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ABSTRACT 

This study contrasted the role of surfaces and volumetric shape primitives in three-dimensional object 

recognition. Observers (N=50) matched subsets of closed contour fragments, surfaces, or volumetric parts 

to whole novel objects during a whole-part matching task. Three factors were further manipulated: part 

viewpoint (either same or different between component parts and whole objects), surface occlusion 

(comparison parts either contained visible surfaces only, or a surface that was fully or partially occluded 

in the whole object), and target-distractor similarity. Similarity was varied in terms of systematic 

variation in non-accidental (NAP) or metric (MP) properties (NAPs) of individual parts. Analysis of 

sensitivity (d’) showed a whole-part matching advantage for surface-based parts and volumes over closed 

contour fragments – but no benefit for volumetric parts over surfaces. We also found a performance cost 

in matching volumetric parts to wholes when the volumes showed surfaces that were occluded in the 

whole object. The same pattern was found for both same and different viewpoints, and regardless of 

target-distractor similarity. These findings challenge models in which recognition is mediated by 

volumetric part-based shape representations. Instead, we argue that the results are consistent with a 

surface-based model of high-level shape representation for recognition. 

 

Word count: 195 
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The human visual system is remarkably adept at recognising complex three-dimensional (3D) 

objects despite the variability in sensory information brought about by changes in viewpoint, scale, 

translation and illumination. A fundamental question concerns the organisation and structure of the object 

shape representations mediating recognition (e.g., Attneave, 1954; Biederman, 1987; Cristino, Conlan, 

Patterson, & Leek, 2012; Davitt, Cristino, Wong & Leek, 2014; Edelman, 1999; Hummel & Biederman, 

1992; Hummel & Stankiewicz, 1996; Leek, Cristino, Conlan, Patterson, Rodriguez & Johnston, 2012; 

Leek, Reppa, & Arguin, 2005; Leek, Reppa, Rodriguez, & Arguin, 2009; Marr & Nishihara, 1978; Pizlo, 

Sawada, Li, Kropatch & Steinman, 2010; Pizlo, 2008; Sawada, Li & Pizlo, 2011; Ullman, 2006).  

Central to current ‘image- or appearance-based’ models is the hypothesis that recognition is 

accomplished by a hierarchical network of edge-based features from single contours to arrays of vertices 

forming viewpoint-dependent aspects (e.g., Poggio & Edelman, 1990; Riesenhuber & Poggio, 1999; 

Ullman, 2006).  Other theories have proposed that higher-order primitives mediate recognition  (e.g., 

Barr, 1981; Bergevin & Levine, 1993; Biederman, 1987; Biederman & Cooper, 1991; Guzman, 1968; 

Krivic & Solina, 2004; Marr & Nishihara, 1978; Pentland, 1986; Ullman, Vidal-Naquet & Sali, 2002; 

Zerroug & Nevatia, 1999). These have included 2D geons (Biederman, 1987), surfaces (e.g., Faugeras, 

1984; Fisher, 1989; Leek, et al., 2005; Marr & Nishihara, 1978) and volumetric parts such as 3D geons 

(Biederman, 1987), generalised cylinders (Brooks, 1981; Marr & Nishihara, 1978) and super-quadrics 

(Barr, 1981; Pentland, 1986).  

In this study we focus on the contribution of surface-based shape primitives to object recognition. 

Several lines of evidence indicate that surfaces are extracted early in visual processing and play a key role 

in visual perception (e.g., Norman & Todd, 1996; Norman, Todd, & Phillips, 1995; J.F. Norman, Todd, 

H.F. Norman, Clayton & McBridge, 2006). Surfaces contribute to the binding of object shape and other 

attributes such as colour, texture and shadow (e.g., Cate & Behrmann; 2010; Chainay, & Humphreys, 

2001; Fan, Medioni, & Nevatia, 1989; Faugeras, 1984; Fisher, 1989; Leek et al., 2005; 2009; Marr & 

Nishihara, 1978). They also influence facilitatory and inhibitory object-based attention (e.g., Leek, Reppa 
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& Tipper, 2003; Nakayama, He, & Shimojo, 1995; Nakayama & Shimojo, 1992; Reppa, Schmidt & Leek, 

2012; Reppa & Leek, 2003; 2006), and play an important role in the perceptual analysis of shape for the 

planning and online control of reach-to-grasp movements (e.g. Cristino et al., 2012).  

Some of the first evidence that surfaces can act as a high-level shape primitive for recognition was 

presented by Leek et al (2005). In a whole-part matching task observers viewed images of 3D novel 

objects made of two distinct volumetric parts. On each trial a whole-object was briefly presented, 

followed by an object part that either matched or mismatched shape information in the whole object. The 

part stimuli contained contour fragments, a non-volumetric configuration of spatially adjacent surfaces, or 

one of the two complete volumetric parts either from the same novel object (match trial) or a visually 

similar distractor object (mismatch trial). The main finding was that while whole-part matching for 

surface and volumetric parts was faster than for contour fragments, there was no difference in 

performance between surfaces and volumes.  That is, arranging surfaces into volumetric components 

afforded no matching advantage over non-volumetric configurations of surfaces. On the basis of this 

finding, Leek et al (2005) argued that recognition is mediated not by volumetric structural descriptions, 

but by surface-based representations of shape computed from the perceptual input and matched to long-

term memory. 

Further evidence that surfaces contribute to recognition was reported by Leek et al (2009). 

