus (L.) R. Br. C4 None 

Adopted from Ziska, 2014; *Photosynthetic pathway 1730 
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Table 8. Response of crop plants and weeds under elevated CO2, increased temperature and 1752 

prolonged drought periods  1753 

Climate change component 

 Plant response Result CO2* Temperature Drought 

Crop plants 

Root mass  Root:shoot ratio  +   

Leaf area  Interception of PAR** +   

Leaf development Leaf area  -  

Flowering Vegetative stage  -  

Harvesting Yield  - - 

Fruit production Yield  -  

Vernalization Vegetative stage  -  

Stomata conductance Rate of photosynthesis  - - 

Stomata closure WUE  + + 

CO2:O2 Rate of photosynthesis   - 

Respiration rate Biomass production  +  

Seed formation period Yield  -  

Biomass production Yield + - - 

Node number Biomass, height   - 

Weeds 

Stomata closure WUE +   

Maturity rate Vegetative stage +   

Root biomass Root:shoot ratio +   

Distribution   +  

Vernalization Vegetative stage  -  
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Biomass   +  

Seed germination*** Distribution  +  

Rhizomes*** Distribution  +  

Seed longevity    + 

 1754 

*Elevated CO2 favors, in most cases, C3 plant types; **photosynthetically active radiation; 1755 

***seed germination and rhizomes production, for most weed species, are affected negatively by 1756 

low temperatures as it is mentioned in the text. Therefore, it is assumed that under relatively 1757 

elevated temperatures will be affected positively. + and – signs indicate a positive or negative 1758 

effect respectively. 1759 
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 1789 

Figure captions 1790 
 1791 

Figure 1. A water stressed cotton field (a) (with permission from D. M. Oosterhuis) and heavily 1792 

infested cotton field by Palmer amaranth (b) (with permission from J. K. Norsworthy) 1793 

 1794 

Figure 2. Vegetative and reproductive response of maize and soybean to temperature increases 1795 

(based on Karl et al., 2009).  1796 

 1797 

Figure 3. Response of CO2 assimilation in C3 vs. C4 plants to increases in CO2 concentration 1798 

(based on Taiz and Zeiger, 1991).  1799 

 1800 

Figure 4. Rice weed suppression plots at Stuttgart, Arkansas, USA in which the superior 1801 

competitiveness of cultivars STG06L-35-061 and PI312777 compared with Katy and Lemont is 1802 

shown. A “light” infestation of barnyardgrass can be observed in the former compared to later 1803 

plots. No herbicide was used to control grass weeds (with permission from D. R. Gealy, USDA-1804 

ARS)".  1805 
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