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Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major source of mortality and morbid-

ity worldwide. The microbiome associated with this disease may be an important compo-

nent of the disease, though studies to date have been based on sequencing of the 16S

rRNA gene, and have revealed unequivocal results. Here, we employed metagenomic

sequencing of the upper bronchial tract (UBT) microbiome to allow for greater elucidation of

its taxonomic composition, and revealing functional changes associated with the disease.

The bacterial metagenomes within sputum samples from eight COPD patients and ten

‘healthy’ smokers (Controls) were sequenced, and suggested significant changes in the

abundance of bacterial species, particularly within the Streptococcus genus. The functional

capacity of the COPD UBTmicrobiome indicated an increased capacity for bacterial growth,

which could be an important feature in bacterial-associated acute exacerbations. Regres-

sion analyses correlated COPD severity (FEV1% of predicted) with differences in the abun-

dance of Streptococcus pneumoniae and functional classifications related to a reduced

capacity for bacterial sialic acid metabolism. This study suggests that the COPD UBTmicro-

biome could be used in patient risk stratification and in identifying novel monitoring and

treatment methods, but study of a longitudinal cohort will be required to unequivocally relate

these features of the microbiome with COPD severity.

PLOS ONE | DOI:10.1371/journal.pone.0149095 February 12, 2016 1 / 16

OPEN ACCESS

Citation: Cameron SJS, Lewis KE, Huws SA, Lin W,
Hegarty MJ, Lewis PD, et al. (2016) Metagenomic
Sequencing of the Chronic Obstructive Pulmonary
Disease Upper Bronchial Tract Microbiome Reveals
Functional Changes Associated with Disease
Severity. PLoS ONE 11(2): e0149095. doi:10.1371/
journal.pone.0149095

Editor: Dominik Hartl, University of Tübingen,
GERMANY

Received: June 2, 2015

Accepted: January 27, 2016

Published: February 12, 2016

Copyright: © 2016 Cameron et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Sequence files can be
viewed on MG-RAST (metagenomics.anl.gov) via the
IDs listed in S1 Table.

Funding: This work was supported by Aberystwyth
University through a studentship grant awarded to S.
J.S.C. and partially supported through grants from
National Institute for Social Care and Health
Research, Wales to K.E.L. and P.D.L. The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149095&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Chronic obstructive pulmonary disease (COPD) is a leading cause of death and morbidity,
leading to an estimated 2.75 million deaths worldwide in 2006 [1]. COPD is usually caused by
smoking in the developed world and is an umbrella term for a multisystemic inflammatory
state, including several diseases such as chronic bronchitis and emphysema. Patients experi-
ence acute exacerbations which may be triggered by environmental pollutants or infection.
Approximately 75% of acute exacerbations are attributed to viral or bacterial infection, or a
combination of both [2]. Characterisation of bacteria cultured from the airways of COPD
patients has linked exacerbations with pathogens such as Streptococcus pneumoniae,Haemo-
philus influenzae andMoraxella catarrhalis [3]. Since the advent of culture-independent tech-
niques, especially amplification and sequencing of the 16S rRNA gene, the lung microbiome of
COPD has been more widely studied [4–10]. However, to date, these studies have had conflict-
ing results in terms of the taxonomic composition of the lung microbiome in COPD.

Lung microbiome analyses based on 16S rRNA amplicon sequencing have compared bron-
chial alveolar lavages (BAL) from patients with COPD to healthy individuals. Initial studies
suggested that the lung microbiome of patients with moderate and severe COPD patients is
less diverse than ‘healthy’ controls [4], although other work suggested this was an underestima-
tion of bacterial diversity [10]. More recent work, with a larger cohort of moderate and severe
COPD patients, suggested increased microbial diversity in more severe COPD [5]. Due to the
heterogeneous nature of COPD, the concept of a ‘core’microbiome in the lung has proved dif-
ficult to establish for the disease. Candidate genera constituting the core microbiome, from a
number of COPD lung microbiome studies, include Pseudomonas, Streptococcus, Prevotella
and Fusobacteria [2].

