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Understanding how dynamic, molecular networks affect whole-
organism physiology, analogous to mapping genotype to pheno-
type, remains a key challenge in Biology. Quantitative models that
represent processes at multiple scales and link understanding from
several research domains can help to tackle this problem. Such
integrated models are more common in crop science and ecophys-
iology than in the research communities that elucidate molecular
networks. Several laboratories have modelled particular aspects
of growth in Arabidopsis thaliana but it was unclear whether
these existing models could productively be combined. We test
this approach by constructing a multi-scale model of Arabidopsis
rosette growth. Four existing models were integrated with mini-
mal parameter modification (leaf water content and one flowering
parameter used measured data). The resulting Framework Model
links genetic regulation and biochemical dynamics to events at the
organ and whole plant levels, helping to understand the combined
effects of endogenous and environmental regulators on Arabidop-
sis growth. The Framework Model was validated and tested with
metabolic, physiological and biomass data from two laboratories,
for five photoperiods, three accessions and a transgenic line, high-
lighting the plasticity of plant growth strategies. The model was
extended to include stochastic development. Model simulations
gave new insight into the developmental control of leaf produc-
tion, and provided a quantitative explanation for the pleiotropic
developmental phenotype caused by overexpression of miR156,
which was an open question. Modular, multi-scale models, assem-
bling knowledge from systems biology to ecophysiology, will help
to understand and to engineer plant behaviour from the genome
to the field.

plant growth model | multi-scale | digital organism | crop science |
ecology

Introduction

Our goal is to understand the physiological effects of metabolic
and regulatory networks that are now being elucidated at the
molecular level. Such networks control the traits, such as drought
resistance, that are important both in agriculture and in ecosys-
tem responses to climate change. Molecular genetic approaches,
often in model organisms, have uncovered the operating princi-
ples and mechanisms for a growing number of physiologically-
relevant cases. For example, environmental factors such as
CO2 concentration, temperature and light flux can display co-
ordinated diurnal and seasonal fluctuations (1, 2). For annual
plants like the laboratory model species Arabidopsis thaliana,
matching the timing of flowering to the favourable season, and
thus the associated environment, increases reproductive success
(3). This synchronisation is achieved by changing gene expres-
sion and protein abundance at the molecular level. Arabidop-
sis FLOWERING LOCUS T (FT) is an example of such an
‘integrator’ gene that induces flowering in response to environ-

mental signals (4). FT is highly expressed in long (summer) days
due to a combination of light and circadian clock regulation (5-
8). Such responses collectively enable individual plants to survive
in variable conditions. Plants adapt their resource allocation
processes to the environmental conditions, in order to optimise
growth and biomass accumulation (9). Plants also adjust their
architecture to compete for light and nutrient resources (10,
11). Given the multiplicity and interactions of such responses,
however, it can be difficult to determine how much a particular
molecular change contributes to the effect on the whole plant. To
understand physiology and to facilitate predictive biology from
the molecular level, there is a well-recognised need for quanti-
tative models that cross biological scales and link understanding
from several scientific domains (12-14).

There already exist mathematical models describing various
plant processes and their interactions with the environment (13).
Thesemodels include varying levels ofmechanistic detail, starting
from simple statistical relationships, and they usually comprise
two scales at most (15). Broader, molecular-based models are
well advanced in only a few domains of plant science, such as
photosynthesis research (16, 17) and root development (18). If
the models can be assembled and updated in a modular fash-
ion, then larger, multi-scale models might be developed in a

Significance

Plants respond to environmental change by triggering bio-
chemical and developmental networks, across multiple scales.
Multi-scale models that link genetic input to the whole-plant
scale and beyond might therefore improve biological under-
standing and yield prediction. We report a modular approach
to build such models, validated by a Framework Model of
Arabidopsis thaliana comprising four existing, mathematical
models. Our model brings together gene dynamics, carbon
partitioning, organ growth, shoot architecture and develop-
ment in response to environmental signals. It predicted the
biomass of each leaf in independent data, demonstrated flex-
ible control of photosynthesis across photoperiods, and pre-
dicted the pleiotropic phenotype of a developmentally mis-
regulated transgenic line. Systems biology, crop science and
ecology might thus be linked productively in a community-
based approach to modelling.
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Fig. 1. Overview of the Framework Model. The Framework Model takes environmental data as input (black) to four existing Arabidopsis models (blue
shadowed boxes), which are: (A) a Carbon Dynamic Model (CDM) that describes carbon assimilation and resource partitioning (31); (B) a Functional-Structural
Plant Model (FSPM) of individual organ growth that determines the rosette structure (green) and the area for light interception (34); (C) a Photothermal Model
(PTM) that predicts flowering time (1) and; (D) a Photoperiodism Model (PPM),which is a gene dynamic model of the circadian clock and the photoperiod
response pathway (6). Upon integration, several original components were discarded (grey) while new connections were created (red).

distributed, community approach. Experts in each domain could
model a particular aspect of biology in detail and re-use the
previously-assembled models to represent other aspects, where
coarse granularity might be sufficient. This approach follows that
developed in other contexts, for example in other areas of biology
(19-21) and in the Earth System Modelling community. In that
case, sub-models for the atmosphere, ocean, ice sheets and the
land surface are coupled; their interactions and dynamics are then
evaluated against independent observations (22).