Observers first memorised a sub-set of novel objects each consisting of two spatially connected 

volumetric parts. They then performed a primed recognition memory task in which they had to 

discriminate between learned and non-learned objects.  Primes consisted of sub-sets of object surfaces. 

Some primes contained only surfaces that were visible in the whole (unsegmented) object while other 

primes contained surfaces that had been occluded in the whole (unsegmented) object. Priming effects 

were significantly lower for part primes with occluded surfaces, suggesting that visible surface 

information plays a key role in recognition. Taken together these findings, and those of Leek et al (2005), 

were used to support the hypothesis that object recognition is mediated by surface-based representations 
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of object shape (see see also Ashbrook, Fisher, Robertson & Werghi, 1998; Fan, Medioni & Nevatia, 

1989; Faugeras, 1984; Fisher, 1989; Lee & Park, 2002, for implementations of surface-based models in 

computer vision).  

Current Study 

The aim of the current study was to examine the role of surfaces as shape primitives for object 

recognition by addressing some important limitations of earlier work, and by testing further predictions of 

the surface representations hypothesis.  First, one key issue that was not addressed in previous studies is 

the extent to which the use of surface primitives in object recognition generalises across changes in 

viewpoint. Viewpoint change may be an important factor in determining the kinds of shape 

representations that are used to support recognition (e.g., Arguin & Leek, 2003; Foster & Gilson, 2002; 

Harris, Dux, Benito & Leek, 2006; Leek, 1998a; 1998b; Leek & Johnston, 2006; Leek, Atherton & 

Thierry, 2007; Tarr & Bülthoff, 1998; Ullman, 1998). When two stimuli are shown from the same 

viewpoint an image-based matching strategy may be sufficient for determining their shape equivalence 

(e.g., in the extreme via a point-by-point comparison of pixel values). In contrast, judging the shape 

equivalence of objects across depth rotations is likely to require the computation of more abstract 

representations of shape – as a purely image-based matching strategy would fail. This is relevant because 

previous evidence from Leek et al (2005; 2009) supporting the use of surface-based primitives in 

recognition comes from studies that did not manipulate viewpoint – a factor that potentially limits the 

generality of the findings. More specifically, the presentation of stimuli from the same viewpoint in those 

studies may have resulted in the adoption of an image-based task strategy, potentially obscuring a genuine 

underlying advantage for volumetric representations. We tested this possibility in the current study by 

comparing performance in matching whole-part stimuli across same and different viewpoints.  

Second, another issue arising from the earlier studies is whether the critical finding – that is, the 

equivalence in matching efficiency between surface and volumetric parts, might alternatively be 

accounted for in terms of a systematic difference in discriminability that masks a genuine underlying 
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advantage for volumetric parts. An important, and theoretically-relevant, distinction that defines 

discriminability is between metric (MP) and non-accidental (NAP) shape properties. MPs denote feature 

properties that require precise specification (e.g., aspect ratio, turning angle between contours and 

magnitude of curvature). In contrast, NAPs are binary categorical dimensions that distinguish image 

features (e.g., straight vs. curved, parallel vs. tapered - see Biederman, 1987; Lowe, 1985) – and which, 

under certain hypotheses, are fundamental to the derivation of higher-order part structure (e.g., 

Biederman, 1987).  Other evidence has shown that observers are more efficient at discriminating shape on 

the basis of changes in NAPs than MPs (e.g., Amir, Biederman & Hayworth, 2012; Biederman & 

Gerhardstein 1993; Biederman & Bar, 1999) – consistent with the hypothesis that the rapid computation 

of NAPs plays an important role in shape perception. Of relevance here is whether the relative efficiency 

of whole-part matching for volumetric and surface-defined parts could be accounted for in terms of 

differences in the MP/NAP discriminability of each part type. An underlying advantage in matching 

volumetric parts over surface-defined parts may be obscured if the surface parts can be matched on the 

basis of NAPs, but the volumetric parts vary only in MPs. This possibility was not addressed in the earlier 

studies of Leek et al (2005; 2009).  

 Third, we aimed to further examine how surface occlusion/visibility influences object recognition. 

Consider for example the comparison parts for the objects in Figure 1A. Critically, the volumetric parts in 

the top row contain a surface that is either fully or partially occluded when both parts are combined in the 

whole object. In contrast, the volumetric parts in the bottom row contain only surfaces that are visible in 

the corresponding whole object. Surface occlusion/visibility provides a way to test the surface 

representation hypothesis. If visible surfaces mediate object recognition then we might expect a cost in 

whole-part matching between segmented volumetric parts that contain an occluded surface relative to 

volumetric parts that contain only visible surfaces. This is because the additional surface information of 

the occluded volume would produce a mismatch between the surfaces in the perceptual input, and those 

in the stored object representation (Leek et al., 2009).  
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These issues were investigated using a whole-part matching paradigm. Observers were shown 

twelve 3D novel objects made from two volumetric components and were later shown a comparison part, 

requiring a response as to whether they had previously been shown an object that had contained the part. 

Part stimuli comprised regions of closed contour fragments, complete volumetric parts or edge-defined 

surface polygons. Note that the last two types of comparison part contained surfaces of the whole object, 

while contour parts were closed regions of contour that did not correspond to any object surfaces. The 

parts were presented from either the same viewpoint as shown in the whole object, or from a different 

viewpoint. While all surface parts contained only surfaces that were visible in the whole object, some 

volumetric comparison parts contained an occluded surface (‘occluded volumetric parts’ shown in the top 

row of Figures 1A and 1B), while other volumetric parts contained only visible surfaces (‘visible 

volumetric parts’ shown in the bottom row of Figures 1A and 1B). This allowed us to examine the effect 

of surface occlusion on matching performance. 