The introduction of amplicon sequencing has allowed for a much deeper insight into the
human microbiome, and its relationship with health and disease. However, because it is limited
to the sequencing of a single region of DNA, it is not able to robustly describe the functional
capacity of the microbiome. It has been suggested that changes in the functional capacity of the
human microbiome may be of higher importance in health and disease, than changes in its tax-
onomic composition [11]. Shotgun metagenomics approaches allows for sequencing of the
entire genomic component of the human microbiome. This means that both the taxonomic
composition and functional capacity of the microbiome can be investigated in much greater
detail than previously possible [12]. To the best of the authors’ knowledge, no metagenomic
study of the COPD microbiome exists within the literature. Other respiratory conditions have
been studied with this method, such as cystic fibrosis, though with relatively small sample
numbers, such as two [13], five [14], and ten [15].

The enclosed nature of the lungs presents difficulties in terms of sampling its microbiome.
A number of possible sampling biofluids are possible, such as BAL, tissue biopsy, or sputum. In
this study, we have chosen to use spontaneously produced sputum as it offers a non-invasive
sampling method, and thus could offer the easiest method of sample collection if analysis of
the microbiome in COPD patients becomes clinically useful. Recent work has suggested that
sputum and BAL samples offer spatially distinct representations of the lung microbiome. BAL
samples appear to represent the lower bronchial mucosal flora and sputum samples the upper
bronchial tract [8]. Therefore, care should be taken in the interpretation of COPD microbiome
studies in view of the difference between spatially distinct regions of the lung.

Here we report on the direct metagenomic sequencing of sputum samples from eight
COPD patients and ten ‘healthy’ smokers. Metagenomic sequencing allowed for species-level
resolution and the functional properties of the microbiome to be profiled. Thus, this study pur-
sued three main objectives, namely whether there are species-level characteristics of the COPD
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UBT microbiome, whether the functional capacity of the UBT microbiome is altered in COPD
and lastly whether progression of COPD could be correlated with taxonomic and functional
aspects of the UBT microbiome.

Materials

Ethics Statement and Role of Funding Source
The MedLung observational study (UKCRN ID 4682) received loco-regional ethical approval
from the Hywel Dda Health Board (05/WMW01/75). All procedures undertaken within this
study were in accordance with the ethical standards of the Helsinki Declaration (1964 and
amended 2008) of the World Medical Association. Written informed consent was obtained
from all participants at least 24 hours before sampling, at a previous clinical appointment, and
all data was link anonymised before analysis. The sponsor was Hywel Dda University Health
Board and neither the funders—Aberystwyth University or NISCHR—nor sponsor had any
input into the design or reporting of the study. All methods were carried out in accordance
with relevant guidelines and regulations.

Patient Recruitment and Sampling
Spontaneous sputum was collected from eight patients (five male: three female) with a clinical
and spirometric diagnosis of COPD from two UK hospitals (each at least ten pack year smokers
(mean = 46), older than 40 years (mean = 68), and post bronchodilator FEV1/FVC<0.70). A
definitive clinical diagnosis requires spirometry assessment, as performed with participants in
this study. A post-bronchodilator forced expiratory volume in one second (FEV1) over forced
vital capacity (FVC) ratio, also defined as FEV1% of predicted, the proportion of a patient’s
lung capacity that they are able to expel within one second (FEV1) as a proportion of the total
air that can be expelled from the lungs after full inspiration (FVC) of less than 0.70 confirms
the presence of COPD. Of the eight COPD patients, three were classified as GOLD stage II and
five as GOLD stage III. Ten (six male: four female) spontaneous sputum samples were collected
from staff members, (mean age = 53) at Swansea University who were either current or ex-
smokers but had no known lung disease and no symptoms of COPD (cough, chronic sputum,
breathless, wheeze or chest pain). This group were treated as ‘healthy’ smokers and subse-
quently referred to as Control samples/participants. All spontaneous sputum samples con-
tained bronchial cells as confirmed by a Consultant Pathologist. Further patient details are
supplied in S1 Table.

Isolation of Genomic DNA
After transferal on dry ice, sputum samples were thawed on ice for 60 minutes and then treated
with 5 mL of 30% aqueous methanol and 500 μL of a methanol-dithiothreitol (DTT) solution,
made up by adding 2.5 g DTT to 31 mL of 30% aqueous methanol, and then vortex mixed for
15 minutes. Samples were then underwent centrifugation at 1500 x g for ten minutes, the
supernatant removed and the pellet transferred to a PCR grade 1.5 mL microcentrifuge tube.
Genomic DNA was extracted from 100 μL of treated sputum using a FastDNA SPIN kit for soil
(MP Biomedical, Santa Ana, USA) following manufacturer’s instructions. Bead beating was
carried out in a FastPrep-24 machine (MP Biomedical) with three cycles at speed setting 6.0 for
seconds, with cooling on ice for 60 seconds between cycles. Genomic DNA was eluted with
30 μL of DES and dsDNA concentration determined using the Quant-iT dsDNA High Sensi-
tivity assay kit and a Qubit fluorometer (Life Technologies, Paisley, UK).