Our work was motivated by the multiple challenges of cou-
pling growth models to the molecular level. Computational prob-
lems are expected, due to logical or technical incompatibilities
among models (23), but historical factors are also common,
including the inaccessibility of executable forms or reference
data for some published models. These challenges have been
overcome to varying extents in modelling frameworks for crop
science (24, 25) and for animal physiology (26) but rarely in plant
molecular genetics (27) and molecular systems biology (28). In

addition, one key biological issue is whether the data that were
used in the construction (or calibration) of the constituentmodels
are quantitatively compatible, so the models can be combined
with minimal modification. Recalibrating the parameter values of
models at many different scales is potentially laborious, requiring
co-ordinated data acquisition by researchers from multiple disci-
plines. The quantitative compatibility of the constituent models
is therefore a key question.

In order to develop a quantitative model that links multi-
ple, interacting processes from metabolism to development, we
implemented the modular modelling approach for Arabidopsis
thaliana. The Arabidopsis research community has abundant
molecular and physiological data, but the quantitative variation
observed among laboratories is significant (29). We identified
four independently-developed models that characterise different
aspects of plant biology, then combined and extended them to
form a Framework Model (FM) for vegetative growth in Ara-
bidopsis (Fig.1). Key aspects of the models showed very good,
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Fig. 2. The Framework Model’s workflow predicts whole-plant and individual organ growth data. Input data required are hourly light intensity (A), CO2 level
(B) and temperature (C), illustrated for simulated three 12h L (open):12h D (shaded area) cycles. Carbon supply (D) is used as sugar (dashed line) or stored as
starch (solid line). Carbon is allocated at each hourly time step according to the organ demand (E, F). The simulated pattern of demand from individual leaves
(F, thin blue lines, left axis) is used to calculate the sum of demand (dots) from leaves (thick blue line, right axis) and roots (brown line, left axis). The root-to-
shoot allocation ratio (E),calculated dynamically from the FSPM (red line), is similar to the piecewise-linear function prescribed in the CDM (31) (grey dashed
line), which it replaces. Times of dawn and dusk (dots in A) affect the level of flowering gene FT mRNA (G) simulated by the PPM, which in turn controls the
accumulation of modified photothermal units (MPTU, H). Once the accumulated photothermal units reach the threshold for flowering (dashed lines), rosette
growth is terminated in the FSPM (red arrow). Model outputs include biomass of the shoot (I) and individual leaves (J). Simulations for the Col wild type (green
lines) closely match experimental data, for (I) total shoot biomass, (J) for leaf biomass and (K) for leaf area, at 18 (open circles), 25 (filled circles), 27 (open
squares) and 38 (filled squares) days after sowing. Leaves are ranked according to the order of appearance. The integrated model uses simulated sizes of
individual leaves (K) to calculate the projected rosette area for photosynthesis (red arrow), considering the spiral leaf arrangement (phyllotaxy) and upward
(zenithal) angle. Experimental conditions: ∼21.3°C; 12:12 light/dark cycle; light intensity, 110 μmol m-2 s-1; mean daytime CO2 level, 375 ppm. The error bars
show the standard errors of 5 plants. The colour code links to the model components in Fig. 1.

quantitative agreement. The FMwas validated against metabolic,
physiological and biomass data for multiple genetic backgrounds

and tested for several growth conditions. Numerical simulations
using FM enabled us to understand the physiological relevance
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Fig. 3. The Framework Model predicts plant growth and gas exchange data for different accessions. Model simulations (solid lines) and experimental data
(symbols) of total shoot biomass, individual leaf biomass and leaf number for Ler (A,B,C) and Fei (D,E,F) are shown. Time points of measurement in B are 18
(open circles), 23 (filled circles), 29 (open squares) and 37 (filled squares) days after sowing (DAS). Time points of measurement in E are 18 (open circles), 25
(filled circles) and 30 (open squares) DAS. The thickness of the red lines in C and F represents a region with one standard deviation above and below the mean
values from the stochastic simulations of leaf number for 2400 model runs. The plot of modelled and measured Net Ecosystem Production (NEP) of CO2 is
illustrated in G. NEP was measured for plants grown either as a small population on a tray or in individual pots. Experimental conditions: 22°C; 12:12 light/dark
cycle; light intensity = 130 μmol m-2 s-1; Average daytime CO2 concentration = 375 ppm. Error bars in A, B, D and E show the standard errors of: n = 10 plants
for total shoot biomass; n = 5 plants for individual leaf biomass. Error bars in C and F (smaller than the symbols) represent the standard deviation of 24 plants.

Fig. 4. Testing the Framework Model under different
photoperiods. Experimental data (black and white;
(51) are compared with model simulations (light and
dark green) in the photoperiods indicated, for (A)
carbon assimilation and respiration rates; (B) starch
levels; (C) amount of growth per day or night period
and (D) rosette fresh weight at the end of day (ED;
white and light green) and end of night (EN; black and
dark green). Error bars show the standard deviation of
5 plants.

of an observed developmental process. Finally, we compared new
data with model predictions to quantitatively explain a develop-
mental phenotype, supporting one of two proposed mechanisms.