Finally, there were two different types of mismatch trials, manipulated between participants. In the 

MP participant group, mismatch trials contained wholes and object parts that primarily differed in terms 

of metric properties. In the NAP participant group, mismatch trials contained whole and object parts that 

primarily differed in terms of non-accidental properties. These contrasts are shown in Figure 1A/1B. This 

manipulation allowed us to examine whether the relative efficiency of making whole-part judgements for 

volumetric and surface-defined parts is determined by NAP/MP mismatch discriminability.  

 

METHOD 

Participants  

Fifty participants were recruited from Swansea and Bangor Universities, twenty-five for each of the two 

participant groups. In the MP Mismatch Similarity Group participants had a mean age of 22 years 

(SD=3.21; 7 males) and took part in the experiment for either course credit or £3 payment. In the NAP 

Mismatch Similarity Group, participants had a mean age of 21.5 years (SD=5.13; 3 males) and took part 
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in the experiment for course credit. All participants reported normal or corrected-to-normal vision. 

------------------------------------------------------------- 

INSERT FIGURES 1A AND 1B ABOUT HERE 

------------------------------------------------------------- 

Apparatus and Stimuli  

The experiment was run on a Windows XP PC with a 19” RGB monitor using E-Prime. The stimuli were 

12 novel and geometrically regular 3D objects, each of which consisted of two connected volumetric 

parts: a main base or large component, and a small component. They were rendered in externally lit, 

three-quarter views using Strata 3D Pro. Each object was scaled to fit within a 6 x 6-cm frame that 

subtended 6.86° x 6.86° of visual angle from a viewing distance of 50 cm. For each of the 12 objects, 

closed contour, volumetric, and surface comparison (part)1 stimuli were created (see Figure 1A and 1B). 

Two versions of each part type were created. The volumetric parts were one of the two volumes of the 

objects. The ‘occluded volumetric’ parts (N=12) contained one surface that was previously occluded in 

the unsegmented whole object, while the remaining surfaces were visible in the whole object. The ‘visible 

volumetric’ parts (N=12) comprised only of surfaces that were wholly visible in the unsegmented object.  

For each volumetric part two types of surface parts (N=24) were also created (N=24). The 

constraints in the design were that the surface parts (a) did not make up a complete volume (b) and the 

number of surfaces in the surface part matched exactly the number of surfaces in the corresponding, 

occluded and visible, volumetric parts; and (c) the surfaces were spatially contiguous. For instance, if a 

volumetric part comprised of 2 visible surfaces and 1 previously occluded surface, the corresponding 

surface part would have 3 visible surfaces. Surfaces in both the volumetric and the surface parts were 

always spatially contiguous. 

                                                 
1 Here and in the remaining text the term ‘part’ as a shorter term instead of comparison stimulus. We use 

the term part in its more general sense to indicate comparison stimuli consisting of image features or 

combinations of features that may match the primitives that are encoded in mental shape representations 

of the objects during perception.    
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The contour part stimuli (N=24) were created by selectively deleting regions of bounding and 

internal edge contour. The main constrains were that that the resulting closed form did not correspond to 

any single volume or any single object surface, and contained edge contour from both volumetric 

components. Following creation of the closed form, surface information was removed by replacing the 

yellow colour with white (as the background).  

Plane-rotated versions of each part were created by rotating +90 o or -90 o around the z axis 

perpendicular to the observer. These were used in the different viewpoint condition (see Design section 

and Figure 2).  

-------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

-------------------------------------------- 

In order to prevent a strategy of simple pixel-by-pixel matching between parts and whole objects in 

the same viewpoint condition, the whole object displays were enlarged to 150% the size of the images to 

be matched. Such moderate size transformations do not influence 3D-shape recognition (e.g., Fiser & 

Biederman, 1995; Norman et al., 2009). In addition, comparison part stimuli were centred on the screen 

so that the image pixels of the whole object and those of the comparison parts did not overlap.  

 As whole object and part stimuli necessarily differed in terms of low-level features (e.g. amount of 

visible edge contour and surface area; number of vertices and visible surfaces), their effect on matching 

performance is reported in the Results section (see Influence of low-level image features section). Tables 

1 and 2 formally quantify and compare, respectively, those differences on each of these dimensions in 

two-dimensional space.  

----------------------------------------------------- 

INSERT TABLE 1 AND 2 ABOUT HERE 

----------------------------------------------------- 
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Design 

The experiment was based on a 3 (Part Type: contour, volume, surface) x 2 (Part Viewpoint: same vs. 

different) x 2 (Mismatch Similarity: NAPs vs. MP) mixed design, with the latter factor manipulated 

between-subjects and the others within-subjects. We also included an additional factor of Surface 

Occlusion. This relates to whether or not volumetric part stimuli contained a surface that was either 

wholly or partially occluded in the unsegmented whole object. Thus, for each object, one of the 

volumetric parts contained an occluded surface – henceforth referred to as ‘occluded volumetric part’, 

while the other contained only visible surfaces – henceforth referred to as ‘visible volumetric part’. For 

each of these two types of volumetric parts corresponding contour part stimuli (‘occluded contour parts’ 

and ‘visible contour parts’) and surface part stimuli (‘occluded surface parts’ and ‘visible surface parts’) 

were made matched for contour length and N surfaces respectively.  