Metagenomic Analysis of COPD Lung Microbiome

PLOSONE | DOI:10.1371/journal.pone.0149095 February 12, 2016 3 / 16



Metagenomic Library Preparation and Sequencing
Extracted genomic DNA was normalised to 10 ng/μL with PCR grade water (Roche Diagnos-
tics Limited, West Sussex, UK) and 50 ng used to create metagenomic libraries using the Nex-
tera1 DNA kit (Invitrogen, San Diego, USA) following standard instructions, except that a
MinElute PCR purification kit (Qiagen, Ltd Crawley, UK) was used for the clean-up of tagmen-
ted DNA. Nextera1 DNA libraries were quantified as above, and approximate library sizes
determined by running on a 2% agarose gel alongside HyperLadder IV (Bioline, London, UK).
Sample libraries were pooled in equimolar concentrations following Illumina guidelines and
sequenced at 2 x 151 bp using an Illumina HiSeq 2500 rapid run, with samples duplicated
over two lanes, and following standard manufacturer’s instructions at the IBERS Aberystwyth
Translational Genomics Facility.

Metagenomic Sequence Analysis
After sequencing, output files for each sample were combined into one file using the BioLinux
7 environment [16] for each read direction. Sequencing files were uploaded to MG-RAST
(v3.2) [17] as FASTQ files and paired-end reads joined using the facility available within
MG-RAST, with non-overlapping reads retained. Sequences were dereplicated and dynami-
cally trimmed using the default parameters for FASTQ files and human sequences removed by
screening against theHomo sapiens (v36) genome. The MG-RAST pipeline used an automated
BLASTX annotation of metagenomic sequencing reads against the SEED non-redundant data-
base [18]. The SEED hits can be matched to identity at various taxonomic levels; e.g. genus or
species levels. Organism abundances were modelled and exported fromMG-RAST using the
‘Best Hit Classification’ after alignment to the M5NR database, with only alignments with a
maximum e-value of 1 x 10−5, minimum identity cut-off of 97%, and a minimum alignment
cut-off of 15 being used. Functional abundances were modelled and exported fromMG-RAST
using ‘Hierarchical Classification’. SEED matches can also be related to metabolic information,
again at different levels of classification. The coarsest level of organization; the generalized cel-
lular function was termed level 1, and the finest, individual subsystems level 3. Eukaryotic taxo-
nomic classifications were trimmed based on literature searches to remove poorly classified
reads.

Data Deposition
Sequence files can be viewed on MG-RAST via the individual sample IDs listed in S1 Table.
Raw sequence reads have been deposited at the European Nucleotide Archive under primary
project accession number PRJEB9034 and secondary accession number ERP010088. In line
with the European Nucleotide Archive’s guidelines, host sequence reads have been removed.

Data and Statistical Analysis
Read abundances were transformed, to normalise for potential variations in sequencing effi-
cacy, into percentage abundance based upon the total number of sequences within each indi-
vidual sample. This was completed at each taxonomic level of classification, namely genera and
species, and functional level of classification, namely Level 1, Level 2, and Level 3. These nor-
malised percentage abundance values were used in all subsequent data and statistical analyses.
Principal coordinate analysis (PCA) was completed using the MG-RAST analysis pipeline
using taxonomic and functional assignments, respectively, to the M5NR database with only
alignments with a maximum e-value of 1 x 10−5, minimum identity cut-off of 97%, and a mini-
mum alignment cut-off of 15 being used. Evaluation of significant changes between COPD and
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Control samples in regards to different levels of taxonomic and functional assignments was
completed using the MetaboAnalyst 2.0 [19] t-test facility with a significance P value threshold
of less than 0.05. The MINITAB 14 package was used for regression analyses of taxonomic and
functional assignments associated with COPD severity. The MINITAB 14 package uses the
computational routine Givens transformations using LINPACK routines [20]. The regression
model uses the equation y = β0 + β1X1 + e where y equals the response, βK equals the popula-
tion regression coefficients, X equals the predictors, and e equals the error term with a normal
distribution, mean of 0, and standard deviation of α. Within this regression model, the FEV1%
of predicted was considered the independent variable. The pairwise correlation of variables are
performed by multiple Pearson analyses using the well-established correlograms (corrgrams)
programme [21]. The outputs are hierarchically clustered based on dissimilarity measures. The
outputs are given in piecharts where the filled portion of the pie indicates the magnitude of the
correlation and the depth of the shading indicates the magnitude of the correlation. Also pro-
vided as supplementary data are scatterplots of the correlated variables and the statistically sig-
nificance of the correlations, where font size also indicated the strength of the correlations.