Model Description
Components of the Framework Model
The circadian clock in Arabidopsis is one example of a per-

vasive, molecular regulator, where we have substantial under-
standing of itsmolecularmechanisms (30). Photosynthetic carbon
metabolism, vegetative growth and flowering time are among the
many biological processes controlled by the clock. A multi-scale
model will be required to understand how the circadian timing (or
any other pervasive control) of each of these interacting processes
contributes quantitatively to the growth of the whole plant, under

varying environmental conditions. We therefore integrated four
models, each of which originated in a different laboratory:

A. A Carbon Dynamic Model (CDM) that considers the sub-
cellular processes of photosynthesis and sugar-starch partition-
ing, as well as carbon (C) allocation between the leaf area and
the roots (31). It is assumed that a fixed proportion (12.5%) of
C assimilated through photosynthesis is partitioned into starch,
with the possibility to accumulate more starch if the remainder of
the photosynthate (in the form of sugar) is not used for growth
and respiration. At night, starch is degraded at a linear rate,
adjusted to the night length, to sustain growth until dawn (32,
33). The rate of starch degradation is set such that 84% of that
accumulated in the light period is degraded by dawn. The CDM
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Fig. 5. Leaf production rate balances biomass and
leaf area for photosynthesis. Simulation results with
time-varying leaf production rates (red) and the asso-
ciated controls with constant rates (blue) are shown
for: (A) plant biomass (symbols, left axis) and final leaf
number at flowering (green line, right axis); biomass
is normalised to the maximum value achievable with
the varying leaf production rate, which corresponds
to a phase transition to the higher, mature rate at
550 degree-days after sowing; (B) total functional
(photosynthesising) leaf area (solid lines, left axis)
and percentage of functional leaves (dashed lines,
right axis); (C) Boxplots showing the size distribu-
tion of functional leaves. Results shown include the
minimum and maximum values (whiskers), the first
and third quartiles (boxes), and the median values
(outer markers). Inset in C illustrates the images of
simulated rosettes from the Simile animation tool,
for three transition points as indicated under each
image. The arrow in A indicates the default phase
transition point in our model. The timing of the phase
transition (y-axes) are expressed in thermal time af-
ter plant emergence. (D) Rosette images of 37-day-
old Col wild type (upper) and the greater numberof
smaller leaves in Pro35S:MIR156 (lower). (E) Area of
the largest leaf in Pro35S:MIR156, relative to Col wild
type (100%), in data of Wang et al (54), our exper-
imental data and model simulation. Error bars show
the standard deviation of 5 plants in our study. Leaf
area in Wang et al was calculated from published
leaf length and width, assuming an elliptical shape.
(F) Model simulations (green lines) and experimental
data (symbols) of individual leaf biomass in Col (filled
squares) and Pro35S:MIR156 (open squares) at 37 DAS.
Experimental conditions: ∼20.7 °C; 12:12 light/dark
cycle; light intensity = 100 μmol m-2 s-1; Average day-
time CO2 concentration = 405 ppm. Error bars show
the standard errors of 5 plants.

was a discrete-time model with a 6s time step, constructed using
data of Columbia (Col) wild-type plants grown under 8h Light
(L):16h Dark (D) conditions.

B. A Functional-Structural Plant Model (FSPM) that de-
scribes individual organ growth and how each organ (leaf) con-
tributes to the above-ground structure for light interception (34).
Each of these factors is represented by effective mathematical
functions in the model, without mechanistic detail, but in a very
concise form that was sufficient to represent Arabidopsis shoot
growth and structure (34). It was parameterised using data of Col
wild-type plants grown under 12hL:12hD conditions. Only a sub-
set of the large original model (34) was applicable to our study.
The relevant sub-set of parameter values and developmental
structures was rewritten into a conventional, dynamic form that
was compatible with the other sub-models, as a discrete-time
model with an hourly time step.

C. A Photothermal Model (PTM) that predicts the timing of
flowering, based on temperature integrated over time (‘thermal
time’) (1). In Arabidopsis, flowering time is governed by the
photoperiod pathway that enables plants to sense daylength (35),

the vernalisation pathway that promotes flowering in the spring
after a long chilling period over winter (36), and by warm ambient
temperature (37). Each of these factors is represented by effective
mathematical functions in the model, without mechanistic detail,
and it was parameterised using field data of various genotypes in
the Col and Landsberg erecta (Ler) backgrounds (38). The model
was formulated as a discrete-timemodel with an hourly time step.

D. A PhotoperiodismModel (PPM), which is a gene dynamic
model of the circadian clock (39) and the photoperiod path-
way (6). This was a conventional ordinary-differential-equation
(ODE) model, usually solved with an adaptive time step of min-
utes or less. The model was parameterised using data from Col
and Ler wild-type plants grown under 16hL:8hD and 8hL:16hD
conditions.

Model integration process
To link the four models, we first identified the essential

variable(s) from each that could act as the connection points.
New links and scaling factors were introduced, while redundant
model components were replaced (Fig. 1 and Supplementary
Information). Unit conversions were required for compatibility,
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and two parameter values (8 and 9 below) were measured from
our experiments. The 124 other parameter values were taken
from the original models. A summary of the integration process
is as follows:

1. The model’s time step was standardised to one hour for
all except for the PPM, which is solved at shorter, variable time
steps. Our model therefore takes hourly meteorological data as
input, similar to many crop and ecosystem models (Fig. 2A-C),
and thereby resolves diel behaviour.

2. The simple root-to-shoot carbon allocation ratio in the
CDM was directly replaced with the dynamic pattern of demand
from individual organs, calculated by the FSPM (Fig. 2E-F).