In match trials, the comparison part stimulus comprised a sub-set of shape information from the 

whole novel object that was presented in the same trial. In mismatch trials, the comparison part stimulus 

belonged to a different object, with the non-matching parts differing from the whole object in terms of 

MP and NAP contrasts. The ratio of the contrasts was different depending on the Mismatch Similarity 

Group: In the MP group, the frequency of target objects and mismatch parts differing solely by MPs 

relative to NAPs was 2:1. In the NAP group the ratio of MP to NAP differences was 1:2 – see Figures 1A 

and 1B. The reason for using different ratios as opposed to pure sets of MP or NAP mismatch pairs was 

to avoid the possibility that participants might bias performance by selectively tuning to MP or NAP 

differences.  

 Each participant completed 144 match and 144 mismatch trials. There were 24 trials for each of the 

12 within-subjects conditions. For each participant, each whole object was presented 24 times, and each 

part stimulus type was presented four times (twice in the same viewpoint as the whole object and twice in 

a different viewpoint). Trial order was randomized for each participant.  

 D prime (d’) was chosen as the most appropriate measure of performance, because discriminations 
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required in the current study, especially in the MP participant Group, hinged on subtle differences, and 

errors were bound to be high. D’ scores and the associated response bias (C) were calculated using the hit 

and false alarm rate per condition.  

Procedure 

Trial procedure is shown in Figure 3. Participants were seated approximately 50cm from the monitor. 

Each trial began with the central presentation of a visual prompt 'Ready'? until the participant initiated the 

trial sequence by pressing the space bar. A blank screen was presented for 750ms before one of the whole 

object stimuli appeared at screen centre for 1200ms. Following a blank inter-stimulus interval of 750ms, a 

part stimulus was displayed in the centre of the screen until the participant made a response. Participants 

were informed that each part would be in the same orientation as the whole object preceding it, or plane-

rotated clockwise (for half of the parts) or counter-clockwise (for the other half of the parts). The task was 

to decide as quickly and as accurately as possible whether or not the part stimulus came from the whole 

object that preceded it. Responses were made by pressing one of two keys (D or K) labelled 'Yes' or 'No' 

on a standard keyboard within 3 seconds. If a response was incorrect or timed out participants received 

feedback in the form of a 500ms error tone. Half of the participants in each Mismatch Similarity Group 

made match (Yes) responses with their dominant hand and mismatch (No) responses with their non-

dominant hand. For the other half, these assignments were reversed. The experiment lasted approximately 

35 minutes. D’ scores were calculated using the hit rate per object and condition in the match trials, and 

the false alarm rate per object and condition in the mismatch trials (Brophy, 1986). 

----------------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE 

----------------------------------------------------- 

 

RESULTS 

The mean error rate across all conditions was 32% (SD=15.10%). Mean proportions of hit and false 
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alarm rates, d’ scores and their associated response bias measure C’, per condition were calculated per 

object and are shown in Appendix 1. Analyses were carried out on d’ scores and the same analyses on C 

(response bias) scores are reported in footnotes 2 and 4.  

 The goal of the analyses was to examine: (1) whether the pattern of whole-part matching between 

contour, volumetric and surface part types is modulated by viewpoint change and (2) surface visibility; 

and (3) whether matching performance is dependent on mismatch similarity in terms of NAP vs MP 

whole-part discriminability. 

 

Whole-part matching as a function of part-type, viewpoint and surface visibility. 

A 3 (Part Type: contour, volume, surface) X 2 (Part Viewpoint: same vs. different) X 2 (Surface 

Occlusion: occluded vs. visible) repeated-measures ANOVA was used on d’ scores (the same analysis on 

C scores is reported in footnote 2). Cell means are shown in Figure 4A.  

--------------------------------------------------------------- 

INSERT FIGURE 4A ABOUT HERE 

--------------------------------------------------------------- 

There was a significant main effect of Part Viewpoint, with better performance in same (M=1.88, 

SD=.79) vs. different viewpoint trials (M=1.24, SD=.80); F (1, 23) =45.74, MSE=30.47, p<.0001, but Part 

Viewpoint did not interact with the other two factors (all ps>.05) – showing that the pattern of whole-part 

matching across part types was not modulated by viewpoint. There was also a significant main effect of 

Part Type, F (2, 46) =7.51, MSE=12.79, p=.002 showing that whole-part matching performance was 

modulated by part type. Contour parts (M=.96, SD=.66) yielded the lowest d’ scores compared to 

volumetric parts (M=1.49, SD=.86), t (23) =3.27, p=.003, and to surface parts (M=1.95, SD=1.15), t (23) 

=4.11, p<.001. Overall (collapsing across the factor of Surface Occlusion) surface parts yielded higher d’ 

than volumetric parts, t (23) =2.41, p=.02 –but only relative to volumes with occluded surfaces (see 

below). There was no significant main effect of Surface Occlusion, F (1, 23) =2.08, MSE=2.92, p>.05 
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(occluded: M=1.67, SD=.96; visible: M=1.46, SD=.66), but there was a significant Surface Occlusion X 

Part Type interaction, F (2, 44)=4.50, MSE=4.50, p=.02. To explore this further, post-hoc analyses were 

conducted. These showed that performance with occluded volumetric parts and their corresponding 

contour parts was equivalent, t(23)=.19, p>.05,  whereas surface parts yielded significantly higher 

discriminability (d’) than either contour, t(23)=2.58, p=.01, or occluded volumetric parts  t(23)=3.00, 

p=.006. In contrast, visible volumetric parts and their corresponding surface parts yielded higher d’ scores 

than contour parts [t (23) =3.07, p<.005, and t (23) =2.45, p<.01, respectively]. The key contrast between 

performance with occluded (surface) volumetric parts and visible (surface) volumetric parts showed 

higher d’ scores in the visible (surface) volumetric condition t (23) =2.32, p=.03. This suggests that 

matching performance with segmented volumetric parts is sensitive to surface composition: the presence 

of previously occluded surface information in the volumetric primes induces a performance cost2.  