Results
The group characteristics of the patient from which sputum samples were obtained were simi-
lar in terms of smoking status, age and gender (S1 Table). Following DNA isolation from sam-
ples and sequencing, one-way ANOVA indicated no statistically significant differences in
average sequence number or bp number (S2 Table). Average read lengths however, were signif-
icantly longer (P = 0.001) in control samples, by approximately 4 bp. An average of 12.7 million
sequences with an average read length of 136 bp was achieved after MG-RAST quality control
processes for each sample.

PCA revealed some separation between the control and COPD groups when considering
taxonomic classification with five out of the eight COPD samples forming a distinctive cluster
(Fig 1A). Assessments based on functional classification (Fig 1B) appeared to reduce the sepa-
ration of the two groups but seven of the control samples clustered away from the COPD sam-
ples. In neither PCA was separation influenced by smoking status or reported prior use of
antibiotics.

We found eight bacterial genera were present in all 18 sputum samples,Haemophilus, Lacto-
bacillus, Neisseria, Ochrobactrum, Pseudomonas, Staphylococcus, Streptococcus, and Veillonella.
Five genera were found in all control samples, Actinomyces, Enterococcus, Fusobacterium,
Gemella, and Rhodococcus, but not all COPD samples. Additionally, three genera, were found
in all COPD samples, Brucella, Stenotrophomonas, and Xanthomonas, but not all control sam-
ples. Moving to consider the metagenomics outputs at the bacterial species level (Fig 2), there
are four present in all 18 samples, H. influenzae, O. anthropic, S. pneumoniae, and S. thermo-
philus. Crucially, four additional species found in all of the COPD samples but not all control
samples–S. aureus, Stenotrophomonas maltophilia, Streptococcus agalactiae, and S. pyogenes.
Conversely, six species found in all control samples but not in COPD samples; namely two
Enterococcus species, S. rostri and the Streptococcus species S. parauaberis, S. virdans and sp.6.

Other species were present in all samples but exhibited statistically significant differences in
fold abundance between COPD and controls (Fig 3). These species included higher abundances
of the pathogens Gemella haemolyses, Abiotrophia para-adiacens and Glemella sanginis. Indi-
vidual species within the Streptococcus genus in particular appeared to exhibit variable differ-
ences in abundance in COPD patient samples with both higher and lower abundances
compared to the Control group observable. Non-human eukaryotic sequences were identified
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in the libraries but no significant differences in species abundance were detected when compar-
ing control and COPD groups (data not shown).

Considering classification categories based on bacterial gene functions significant differ-
ences in COPD versus Control sample microbiomes were detected. At the crudest functional
classification; Level 1, (S1 Fig), there were significantly fewer alignments to carbohydrate genes
in COPD patients but increases in clustering-based subsystems, horizontal gene transfer and
nucleosides and nucleotides. At the more resolved Level 2 functional classification (S2 Fig) 26
classifications exhibited significant differences, with 22 higher in COPD patients. Only signifi-
cantly higher abundance differences in COPD patients were observed at the most resolved
Level 3 (Fig 4). These latter metagenomic alignments appear to centre on functional classifica-
tions involved in bacterial growth, including bacterial cell division, nucleosides and nucleotides
and amino acid, protein and RNA metabolism.