3. To facilitate the replacement step 2 above, biomass mea-
sures considering only carbon in the CDMwere converted to total
dry mass using published leaf and root carbon content data (40-
42), because not all biomass is carbon.

4. The simple ‘big leaf’ rosette area for photosynthesis in the
CDM was directly replaced by the projected area of the rosette
structure from the FSPM.

5. The sugar supply calculated by the CDM, from fine-grained
processes such as photosynthesis, respiration and sugar-starch
partitioning, was directly provided to the FSPM as the sugar
supply for growth. This replaced the empirical light-use efficiency
(LUE) component, which was previously estimated from experi-
mental data through model inversion (34).

6. Seedling emergence (43) and flowering time were repre-
sented explicitly, in terms of thermal times to emergence and
flowering from the PTM. These were not previously considered
in the CDM and the FSPM.

7. The simple, piecewise-linear function for photoperiod re-
sponse in the PTM was replaced by the continuous flowering
function driven by the integrated expression of the flowering time
gene FT in the PPM (6).

8. The modified photothermal unit (MPTU) threshold in
the PTM (threshold, Fig 2H) was determined using the time of
flowering measured in our experiments.

9. Water content was measured from our experiments to
facilitate simulation of fresh biomass, because this is a simpler
and more widely available measurement than the dry mass used
in both the CDM and the FSPM.

All the modelling work and analysis were conducted in MAT-
LAB (Mathworks, Cambridge, UK) (see Supplementary Infor-
mation). The Plant Systems Modelling (PlaSMo) online model
repository (www.plasmo.ed.ac.uk) was developed as a shared
portal to disseminate relevant models from systems biology and
eco-physiology. The component models and the FM will be pub-
licly accessible from PlaSMo upon publication, in MATLAB and
Simile formats. Simile provides a visual modelling environment
with a Graphical User Interface, plotting tools and an animated
display of simulated plant growth (see Supplementary Video)
(44).

Results
Model validation and testing

We first examined the performance of the FM in representing
the growth of Col, which was the common Arabidopsis accession
used to create the original models. As the model’s flowering
time was calibrated to the data, we focus here on vegetative
growth. Wild-type Col plants were grown in 12hL:12hD cycles
close to 22°C, because these conditions most closely matched the
conditions used for the original models, except for the CDM that
was tested using an 8h photoperiod (31). Highly discriminating
data sets were collected for the biomass of the total shoot and
individual leaves, and for the area of individual leaves, at multiple
time points after sowing. Using the original parameter values
for each sub-model, the FM overestimated growth (Fig. S1).
However, the literature shows that Arabidopsis grown in an 8h

photoperiod have altered photosynthetic physiology compared to
our reference 12h photoperiod. Specifically, the ratio of maxi-
mum electron transport to the maximum rate of carboxylation
(Jmax:V cmax) decreases as photoperiod increases (45-47) (Table
S7). The CDM’s original value for Jmax:V cmax has only been tested
in an 8h photoperiod (31). Substituting the value measured in a
12h photoperiod was sufficient for the FM to fit the Col biomass
data (Fig. 2I-K). The R2 between measured and modelled values
of fresh biomass, dry biomass and area of the rosette were 0.98,
0.99, and 0.98, respectively, with normalised Root Mean Square
Error (nRMSE) less than 10% (Table S8). The median values of
R2 and nRMSE for all the data, including individual leaf predic-
tions, were 0.91 and 24.7% respectively. The dynamic operation
of the model in Simile is illustrated in the Supplementary Video.

The FM was next tested by comparison to growth data from
other Arabidopsis accessions, Ler and Feira-0 (Fei). Accession-
specific parameters were measured for the seedling emergence
and flowering times, as described above for Col, and for the
changing rate of leaf production. Fei was expected to show a
higher leaf appearance rate (48), and indeed it showed a larger
leaf number compared to Ler at the same time points (Fig. S2a).
However, leaf appearance rate in Fei matched the Col rate when
plotted against thermal time after seedling emergence (Fig. S2b).
We infer that the principal difference of Fei from Col is actually
in the time to emergence, as Fei emerged at half the thermal
time for Col (Table S6). With only these changes, the model’s
match to data of Ler and Fei plants was as good as for Col
(Fig. 3A,B,D,E), with median R2 (and nRMSE) of 0.94 (16%)
and 0.95 (17.3%), respectively (Table S8). The measured water
content was found to be 92%, 91% and 88% for Col, Ler and Fei,
respectively, which were used in the simulations. We also tested
the use of a standardised water content of 91%. This caused slight
overestimation of fresh biomass for Fei, but less significant effects
for Col (Fig. S3).

We additionally tested the applicability of our multi-scale
FM to ecosystem studies, by comparing model simulations to
measured trace gas exchange data (see Supplementary Informa-
tion). We measured Net Ecosystem Production (NEP) of CO2
for a population of Arabidopsis plants in an experimental setup
typically used for ecological research (49, 50) (Fig. S4). The
model accurately predicted measured gas exchange from 26 days
after sowing until flowering time (R2 = 0.98) (Fig. 3G). Our
results therefore suggested that the robustness of photosynthetic
physiology contributed to the compatibility of the independently-
developed models.