 

Effects of mismatch similarity in terms NAP/MP discriminability. This analysis examined whether basing 

mismatch decisions on NAP or MP changes the pattern of matching performance across part types. As 

Part Viewpoint did not interact with Part Type, the data were collapsed across Part Viewpoint to simplify 

the analysis. The analyses were restricted to data from the visible volumetric part condition, and the 

corresponding matched contour and surface parts to ensure that the surface and volumetric parts 

contained the same number of visible surfaces The analysis was carried out on d’ scores (C scores’ 

                                                 
2 The equivalent analyses on C (response bias) scores revealed the same pattern of results as those on d’. The main 

effect of Part Viewpoint on C’ was significant, F (1, 23) =64.51, MSE=11.27, p<.0001, with more conservative 

response bias when the part appeared in a different viewpoint (M=.15, SD=.41) as opposed to the same viewpoint 

(M=-.25, SD=.08) as the whole object. Also significant was the main effect of Part Type, F (2, 46) =6.69, 

MSE=3.07, p=.003. Contour parts (M=.16, SD=.36) yielded a more conservative response bias compared to 

volumetric parts (M= -.17, SD=.40), t (23) = 5.30, p<.0001, and surface parts (M=-.14, SD=.64), t (23) =2.81, 

p<.01, while there was no difference between the latter two, t (23) =.24, p>.05.  

The main effect of Surface Occlusion was not significant, F (1, 23) =0.17, MSE=0.007, p>.05 (occluded 

parts: M=-.05, SD=.43; visible parts: M=-.04, SD=.44). The Part Type X Surface Occlusion interaction was 

significant, F (2, 46) =3.95, MSE=1.34, p=.03. For occluded parts, there were no differences in C’ among the three 

part types (all ps>.05). However, visible contour parts yielded significantly more conservative response bias 

relative to both volumetric and surface parts [t(23)=5.66, p<.0001 and t(23)=2.40, p=.02, respectively], with no 

difference among that latter two part types, t(23)=1.36, p>.05. Finally, pairwise comparisons of C’ scores between 

occluded versus visible versions for each part type, did not reveal any significant differences (all ps>.05).  
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analyses appear in footnote 4). Cell means appear in Figure 4B.  

---------------------------------------------- 

INSERT FIGURE 4B ABOUT HERE 

----------------------------------------------- 

A mixed 2 (Mismatch Similarity: NAP vs. MP) X 3 (Part Type: contour, volume, surface) ANOVA 

showed a significant main effect of Part Type, F (2, 46) =4.76, MSE=3.86, p=.02. Pairwise t-tests showed 

no difference in d’ between volumetric (M=1.76, SD=1.21) and surface parts (M=1.61, SD=.77), t (23) 

=.53, p>.05, while both part types had higher d’ than contour parts (M=1.00, SD=.90) [t (23) =3.07, 

p=.005, and t (23) =2.45, p=.02, respectively]. Neither the main effect of Mismatch Similarity (MPs 

Group: M=1.16, SD=.34; NAPs Group: M=1.99, SD=.89), F (1, 23) =3.69, MSE=3.77, p=.07, nor the 

Mismatch Similarity X Part Type interaction, F (2, 46) <1, MSE=.19, p>.053, were significant4. 

 

Influence of low-level image features. To examine potential contributions of percent edge contour, 

number of vertices, and surface area three one-way ANCOVAs were carried out with each of these 

factors as covariates. We collapsed across the variables of Part Viewpoint and Mismatch Similarity and 

combined the Part Type and Surface Occlusion factors into a single factor we called Part with six levels: 

contour ’occluded’, contour ’visible’, volumetric ’occluded’, volumetric ’visible’, surface ’occluded’, and 

surface ’visible’. None of the three low-level features contributed significantly to the pattern of d’ (all 

                                                 
3 Two further mixed model ANOVAs were carried out. One was on d’ scores of occluded volumetric parts only and the other 

was on the collapsed d’ means of occluded and visible surface volumes. The Mismatch Similarity X Part Type ANOVA on d’ 

scores from occluded volumes only showed a significant main effect of Mismatch Similarity, F (1, 22) =8.15, MSE=17.50, 

p=.01, with higher d’ for the NAP compared to the MP group. The main effect of Part Type was significant, F (2, 44) =6.66, 

MSE=7.52, p<.0001. Volumetric parts were not different from contour parts, t (23) =.19, p>.05, while surface parts had higher 

d’ scores than both the contour and the volumetric parts [t (23) =2.58, p=.02, and t (23) =2.98, p=.007, respectively]. The 

Mismatch Similarity X Part Type interaction was not significant, F (2, 44) =2.06, MSE=1.98, p>.05.  
4 An analyses of C scores revealed the same pattern of results as the one on d’ scores. There was a significant main 

effect of Part Type, F (2, 46) =8.59, MSE=1.87 p<.001. Pairwise comparisons showed that contour parts (M=.26, 