In assessing the potential influence of our finding on the severity of airflow obstruction
(FEV1% of predicted) (Table 1) we found a positive correlation with the Streptococcus genus
(R2 = 51.8%, P = 0.044), and more specifically S. pneumoniae (R2 = 63.6%, P = 0.018). Addi-
tionally, functional positive correlations were observed with the level 2 classification of di- and
oligosaccharides (R2 = 50.8%, P = 0.047) and more specifically at Level 3 with sialic acid metab-
olism (R2 = 51.1%, P = 0.046). We found no significant correlation between S. pneumonia and
smoking pack years or age but the genus Neisseria showed a correlation with smoking pack
years (R2 = 66.1%, P = 0.014). Notable positive functional correlations for smoking pack years
were with bacterial DNA repair, potassium homeostasis and the protease modulator YbbK
[22]. With regards to age, the Ochrobactrum genus showed a significant positive relationship
with age (R2 = 51.6%, P = 0.045), and specifically O. anthropi (R2 = 51.6%, P = 0.045). There

Fig 1. Principal component analysis of taxonomy and functional classifications. PCA plots were created using (A) taxonomic and (B) functional
classifications, using the analysis method detailed previously. Control samples are coloured blue and COPD red. Triangles indicate patients who are current
smokers, and black circles indicate the patient has antibiotic use in their medical history prior to giving a sample. PCA plots drawn using normalised values
and Manhattan distance.

doi:10.1371/journal.pone.0149095.g001
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were also significant correlations with biochemical pathways linked to glutamate and proline
metabolism and separately with quorum sensing and biofilm formation which could be associ-
ated with monosaccharide production.

To expand our analyses, we conducted a pairwise multivariate correlations of variables (Fig
5). The correlation coefficient by corrgrams indicates a positive correlation (blue colour) and
negative correlation (red colour) with the colour intensity indicative of the strength of the cor-
relation. The order of variables is determined by the hierarchical clustering in which the corre-
lation is the dissimilarity measure. R2 values are displayed in S3 Fig. Focusing on FEV1% of
predicted, corrgrams analyses indicated positive correlations with mono, di and oligo-saccha-
rides, age, and sialic acid metabolism indicative of sugar changes within the sputum linked to
COPD severity. FEV1% of predicted significantly correlated with changes in the Streptococcus
class / Streptococcus pneumoniae but with no other bacterial species. Age may have been a

Fig 2. ‘Core microbiome’ differences between Control and COPD participants. Abundance of the 14 bacterial species that constitute the ‘core
microbiome’ in Control participants and COPD patients. Four bacterial species were found in all samples from both groups, four species were found in all of
the COPD samples but not all of the Control samples, and six species were found in all of the Control samples but not all of the COPD samples. There was no
bacterial species that was common to all samples in one of the two groups, but unique to that group.

doi:10.1371/journal.pone.0149095.g002
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confounding factor in our analysis of the COPD metagenome, and in fact, age appeared to
exhibit distinctive correlations with a number of metagenome features. Significant negative
correlations with age were seen with proline, hydroxyproline, glutamine and glutamate metab-
olism and uptake indicative of altered, most likely reduced, bacterial nitrogen (N) metabolism
as the patients aged. Negative correlations with age were seen with Ochrobacterium sp. and Ste-
notrophomonas maltophilia. The abundance of these species appeared to be strongly correlated
with alterations in proline, hydroxyproline, glutamate and glutamine metabolism. Examining
other strong correlations reveals a particularly strong node positively correlates Neisseria sp.,
YbbK and bacterial DNA repair. These appear to be negatively correlated with smoking pack
years but not with FEV1% of predicted. Smoking pack years also negatively correlated with
potassium homeostasis and metabolism.

Discussion
The role of microbial pathogens in COPD has been well documented, specifically in relation to
exacerbations [23]. These have included studies of scale microbial (“microbiomic”) changes as
COPD progresses [4–6]. However, due to the limitations of the extent of sequence information
obtained from (for example) 16S rRNA amplicons these have not unambiguously identified

Fig 3. Significant changes in species abundance from Control to COPD. Using MetaboAnalyst 2.0, t-tests and fold-differences were calculated from
normalised percentages of reads, with only those with a P value of < 0.05 charted. Significant differences in species abundances show both higher and lower
levels in COPD samples, compared to Controls. Analysis shows that the Streptococcus genus is particularly dynamic.

doi:10.1371/journal.pone.0149095.g003
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the species present. Further, functions of the bacterial population can at best only be suggested.
Our study therefore, being the first metagenomic study of the microbiome in patients with
COPD provides a more accurate description of the bacterial population structure down to the
species level of resolution. Further, by providing wide-ranging bacterial genomic information
we provide more robust descriptions of how bacterial changes impact on changes in gene func-
tion within the context of the whole microbiomic population.