To determine which processes most affected the simulated
biomass and flowering time, we conducted a sensitivity anal-
ysis, perturbing each parameter in turn by 5%. Perturbations
that increased (or decreased) flowering time always increased
(decreased) biomass at flowering (Table S11; Figs. S8 - S9),
because of the longer (shorter) duration of biomass accumulation
in the rosette. Flowering time was controlled by parameters
of the photoperiodism model (PPM), by the overall flowering
threshold and by the baseline FLC repression, as expected in
our non-vernalising conditions (see Supplementary Information).
Vegetative growth was also assessed at a fixed time, 36.5 days
after sowing. Of the twelve parameters that most affected fresh
biomass at this timepoint, two parameters directly controlled the
water and carbon content of the modelled biomass. Each of these
parameters represents a complex physiological process. Eight
parameters represented photosynthetic processes and two related
to leaf structure (specific leaf area), underlining the importance
of these traits in predicting growth rate.

Model extension: photosynthetic adaptation and flexible starch
metabolism explain the photoperiodic regulation of Arabidopsis
growth development
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Arabidopsis can adapt to a wide range of photoperiods by
adjusting photosynthetic capacity (45-47) and carbon allocation
(9, 32). In particular, starch accumulation is faster and starch
degradation is slower in short photoperiods. A large, independent
study (51) allowed us to test the model predictions in 4h, 6h,
8h, 12h and 18h photoperiods (Fig. 4). Changing photoperiod
is known to alter biochemical parameters of photosynthesis in
the plant that were fixed in the CDM. We therefore substituted
the literature values for the Jmax:V cmax ratio measured in the
appropriate photoperiod conditions, assuming upper and lower
limits (Table S7). The simulations also replicated the relevant en-
vironmental conditions (see Supplementary Information, Section
3.11; (51)).

Carbon assimilation and respiration rates were slightly un-
derestimated (10.7% and 6% lower in the 12h photoperiod,
for example) on the simulated day corresponding to the day of
measurement (Fig. 4A). The resulting net carbon fixation allowed
themodel to reproduce the full amount of starch accumulation by
the end of the 12h photoperiod (Fig. 4B), but starch levels were
underestimated (by 10-26%) in shorter photoperiods (Fig. 4B).
The model closely matched the starch levels remaining at the end
of the night (Fig. 4B). However, in short photoperiods, the lower
amount of starch accumulation in the light meant that the amount
of starch mobilised per night was underestimated in the model.
Additionally, part of the mobilised starch was used to maintain a
higher sucrose level than observed in the data (Fig. S5a), where
sucrose levels decreased progressively as the photoperiod was
shortened. These two factors resulted in lower growth per night
in the model than in the data (Fig. 4C). The model more closely
matched the observed growth increment in the 12h photoperiod
(Fig. 4C), where the simulated starch and sucrose levels matched
observations (Fig. 4B; Fig. S5a). Integrated over the life of the
plant, the lower growth at night led the FM to underestimate total
rosette biomass for short photoperiods (Fig. 4D). This indicates
that further parameters in addition to Jmax:V cmax are important
for modelling growth, especially in the extreme 4h photoperiod.
In contrast, the FM accurately predicted the biomass in the 12h
photoperiod protocol, to within the experimental error (Fig. 4D).
These results confirm that the FM can closely match the data
from independent laboratories in the reference conditions, but
the simple CDMdid not fully account for the changing starch and
sugar dynamics in short photoperiods.

Between a 4h and 12h photoperiod, biomass increased
strongly and the relative growth rate (RGR, mg FW produced
per day per unit existing biomass) increased almost linearly with
light fluence (51). This is the response that is expected if the con-
version efficiency of carbon into biomass is constant. This linear
relation between daily light fluence and growth was lost in long
photoperiods. Whereas light fluence increased by 50% between
the 12h and 18h photoperiod, RGR increased by only 18% (51).
Observed changes in the 18h photoperiod included higher starch
levels at dawn and a reduction in specific leaf area (i.e. increased
leaf thickness) (51). Both of these are expected to reduce growth
rates; incomplete starch mobilisation will sequester carbon from
growth, while increased leaf thickness will mean that less leaf
area is generated per unit fixed carbon, which will decrease future
light absorption and photosynthesis. Including the slower night-
time starch breakdown (to 60% of initial starch rather than 84%)
and measured 15-25% increase in leaf thickness in the FM, in
addition to substituting Jmax:V cmax with the published value for
14h photoperiod, reproduced the observed biomass (Fig. 4D).
This result was also recapitulated by extrapolating Jmax:V cmax
below the published value for 14h photoperiods and reducing
starch breakdown, but without considering the increase in leaf
thickness (Fig. S5b). Thus these three factors are sufficient to
account quantitatively for the altered growth rate under long

photoperiods, though the balance among them remains to be
determined experimentally.

Model-guided understanding: Stochasticity and tradeoffs in de-
velopment

To explore the model’s potential, we extended the FM to
include stochastic development at the organ (leaf) level, adopting
a probabilistic organ initiation concept used for describing non-
symmetrical branching in plant architecture (52). Leaves are
considered to appear at a regular interval (or growth cycle) with a
simple, binomial probability that was estimated at 0.97 from our
experimental data on Ler and Fei (Fig. S6 and Supplementary
Information, Section 3.12). Thus leaves appear on most growth
cycles but not all, reflecting variation in the processes of organ
initiation and expansion. This stochastic model explained the
variance of leaf number in our samples at every time point (P-
values > 0.05) (Fig. 3C,F and Table S9), while accounting for
11.3% (Ler) and 12.7% (Fei) of the variance in biomassmeasured
at flowering time. The standard deviations in the timing of leaf
appearance (phyllochron) from our simulations (in degree-days:
2.35 (Ler) and 1.86 (Fei)) were, however, lower than the standard
deviation in leaf initiation (plastochron) reported in Col (12.72;
see Discussion) (53).