SD=.46) yielded a more conservative response bias compared to both volumetric (M =-.29, SD=.55) and surface 

parts (M =-.10, SD=.69) [t (23) =5.66, p<.0001 and t (23) =2.40, p=.02, respectively], with no difference among 

that latter two part types, t (23) =1.36, p>.05. The main effect of Mismatch Similarity Group was significant, F (1, 

23) =4.54, MSE=2.27, p=.04, but the interaction was not, F (2, 46) =.15, MSE=.33, p>.05. The NAPs group 

yielded more conservative response bias (M=.13, SE=.12) compared to the MPs group (M=-0.22, SE=.12).  
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ps>.05), hence differences in low-level image features did not account for the observed pattern of 

discriminability among part types. Separate regression analyses were carried out between each image 

feature and d’ scores. Only percent edge contour correlated significantly with d’ scores, (r2=.73), F (1, 

71)=5.48, p=.02. The correlation between d’ scores and number of vertices was not significant, (r2=.126), 

F (1, 71)=1.1, p>.05, and neither was the correlation between d’ scores and surface area, (r2=.058), F (1, 

71) <1, p>.05. 

GENERAL DISCUSSION 

The current study used a whole-part matching task to examine the hypothesis that surfaces can act 

as primitives of shape representations mediating object recognition. Four findings in the current study 

support this hypothesis. First, where parts contained only surfaces that there visible in the whole object 

observers were equally good at matching parts comprising spatially adjacent surfaces to whole objects as 

they were in matching volumetric parts to whole objects. Second, this pattern of performance was found 

regardless of whether the part and whole object stimuli were presented at the same or at different 

viewpoints. Third, these findings cannot be accounted for by systematic differences in the 

discriminability of volumetric and surface parts in terms of MP or NAP differences. Fourth, there was a 

significant decrease in matching performance when volumetric parts contained a surface that was wholly 

or partially occluded in the whole object compared to volumes containing only visible surfaces. This cost 

arose from the mismatch in surface information derived from the comparison part and the whole object 

stimuli (due to the presence of a surface in the comparison part that was occluded in the whole object).  

 Taken together, these results provide new evidence that surface-based shape primitives can support 

object recognition. They also challenge theoretical accounts that recognition is mediated by volumetric 

part-based representations of shape (e.g., Barr, 1981; Biederman, 1987; Brooks, 1981; Marr & Nishihara, 

1978; Pentland, 1986). Previous work by Leek et al (2005) showed, like the current study, that there is no 

benefit in matching parts defining volumetric primitives over parts defined by non-volumetric 

configurations of spatially adjacent surfaces. This finding is inconsistent with volumetric accounts, which 
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predict a matching advantage for volumetric parts (since those parts, by hypothesis, correspond to shape 

primitives that are computed during the course of perception). Here, we also showed that this pattern of 

results is found under conditions of viewpoint change which, in principle, favour the computation of 

volumetric part-based representations to support view generalisation. In contrast, we found positive 

evidence that recognition is sensitive to surfaces. This was shown by the surface occlusion effect. That is, 

we found a performance cost in whole-part matching for volumetric parts containing a previously 

occluded surface. This effect cannot be easily explained by hypotheses proposing that volumetric shape 

primitives mediate recognition. If the objects in the current study were represented in terms of volumes, 

then volumetric parts should have shown a matching advantage over contour-defined parts, or surfaces, 

regardless of whether they contained an occluded surface or not, because the occluded surface would be 

inferred as a result of volumetric completion. On the contrary, the presence of even a single partially 

occluded surface was detrimental to matching performance suggesting that visible surface shape 

contributes information that is necessary for object recognition. These data support those of Leek et al 

(2009) who found a reduction in priming when primes contained surfaces that were not visible in the 

whole object. Here a similar cost in performance was found using a whole-part matching task, providing 

converging evidence that visible surfaces underlie object recognition. 

The current pattern of performance cannot be accounted for in terms of differences in low-level 

image properties: the pattern of differences in low-level image features did not resemble the observed 

pattern of discriminability among part types in either viewpoint. The current results can also not be 

accounted for in terms of global shape similarity between comparison parts and whole objects. For 

instance, one alternative explanation for the (occasional) good matching performance for surface parts 

over volumetric parts may be that surface parts looked more similar overall to the whole object than 

volumetric parts. However, if global shape similarity was driving matching performance there would 

always be a performance advantage for surface parts, which were the most similar to the whole object 

because they contained information about spatial configuration of the whole object. This explanation, 
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however, was not supported by the current data. The global similarity between surface parts and whole 

objects did not always give a performance advantage over volumetric parts. For instance, the ‘visible 

volumetric’ parts and ‘visible surface’ parts yielded statistically equivalent performance. Additionally, 

when global shape whole-part overlap was disrupted in the different viewpoint condition, again there was 

no difference in performance between visible volumetric and visible surface parts. Finally, in the analyses 

where comparison parts were matched in terms of surface visibility (they only contained visible surfaces), 

again there was no performance advantage for those parts (surface parts) that were more similar to the 

whole object than those that were not (volumetric parts). Overall, the pattern of results points to the 

critical importance of surface visibility in predicting accurate whole-part matching performance.  

Another novel finding of the current experiments was that the observed pattern of results was not 

dependent on part discriminability in terms of NAPs or MPs. This is an important observation because in 

Leek et al (2005) mismatch parts all differed from the whole object in terms of metric properties. One 

concern was that an underlying advantage for matching volumetric parts may have been obscured by a 

necessity to compute mismatch judgements based solely on metric differences, which favour the use of 

image-based, rather than parts-based, representations. Here, even with a stimulus environment favouring 

the computation of volumetric primitives, no volumetric part advantage was observed, again implying 

that surfaces rather than volumetric primitives underlie performance. 