The clinical potential offered by metagenomics approaches has been recently highlighted by
a study of the human gut [24]. One of the suggestions arising from this work was that changes
in certain functional classes could be used as a personalised disease risk factor. This is a valid
possibility given increasingly reducing sequencing costs and the accessibility of DNA sequenc-
ing platforms. Within the context of COPD, any personalised medicine strategy would need to
be based on minimally invasive sampling, thus, our study was based on spontaneous sputum
rather than BAL sampling [25]. A wide range of features have been suggested as biomarkers for
the progression of COPD making risk stratification of patient cohorts to improve monitoring
and treatment plausible [26]. The microbiome may prove to be an effective source of such

Fig 4. Significant differences in functional classification abundance from Control to COPD. Using MetaboAnalyst 2.0, t-Tests and fold-changes were
calculated from normalised percentages of reads, with only those with a P value of < 0.05 charted. Functional classifications are grouped by their Level 1
classification. Only those differences at the Level 3 function are charted, with Levels 1 and 2 shown in S2 and S3 Figs respectively. Differences at Level 3
appear to centre on differences to those reads aligned to functional roles in bacterial cell division.

doi:10.1371/journal.pone.0149095.g004
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biomarkers in COPD and has already been suggested as useful for risk stratification in idio-
pathic pulmonary fibrosis [27].

COPD is a highly heterogeneous disease but, despite considerable variation between indi-
vidual samples, we found significant differences between the COPD and ‘healthy’ smokers con-
trol groups. These are likely to reflect shifts in the species make up with the UBT microbiome
so that they become sufficiently prominent to be detected using our sequencing technology.
Importantly, we noted increases in four bacterial species—all pathogens—to above detection
limits, only in COPD patients. Interestingly, although none of our patients were exacerbating,
we commonly found S. aureus and S.maltophilia in the UBT microbiome of COPD patients
although these have been linked with acute exacerbation [28]. Indeed, S.maltophilia has also
been linked to exacerbations in cystic fibrosis patients [29]. Our observations, could suggest
that these species may also be linked to reduced FEV1% of predicted as much as exacerbation.
Thus, besides offering increased understanding of the developing underlying pathology, these
four bacterial species could act as biomarkers for higher risk COPD patients.

Some reports have indicated that patients with severe COPD had a high prevalence of P.
aeruginosa, H. influenzae and S. pneumoniae [30,31]. Our analyses did not suggest any signifi-
cant correlation between P. aeruginosa and FEV1% of predicted. However, as P. aeruginosa

Table 1. Regression analysis for COPD patients using FEV1% of predicted, pack years and age.

FEV1% of Predicted Smoking Pack Years Age

+ / - R2 (%) P + / - R2 (%) P + / - R2 (%) P

Taxonomy

Genus

Streptococcus + 51.8 0.044 + 23.1 0.228 + 20.6 0.259

Neisseria - 2.4 0.715 - 66.1 0.014 - 6.3 0.548

Ochrobactrum - 13.4 0.373 - 3.1 0.679 - 51.6 0.045

Species

Streptococcus pneumonia + 63.6 0.018 + 8.4 0.487 + 40.1 0.092

Ochrobactrum anthropi - 13.4 0.373 - 3.1 0.679 - 51.6 0.045

Function

Level 2

Di- and oligosaccharides + 50.8 0.047 + 1.8 0.752 + 29.7 0.162

Glutamine, glutamate, aspartate - 47.5 0.059 - 8.2 0.491 - 78.7 0.003

Monosaccharides + 39.2 0.097 + 3.8 0.000 + 55.2 0.035

Quorum sensing and biofilm form - 19.2 0.278 - 0.2 0.912 - 52.9 0.041

Level 3

Sialic Acid Metabolism + 51.1 0.046 + 18.1 0.293 + 40.0 0.092

DNA repair, bacterial - 2.4 0.714 - 74.8 0.006 - 6.5 0.543

Potassium homeostasis - 15.0 0.344 - 65.6 0.015 - 21.1 0.252

YbbK - 3.4 0.662 - 61.0 0.022 - 18.0 0.294

Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis - 30.3 0.157 - 10.3 0.439 - 66.5 0.014

Proline, 4-hydroxyproline uptake - 17.1 0.309 - 15.4 0.335 - 53.3 0.040

Regression analysis of FEV1% of predicted, commonly used as a measure of COPD severity, with normalised sequence numbers, reveals that the