Besides interplant variation, both leaf initiation and leaf
appearance rates increase with plant age in Arabidopsis (48,
53). The model reproduces this using a piecewise-linear rate,
with a phase transition point at 355 degree-days, around half
the vegetative period (Fig. 3C, 3F, S2). We explored the sig-
nificance of this developmental timing, by simulating earlier or
later transition points (Fig. S7a). To distinguish the effect of
the varying rate, we included controls that generated the same
final leaf number at a constant rate. Model simulations with a
transition point earlier than the reference, hence a longer interval
of rapid leaf production, generated biomass as low as 46.4% of
the reference value (Fig. 5A). Most leaves were small: median
and third-quartile leaf areas fell to 32.6% and 33.5% of the
reference value (Fig. 5C). The high leaf number and smaller
size resulted in self-shading that reduced biomass. The varying
leaf production rate generally resulted in a larger fraction of
functional (photosynthesising) leaves at flowering time than in
the controls (Fig. 5B) and, for transition points at 100-400 degree-
days, in a greater proportion of large leaves (third quartile area
above control; Fig. 5C) that partly escaped shading, resulting in
higher biomass than in the controls (Fig. 5A). Simulations with a
later transition point, hence a longer interval of slow leaf produc-
tion, increased biomass (6% increase from transitions at 500-650
degree-day; Fig. 5A). The associated controls increased biomass
up to 10.9%. The plant’s observed behaviour, represented by
the reference transition point, seemed sub-optimal. However, the
later transition points reduced the percentage of functional leaves
at flowering from 88.9% to 81.8% (Fig. 5B). Median leaf area
increased by 21.3% with a transition point at 600 degree-days,
similar to total biomass, but a few leaves grew very large (third
quartile area increased by 73% of the reference, but was only
78.6% of themaximum area; Fig. 5C). Thus the higher biomass of
these simulated plants depended upon a smaller number of larger
leaves. In contrast, near the reference transition point (300 - 400
degree days), the third quartile leaf area was up to 93.8% of the
maximum size, indicating that the proportion of large leaves was
high. Taken together, our analysis suggested that increasing the
leaf production rate at mid-vegetative stage incurs a slightly lower
total biomass, relative to a later transition point, but reduces the
plant’s reliance on a few, large leaves.

Model-guided understanding of a developmental phenotype
The FM predicted how much rapid leaf production will

reduce leaf size (Fig. 5C). This relationship has been de-
scribed as a ‘dual effect’ in plants overexpressing microRNA156
(Pro35S:MIR156), which have a short plastochron relative to
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wild-type plants (54). To test if our model could reproduce
the behaviour of these developmentally-altered plants, and ex-
plain the ‘dual effect’, we grew Pro35S:MIR156 plants alongside
Col wild type for 37 days. Consistent with the previous study,
Pro35S:MIR156 plants had a higher leaf production rate and
smaller leaves compared to the wild type (Fig. 5D and S7b). The
size of the largest leaf in Pro35S:MIR156 was only 57% of that
in wild type (Fig. 5E). To test whether the leaf production rate
alone was sufficient to explain this phenotype, we simulated the
growth of the wild type and Pro35S:MIR156 for 37 days, fixing the
leaf production rate in the model to the measured rates in each
genotype. With only this change, our model not only replicated
the observed size of the largest leaf to within the experimental
error (Fig. 5E) but also closely matched the distribution of size
(R2 =0.90; nRMSE=12.9%) and biomass (R2 =0.92; nRMSE=
13.3%) for all the individual leaves in the mutant, including their
smaller size relative to the wild type (Fig. 5F and Table S10). As
an additional test, we repeated the simulations with the model’s
simpler, piece-wise linear leaf production rate, using the default
values for Col and refitting the piece-wise function to the data for
Pro35S:MIR156 (Fig. S7b,c). The model slightly underestimated
leaf number in this experiment, causing an increase in the largest
leaf size in both genotypes; nonetheless the simulated mutant’s
largest leaf reached only 65% of the wild-type value, within the
experimental range (Fig. 5E). Our results indicated that the ob-
served, higher leaf production rate in Pro35S:MIR156 plants was
sufficient to predict the observed, smaller final size of each leaf,
given the normal photosynthetic function and carbon partitioning
among organs in the Framework Model.

Discussion

We present methods, examples and validation for one approach
to developing a multi-scale, whole-plant model of Arabidopsis
thaliana, inspired by crop science, by integrating existing mod-
els from different laboratories. The resulting Framework Model
(FM) closely matched data at multiple levels, acquired by two
of our groups in different countries, allowing deeper analysis of
experimental results and conceptual growth strategies. This sug-
gests that a distributed, community-wide effort could successfully
extend and refine the FM by integrating further, focussed models
into the larger framework.