More broadly, the current results support the hypothesis that object recognition is mediated by 

surface-based descriptions of object shape (Leek et al., 2005). According to this hypothesis, edge-based 

descriptions of 3D objects are used to define constituent surfaces (see also Fan et al., 1989; Fazl, 

Grossberg & Mingolla, 2009; Fisher, 1989; Phillips, Todd, Koenderink, & Kappers, 2003), and the 

surface-based description is used to access, or index, stored shape representations during recognition. On 

the original hypothesis outlined by Leek et al (2005) shape indexing is achieved by approximating surface 

shape, and accessing stored object representations based on pairwise spatial configurations of spatially 

adjacent surfaces. Thus, recognition is based on local surface configuration and does not require the 
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derivation of global object attributes (e.g., principal axis elongation, symmetry). However, the hypothesis 

does not assume, nor require, that surfaces are computed directly from perceptual input. Neither is it 

incompatible with other recent demonstrations from computational modelling supporting the use of edge- 

(rather than surface-) based reconstructions of 3D object geometry in human vision (e.g., Pizlo, 2008; 

Pizlo et al., 2010; Sawada et al., 2011). For example, Pizlo and colleagues have elegantly shown how 

veridical 3D structure can be reliably computed during perception from 2D edge-based descriptions of 

objects following simplicity constraints (e.g., symmetry, complexity). This is accomplished without 

inferring object surface structure directly from perceptual input, but instead is based on the recovery of a 

3D ‘wireframe’ shape description. In turn, this representation can then serve as the basis for a surface-

based model on which to base recognition by ‘wrapping’ surface structure over the wire-frame 3D shape 

model (Sawada et al., 2011).  

In summary, this study contrasted the role of surfaces and volumetric shape primitives in three-

dimensional object recognition. Observers matched subsets of closed contour fragments, surfaces, or 

volumetric parts to whole novel objects during a whole-part matching task. The results showed a whole-

part matching advantage for surface-based parts and volumes over closed contour fragments – but no 

benefit for volumetric parts over surfaces. We also found a performance cost in matching volumetric parts 

to wholes when the volumes showed surfaces that were occluded in the whole object. The same pattern 

was found for both same and different viewpoints, and regardless of target-distractor similarity. These 

findings challenge models in which recognition is mediated by volumetric part-based shape 

representations. Instead, we argue that the results are consistent with a surface-based model of shape 

representation for recognition. 
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 Table 1: Image properties of the contour, volumetric and surface comparison part stimuli.  

 

 

 

 

 

 

 

 

 

 

 
Percent (%) of total 

edge contour 
N vertices Surface area 

Surface 

Occlusion 
Part Type M SD M SD M SD 

Occluded 

Contour 59 8.27 9 1.04 26 7.28 

Volumetric 69 8.28 10 1.31 22 7.96 

Surface 75 11.53 9 1.15 24 5.41 

 

Visible 

 

Contour 

 

52 

 

9.35 

 

8 

 

1.11 

 

15 

 

4.29 

Volumetric 43 13.68 6 1.42 11 4.42 

Surface 65 12.22 9 1.35 16 3.47 
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Table 2: Comparisons between each of the three comparison parts along each of three 

types of low-level feature. Comparisons are reported separately for each Surface 

Occlusion condition (occluded vs. visible). Note that the Surface Occlusion manipulation 

only applied to the volumetric comparison parts. Number of edge vertices refers to the 

total number of edge vertices (Y, T, and L) per comparison part stimulus. Surface area 

(calculated in centimetres using the ImageJ software, version 1.43) refers to the area 

enclosed by the bounding contour. Asterisks (*) follow each significant difference.  

 

Surface 

Occlusion 

Comparison 

   

Low-level feature t Statistic 

Occluded  

Contour vs. Volume Percent (%) of total edge contour t (11)=2.98, p=.007* 

 N vertices t (11)=4.52, p<.0001* 

 Surface area t (11)=1.1, p>.05 

   

Contour vs. Surface Percent (%) of total edge contour t (11)=3.93, p<.001* 

 N vertices t (11)=2.38, p=.04* 

 Surface area t (11)=0.73, p>.05 

   

Volume vs. Surface Percent (%) of total edge contour t (11)=1.48, p>.05 

 N vertices t (11)=6.27, p<.0001* 

 Surface area t (11)= 0.45, p>.05 

Visible 

 

Contour vs. Volume 

 

Percent (%) of total edge contour 

 

t (11) = 1.80, p>.05 

 N vertices t (11) = 3.99, p<.001* 

 Surface area t (11) = 2.33, p=.03* 

   

Contour vs. Surface Percent (%) of total edge contour t (11)=2.99, p=.007* 

 N vertices t (11)=2.31, p=.03* 

 Surface area t (11)= 0.50, p>.05 

   

Volume vs. Surface Percent (%) of total edge contour t (11)=4.14, p<.0001* 

 N vertices t (11)=5.74, p<.0001* 

 Surface area t (11)=3.04, p=.006* 
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Appendix: Mean proportion of hit and false alarm rates, along with d’ scores and (C) scores, per 

Part Viewpoint, Part Type, and Surface Occlusion shown  

separately for the MP Group (match/mismatch decisions made on the basis of metric differences) 

and the NAP Group (match/mismatch decisions made on the basis of NAP differences). Negative C 

values indicate a liberal response (willingness to respond ‘Yes’), and positive C values indicate 

conservative bias (willingness to respond ‘No’).  