Streptococcus genus, and specifically S. pneumonia is positively correlated with FEV1% of predicted suggesting that it could act as a biomarker for COPD

disease progression. Only those taxonomic or functional classifications found in all eight COPD patients, and with an R2 value of >0.5 were used in

regression analysis. + or − symbols indicate whether relationship is positive or negative respectively. Significant regressions (P indicates significance P

value of regression analysis) are highlighted in bold.

doi:10.1371/journal.pone.0149095.t001
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does not appear to be part of the detected core UBT microbiome of our baseline COPD
patients, it may be that any change in the abundance of this opportunistic pathogen is linked
to exacerbation rather than COPD severity [32]. Conversely, H. influenzae was part of the
common and possibly ‘core’microbiome and did not change in abundance in our COPD
patients. Taken together, these observations indicate that abundance changes in these bacteria
species would be poor biomarkers for COPD progression. We did find a significant positive
correlation with S. pneumonia and FEV1% of predicted, suggesting that as airflow obstruction
increases (i.e. low FEV1% of predicted), the percentage abundance of S. pneumonia decreases.

Fig 5. Multivariate comparisons of metagenomic variables displaying correlation coefficients. The pairwise correlation of multivariate parameters was
performed by multiple Pearson analyses using the well-established correlograms (corrgrams) programme in R. The outputs are hierarchically clustered
based on dissimilarity measures. The outputs are given in piecharts where the filled portion of the pie indicates the magnitude of the correlation and the depth
of the shading indicates the magnitude of the correlation.

doi:10.1371/journal.pone.0149095.g005
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S. pneumonia is frequently cultured from the sputum samples of patients during exacerbations
[30,31], and it is the main target of initial treatment with penicillin antibiotics. Detecting sub-
tle changes S. pneumonia load, may allow prediction of COPD progression and allow earlier
interventions.

In considering how patient drug history could be biasing our analyses were noted that of
our eight COPD participants, six were currently prescribed inhaled corticosteroids. Some stud-
ies into the COPD microbiome have suggested that such treatments have an effect on its taxo-
nomic composition [4,9], these samples did not appear to be outliers in (for example) our PCA
studies, although the number of COPD patients not on inhaled corticosteroids did not allow
statistically valid analyses to be performed.

Metagenomic analyses focusing on gene function indicated that there were increases in the
abundance of functional alignments associated with bacterial growth, particularly bacterial cell
division, nucleosides and nucleotides, and amino acid, carbohydrate, DNA, protein and RNA
metabolism. These observations suggesting increased bacterial cell division were in line with a
non-microbiome study where greater bacterial load has been linked to periods of COPD
exacerbation [9]. We also noted increases in genetic factors linked to horizontal gene transfer
which could indicate that large-scale genetic exchanges may be a characteristic of the COPD
UBT microbiome, similar to the bacterial genomic flux which appears to be a feature of cystic
fibrosis patients [33]. Our functional analysis also revealed the significant increase in align-
ments to the heat shock dnaK gene cluster, which in bacteria is responsible for producing the
heat shock protein Hsp70. Analogues of Hsp70 have been shown to have significant anti-
inflammatory responses in many inflammatory diseases [34]. Thus, Hsp70 could provide a
mechanism for bacterial defence from the inflammatory mediators inherent within the lungs
of COPD patients.