Our approach stems from the recognition of potential syn-
ergies among diverse plant modellers (57), which encouraged us
to integrate models from different domains using the modular
approach. Ideally the integration process would not have altered
the models at all but this is unrealistic unless the models were
originally designed for composition. In practice, unit conversions
were required to make the models logically compatible and the
FSPM was more substantially re-written, as our aim was more
limited than its original scope. Four redundant components were
replaced by new connections. Only two parameter values were
calibrated to our experimental data (discussed below). Another
measurable parameter, the Jmax:V cmax ratio that describes photo-
synthetic physiology, was modified using values from the litera-
ture for the 12h photoperiod of our validation experiments. These
changes were sufficient for the FM to match our experimental
data (Fig. 2), confirming that the models were mutually compat-
ible despite their different origins.

One general concern in mathematical modelling is over-
fitting, which becomes more significant in models of high com-
plexity. This was part of ourmotivation tomaintain the parameter
values from the original models, which were already constrained
to the most relevant data, instead of re-optimising them to fit our
data. In cases where unit conversions and scaling factors were
required or in condition-specific scenarios, e.g. different photope-
riods (see above), we adopted values directly from the literature.
Although each of the four model components were calibrated

and/or optimised with different techniques using independent
datasets, the resulting FM matched our experimental data from
two different laboratories. This broad predictive performance is
generally not displayed in over-fitted models.

We conducted a sensitivity analysis to examine the behaviour
of the FM. This identified 7 out of 18 photosynthetic parameters
that are highly sensitive, though this number was likely under-
estimated because RuBisCo-related parameters were redundant
under our light-limiting conditions. In particular, the response of
electron transport to temperature appears to have large effects on
simulated biomass under our conditions. Indeed, the temperature
response of key parameters in the Farquhar model has been
the focus of other studies, with model accuracy decreasing when
temperatures deviated from the 25°C condition where the model
was originally parameterised (58, 59). These studies proposed dif-
ferent temperature response functions to improve the estimation
of photosynthetic parameters, and they can be readily incorpo-
rated into the FM in future. We also identified many parame-
ters with large effects on the simulated flowering time and thus
biomass at flowering. Our results are consistent with the analysis
of many crop models, which revealed high uncertainties in yield
predictions at elevated CO2 and increasing temperature, partly
due to these models’ simulated phenology and partly caused by
the complex interactions between processes such as growth and
leaf area (60). Together, our work and that of others highlight
the need for improved systems understanding and mathematical
representation to predict plant behaviour accurately, for example
in projected, future climates.

The norms of the Arabidopsis research community were
obviously beneficial, as each model had independently used the
standard, Columbia accession. Nonetheless, significant variability
among laboratories was recently reported even in standardised
Arabidopsis studies (29), so compatibility of the models was
not assured. The FM accurately predicted CO2 exchange at the
population level, as well as biomass and area of both total and
individual leaves at various time points during rosette growth,
for plants of three accessions grown under 12h photoperiods
(Fig. 3 and Table S8). Accurate biomass and area predictions
depended on simulating the temperature and lighting regimes
and the CO2 levels of each experiment, and required the joint
operation of the CDM and FSPM (Fig. 1; see discussion of
miR156, below). Five or fewer accession-specific parameters were
modified based on our data to obtain these results, out of a total
126 parameters. These revealed limited variation in water content
(88-92%, in agreement with a previous study (55)), which had only
a small effect on the fresh biomass predictions. If calibration is
necessary, water content is easily measured. Variation in seedling
emergence was discovered (early in Fei-0), because Fei-0 was
selected for its increased leaf number in a previous study (48).
Simulation of the FM showed that early emergence was sufficient
to explain the higher leaf number without altered leaf appearance
rate (phyllochron) compared toCol, consistent with our data (Fig.
3). Phyllochron can also easily be determined through observa-
tion or automated imaging systems (61, 62) should calibration
be required (as in Fig. 5F). Flowering time variation among
laboratories and accessions is common, indeed the original PTM
had four accession-specific parameters (1, 38). Until the sources
of variation can be identified, therefore, the flowering threshold
(at least) should be calibrated to each laboratory’s data, in order
to test further regulation by the PPM (6) and PTM (1).

The Framework Model also reproduced the measured
biomass of plants grown in 12h photoperiods under slightly
different conditions (Fig. 4D), as part of a large, independent
data set testing multiple photoperiods (51). However, in shorter
photoperiods the model underestimated starch accumulation in
the light, and hence the rate of starch breakdown at night, as well
as growth at night and total biomass under these conditions (Fig.
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4A). This highlights how much the plant’s carbon metabolism
adapts to different photoperiod conditions. The CDM assumes
a fixed relation between photosynthesis and starch accumulation
in the day, a fixed proportion of starch mobilisation at night,
and a fixed minimum sugar level. While this changes the model’s
absolute starch dynamics to some extent under different pho-
toperiods, the responses measured in many plants are even more
plastic (9). Firstly, measured starch synthesis is faster in short
than in long photoperiods, which contributed to the model’s
underestimating the starch level at dusk in short photoperiods
(Fig. 4B), and consequently underestimating the rate of starch
degradation to sugars at night. Sugar dynamics are also flexible;
the measured sucrose level was lower at dawn than dusk and
was lower at both times under short photoperiods compared to
long photoperiods (Fig. S5a). Together, these effects caused the
model to underestimate growth at night in short photoperiods
(Fig. 4C). This error might be compounded, for example, if
carbon conversion efficiency was underestimated in the model or
maintenance costs were overestimated but these processes were
not directly measured. Secondly, experimental data show that
the assumption of almost complete (84%) starch mobilisation at
night is not always applicable, for example in long photoperiods
when growth is probably sink-limited. Indeed, a basic problem
of many models is that they assume only source limitation (13,
14). Reducing starch breakdown to the measured level, along
with a further change in one (extrapolated Jmax:V cmax ratio) or
two (Jmax:V cmax ratio and measured leaf thickness) parameters
matched the data (Fig. 4D). Amongmany possible extensions, the
CDM might in future be supplemented with more detail on the
plant’s starch dynamics, carbon partitioning and the relationship
of sucrose to growth rate (63-66).