 

 

  
MP Mismatch Similarity Group 

 

  Surface Occlusion 

  Occluded Visible 

Part 

Viewpoint 

Part  

Type 
Hits FAs d’ C Hits FAs d’ C 

 Contour 
.76 

(.20) 

.36 

(.20) 

1.18 

(1.0) 

-.21 

(.33) 

.73 

(.23) 

0.33 

(.16) 

1.28 

(1.15) 

-.13 

(.31) 

Same Volume 
.81 

(.13) 

.37 

(.20) 

1.38 

(.71) 

-.29 

(.44) 

.89 

(.10) 

.38 

(.14) 

2.01 

(1.14) 

-.69 

(.74) 

 Surface 
.90 

(.07) 

.39 

(.14) 

1.87 

(.95) 

-.61 

(.54) 

.85 

(.11) 

.35 

(.11) 

1.93 

(1.23) 

-.58 

(.76) 

 Contour 
.59 

(.20) 

.33 

(.14) 

.73 

(.81) 

3.16 

(10.7) 

.48 

(.21) 

.33 

(.15) 

.41 

(.78) 

.41 

(.78) 

Different Volume 
.64 

(.13) 

.39 

(.17) 

.71 

(.53) 

.71 

(.53) 

.71 

(.17) 

.41 

(.21) 

.88 

(.78) 

.88 

(.78) 

 Surface 
.75 

(.13) 

.37 

(.13) 

1.12 

(.68) 

1.12 

(.68) 

.63 

(.21) 

.39 

(.12) 

.68 

(.50) 

.68 

(.50) 

 

NAP Mismatch Similarity Group 

 

  Surface Occlusion 

  Occluded Visible 

Part 

Viewpoint 

Part 

Type 
Hits FAs d’ C Hits FAs d’ C 

 Contour 
.76 

(.26) 

.19 

(.16) 

2.05 

(1.64) 

-.01 

(.63) 

.58 

(.28) 

.19 

(.12) 

1.42 

(1.08) 

.43 

(.78) 

Same Volume 
.78 

(.24) 

.25 

(.15) 

1.56 

(.80) 

-.06 

(.56) 

.84 

(.24) 

.29 

(.25) 

2.31 

(1.87) 

-.41 

(.86) 

 Surface 
.88 

(.25) 

.15 

(.13) 

3.72 

(2.59) 

-.30 

(.88) 

.82 

(.23) 

.25 

(.22) 

1.86 

(.87) 

-.12 

(.60) 

 Contour 
.55 

(.27) 

.25 

(.17) 

.93 

(1.09) 

.29 

(.44) 

.47 

(.26) 

.18 

(.12) 

.90 

(.89) 

.46 

(.42) 

Different Volume 
.65 

(.23) 

.30 

(.18) 

1.27 

(1.36) 

.20 

(.73) 

.76 

(.23) 

.25 

(.20) 

1.83 

(1.37) 

.09 

(.74) 

 Surface 
.77 

(.26) 

.13 

(.11) 

2.45 

(2.26) 

.40 

(.19) 

.70 

(.26) 

.19 

(.16) 

1.97 

(1.11) 

.35 

(1.08) 
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FIGURE LEGENDS 

Figure 1A and 1B. The stimulus sets used for participants in the MP Mismatch Similarity 

Group  (1A) and participants in the NAP Mismatch Similarity Group (1B). All the part 

stimuli are shown for each of the twelve objects, with ‘occluded’ volumetric parts, and 

corresponding contour and surface parts appearing in the top row and ‘visible’ volumetric 

parts along with their corresponding contour and surface parts in the bottom row. For 

each object its mismatch companion appears directly across from it. The NAP/MP 

column reports the type of difference between the volumes of each object when compared 

with its paired mismatch object. For instance, in Figure 1A there is an MP difference 

between the top volume of Object 1 and the top volume of Object 7. Similarly, in Figure 

1B there is a NAP difference between the top volume of Object 2 (pyramid) and the 

lower volume of Object 8 (truncated pyramid). The ‘Type of difference’ column shows 

the type of MP or NAP differences between the left side and the right side volumes for 

each object. In some cases where the difference is in terms of NAP, there is more than 

one difference between the volumes (e.g., in Figure 1B, the volumes differ both in terms 

the axis shape and in terms of their ending). Note: CS stands for cross section, and AS 

stands for aspect ratio.  

 

Figure 2. An illustration, using Object 1, of the contrasting displays used for the same and 

different Part Viewpoint conditions across Part Types and Surface Occlusion. The term 

‘occluded’ refers to the fact that the volumetric part contains a surface that is occluded 

(partially or fully) in the whole object. After that, occluded contour and surface parts are 

simply the corresponding contour and surface parts for that volumetric part. Similarly, the 

term ‘visible’ refers to the fact that the volumetric part only contains surfaces that are 

visible in the whole object, and the visible contour and surface parts are the 

corresponding parts to that volumetric part. See text for more details. 

 

 Figure 3. The trial procedure.  

 

Figure 4. (A) Mean d’ (discriminability) and C’ (response bias) scores per Part 

Viewpoint, Part Type and Surface Occlusion (collapsed across Mismatch Similarity 

Group). (B) Mean d’ and C’ scores per Mismatch Similarity Group and per Part Type for 

visible contour volumetric, and surface parts only (see text for details). Error bars indicate 

standard error of the mean.
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FIGURE 1 (A) 
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FIGURE 1 (B) 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4A 
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FIGURE 4B 
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