A further, significant, positive correlation was observed between FEV1% of predicted and
the percentage abundance of genes associated with sialic acid metabolism; i.e. they decreased as
COPD symptoms worsened. Sialic acids are nine carbon sugars backbone monosaccharides
mainly decorating the outside of vertebrate cells, but also some microbes [35–37]. Extracellular
sialic acid moieties have many roles in vertebrate immunology and can act to mask cell surface
receptors or act as recognition sites for various lectins and antibodies. These roles include the
modulation of leukocyte trafficking via selectins and influencing complement activation [38].
Sialic acid binding immunoglobulins (Ig)-like lectins (siglecs) are found in immune cells and
will recognise different linkage-specific sialic acids. Examples of siglecs are siglec-3/CD33
related-siglecs found on haematopoietic cell lineages, siglec-9 on natural killer (NK) cells and
siglec-8 only on circulating eosinophils. After binding sialyated moieties, siglecs can drive the
internalisation of sialyated pathogens and crucially, modulate pathogen-/damage-associated
molecular patterns (PAMP/DAMP)-mediated inflammation along with inhibition of NK cell
activation. Sialic acid-Siglec interaction therefore, serves to maintain a baseline non-activated
state of innate immune cells, and limit inflammatory response activation through PAMP/
DAMP recognition [39]. The pathological advantages to the pathogen of acquired sialic acid
decoration is therefore to augment siglec mediated avoidance of PAMP/DAMP recognition
[39–41]. Additionally, the presence of sialylated lipopolysaccharide on the bacterial surface can
prevent complement activation by binding to the C3 component of the complement cascade
[42]. Our study suggests that with decreasing FEV1% of predicted scores decreasing sialic
metabolite would indicate a shift towards a lesser capacity to avoid recognition and thus sup-
press inflammation—a key feature of COPD. Thus, a reduction in sialic acid metabolising
capacity in the bacteria bacterial population could be an important pathological feature in
COPD progression.
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To substantiate the observed significant correlations with FEV1% of predicted, we noted no
significant relationships with either smoking pack years, or the age of COPD patients. How-
ever, although our patient cohort is relatively large for metagenomic sequencing studies, its size
does mean that interpretation of regression significance values should be taken with care, par-
ticularly with regards to those close to our significance threshold, P< 0.05, such as those below
0.1. Here, we have associated a number of taxonomic and functional features of the micro-
biome with COPD severity. Of these, two features, S. pneumonia and sialic acid metabolism
have regression associations with the age of COPD patients with significance P values of less
than 0.1. Albeit not significant, these values suggest that in a longitudinal study associating
COPD severity and progression with taxonomic and functional features of the microbiome,
the age of COPD patients may be a confounding variable that needs to be controlled for.

Within this study, we indirectly identified significant relationships between smoking and
the Neisseria genus, which has previously been linked to smoking [43], and a number of Level
3 functional classifications, namely bacterial DNA repair and potassium homeostasis. These
features possibly reflect, smoking linked bacterial genomic damage and a response to the inclu-
sion of potassium salts in cigarette papers, respectively [44,45].

It should be noted that here we have used metagenomic sequencing of genomic DNA to
assess the functional capacity of the UBT microbiome in COPD patients. This gives an accurate
profile of the genetic capacity of the microbiome and the possible selective pressures acting
upon it. However, it is not able to provide information on the genetic expression of the COPD
microbiome. To allow for this, metatranscriptomic sequencing of RNA from the COPD micro-
biome would be required. This could be used to determine how expression of the functional
capacity of the COPD microbiome relates to clinical parameters, as has been shown in other
respiratory conditions [46].

Although based on a relatively small number of patient samples; we have shown the poten-
tial of metagenomic sequencing to give novel insights into COPD. In addition to identifying
potential novel bacterial and functional biomarkers for COPD progression, it has also demon-
strated the potential strengths of using metagenomic techniques to characterise the COPD
microbiome from an easily accessible biofluid in patients with COPD. Future studies should
report metagenomic profiles to hospital admissions, rate of FEV1% of predicted decline, and
mortality in larger numbers as, ultimately, it raises potential avenues for improving, and even
personalising, diagnostics and treatment regiments.
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S1 Fig. Significant changes in Level 1 functional abundance from Control to COPD. Using
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MetaboAnalyst 2.0, t-Tests and fold-changes were calculated from normalised percentages of
reads, with only those with a P value of< 0.05 charted. Of the 26 Level 2 functional classifica-
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correlation is the dissimilarity measure. The top half of the correlation matrix reflects the R2

values with the font size reflecting the degree of significance. The lower half plots the individual
pairwise correlations and regression lines.
(DOCX)

S1 Table. Individual participant details, and clinical information for COPD patients. Full
participant information for Control participants and COPD patients, showing age, gender, and
smoking history. Additional clinical information for COPD patients includes drug history,
medical history, FEV1% of predicted, and whether the patient had an infection at the time of
giving a sample. nc = not collected.
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S2 Table. Sequencing Statistics for Control and COPD groups. Average read statistics pre
and post quality control (QC), after merging of paired-end reads, alongside corresponding
one-way ANOVA P values. Analysis shows no significant differences in all but one read char-
acteristic, average read length both pre and post QC, suggesting that the HiSeq 2500 sequenc-
ing approach and MG-RAST analysis pipeline introduced no discernible bias between the two
participant groups.
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