We illustrate the potential of the FM to understand the effect
of developmental programmes upon growth and the final rosette
form, in four examples. We compared FM simulations with leaf
appearance data to discover early seedling emergence in Fei-
0 (noted above), and to introduce stochastic leaf production in
the model that reproduced the varying leaf number observed
in Arabidopsis rosettes (Fig. 3). However, this developmental
variation accounted for rather little (∼12%) of the observed vari-
ation in rosette biomass. Our simulations of phyllochron (time to
leaf appearance) for Ler and Fei had lower standard deviations
compared to the standard deviation of the plastochron (time to
leaf initiation) reported in Col (53). However, leaf initiation is
a developmental process whereas leaf appearance also involves
growth: variation in growth might thus compensate for variation
in development, reducing the observed variance in phyllochron.
A field study of sorghum varieties also found a lower deviation
in phyllochron compared to plastochron (67), though the two
measures were tightly related.

Secondly, varying the age-dependence of the phyllochron
(Fig. 5) suggested a tradeoff in the developmentally-regulated
rate of leaf production, and helped us to understand its origins.
The measured leaf initiation rate was initially slow and then
increased. Constantly rapid leaf production reduced the simu-
lated biomass, because the many, small leaves quickly shaded
each other. On the other hand, constantly slow leaf production
gave a slight advantage in simulated biomass but produced few
leaves, many of which were older than in the reference model.
Given the risks to leaf function from predation and other damage,
this suggested that the plant’s strategy maintains almost maximal
biomass production, without relying on an aging leaf population.
Compared to the biomass-maximising, slow-production strategy,
this developmental programme distributes carbon investment
(and thus leaf size) more widely, a feature characteristic of bet
hedging strategies that could be tested in ecological studies (68,
69).

Thirdly, our model reproduced the smaller leaf size pheno-
type of the developmentally mis-regulated Pro35S:MIR156 trans-
genic line, by modifying only the model’s leaf production rate
(Fig. 5). Two possibilities were proposed to explain this ‘dual
effect’ of miR156 in the original study: 1) the existence of a
“compensatory mechanism” whereby plastochron length and leaf
size affect each other reciprocally, so as to reduce changes to the
overall plant biomass; or 2) a “common regulator” that controls
each of the two traits (54). The combined operation of the CDM
and FSPM in the Framework Model provides a parsimonious
explanation for the dual effect. High leaf production rate requires
carbon resources to be shared among more leaves (Fig. 2F), lead-
ing to a decrease in individual leaf growth. Using this mechanism
alone, the Framework Model matched the mutant leaf size distri-
bution as accurately as it did the wild type (Fig. 5F). Partitioning
of a given amount of carbon among a a larger number of leaves is
a sufficient compensatory mechanism (54), thoughmore complex
models are of course possible. No common regulator is required
to explain the observed relationship between leaf production and
organ size. Similar, quantitative analysis using the FM might
contribute to link further research on developmental regulators
(such as those targeted by miR156) and sucrose signalling (70-
72) to whole-plant phenotypes, and extend to applications that
modulate organ size, for example in pruning (73, 74).

Our results on miR156 again validated the FM, particularly
the benefit derived by coupling the CDM and FSPM. The FSPM
did not predict growth rate based on the measured experimental
conditions but rather used model inversion to learn the “light-
use efficiency” from observed plant growth data. This aggregate
parameter is not directly measurable, as it combines photosyn-
thesis, sugar-starch partitioning, respiration and the daily allow-
able growth rate, which are all separately represented in the
CDM. The CDM predicted sugar production and partitioning
to starch based on the experimental temperature, light:dark and
CO2 conditions but considered the rosette as one big leaf, whereas
the FSPM provided information on the demand and growth
of individual organs. We could only predict the biomass and
detailed rosette structure in particular experimental conditions by
combining these models in the FM. The FM not only explained
the relationship of organ number and size in Pro35S:MIR156
plants but also predicts that the measurable parameters of carbon
utilisation are unaffected in this line.

In conclusion, quantitative dynamic models are valuable both
to understand and to engineer organismal growth and physiol-
ogy, from the level of molecular and biochemical processes. The
Framework Model, and the approach used to build it, provides
a flexible context to expand the detail and scope of compo-
nent models, for example to whole-cell models (28), and also to
study the dynamic interactions among multiple processes. This
is particularly important to understand the pervasive effects of
environmental stresses or pleiotropic biological regulators, such
as the circadian clock. Finally, multi-scale digital plant models
might contribute to link systems biologists with ecophysiology and
crop science, where significant synergies may be gained.
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