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Abstract 

In the last 35 years luminescence dating has provided a large database of ages for the 

deposition of dunes in desert environments. Over 380 ages have been generated for dunes 

from the Arabian Peninsula and demonstrate episodic dune deposition in the late 

Quaternary, but give a less clear pattern prior to ~50 ka. Interpreting databases of 

luminescence ages faces two issues. First, the precision of luminescence ages in the last 50 

ka is between 5 and 10%, but for older ages the uncertainties may be much larger as 

luminescence signals reach saturation. Second, different luminescence signals from quartz 

and from feldspar have been used over the last 35 years as the method has developed and 

expanded. These different signals have different saturation limits and different rates at 

which they are reset by exposure to daylight at deposition. Approaches which focus on the 

most light sensitive signals (e.g. quartz OSL) are better suited to dating recent events, while 

those which show growth of the luminescence signal over the largest dose range (e.g. the 

thermally transferred OSL (TT-OSL) signal from quartz and the post-infrared infrared 

stimulated luminescence (pIR-IRSL) from feldspars) have the potential to date much older 

events. 
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1. Introduction 

Luminescence dating methods have revolutionised our understanding of the dynamics of 

desert dunes by providing numerical chronologies where methods such as radiocarbon are 

frequently not applicable. Luminescence dating methods have allowed studies of the rates 

at which dunes form and move (e.g. Bristow et al. 2007), and the timing of periods of 

stabilisation of dunes (Leighton et al. 2014). Luminescence gives information about the 

timing of dune stabilisation, though whether such records indicate changes in aridity, 

sediment supply, or other factors (Kocurek 1998) is still a matter of debate (Thomas and 

Wiggs 2008; Chase 2009; Thomas and Burrough, this volume). As part of the INQUA Dune 

Atlas project (Lancaster et al. this volume), 385 luminescence ages (as of 23/11/2015) from 

the Arabian Peninsula have been compiled. 

One of the challenges in compiling a database of ages is that luminescence methods have 

developed dramatically in the 34 years since Singhvi et al. (1982) working in the Thar Desert 

of India became the first to apply luminescence dating to desert dunes. Luminescence 

dating methods rely upon the growth of the trapped charge population within mineral 

grains as a result of exposure to ionising radiation in the natural environment (Aitken 1985; 

Duller 2008). In the laboratory the concentration of trapped charge can be measured by 

stimulating the grains either by heat or light to generate luminescence 

(thermoluminescence (TL) or optically stimulated luminescence (OSL)). The magnitude of 

the luminescence signal obtained from irradiation during burial is compared in the 

laboratory with the magnitude of the luminescence signal arising from irradiation using a 

laboratory radioactive source of known strength. This sequence of measurements yields the 

equivalent dose (De), an estimate of the radiation dose the sample was exposed to since the 

last exposure of the sample to daylight. To calculate an age, it is also necessary to measure 

the radioactivity of the sample, and this is termed the dose rate (Dr). The age is calculated 

by dividing De by Dr.  

 

𝐴𝑔𝑒 (𝑘𝑎) =  
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐷𝑜𝑠𝑒 (𝐷𝑒)

𝐷𝑜𝑠𝑒 𝑅𝑎𝑡𝑒 (𝐷𝑟)
   Eq. 1 

 

Although the basis of luminescence dating is the same today as it was in 1982, there have 

been major changes in both the method of stimulating a luminescence signal 

(thermoluminescence (TL), infrared stimulated luminescence (IRSL), post-infrared infrared 

stimulated luminescence (pIR-IRSL) or optically stimulated luminescence (OSL)), and the 

different methods of equivalent dose determination (multiple aliquot methods versus single 

aliquot methods). Thus there is not a single ‘luminescence’ method but rather a family of 

different methods that share some common features, but also have their own specific traits. 

This paper briefly explains the difference between these methods and the impact that these 

changes may have had upon the quality and reliability of the ages generated. The paper also 

explores the impact that saturation of these different luminescence signals has upon the 

accuracy and precision of the ages that are generated. Examples from the INQUA dunes 
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atlas are taken primarily from the Arabian region. Here, as in many of the major deserts of 

the world, the record of dune activity is likely to be a very long one, beyond the range of 

current luminescence dating methods. Inevitably samples are collected that push the limits 

of current luminescence methods, and this paper aims to explore the potential challenges 

involved in the analysis of such old samples. 

 

2. Methods of luminescence measurement 

2.1 Thermoluminescence: TL 

The pioneering work of Singhvi et al. (1982) was the first to use luminescence dating 

methods to determine the period of time since the mineral grains making up the desert 

dunes had been last exposed to daylight. Singhvi et al. (1982) measured the 

thermoluminescence (TL) signal from quartz separated from sediments collected from 

dunes in Rajasthan. The TL signal from quartz had first been used to date the timing of firing 

of pottery (Wintle 2008), where the event being dated was heating of the quartz grains. 

Firing is able to remove all of the TL signal below a specified temperature (typically about 

400°C), but exposure of quartz grains to daylight is only able to remove part of the TL signal. 

To be useful for dating, the method that was developed had to estimate the amount of the 

TL signal that was not removed by exposure to daylight and remained at deposition – this is 

known as the residual signal. This residual signal was then subtracted from the measured 

signal to allow an age estimate to be obtained (Singhvi et al. 1982; Duller 1996). The 

prolonged exposure of mineral grains to daylight prior to deposition made desert dunes an 

ideal target for this newly developed method, but the need for residual subtraction made it 

difficult to date very young sediments.  

2.2 Optically stimulated luminescence: OSL and IRSL 

In 1985 Huntley and co-workers published details of an alternative method of obtaining a 

luminescence signal from mineral grains. Instead of heating the grains to obtain a TL signal, 

the grains were exposed to light in a restricted wavelength range (514 nm in their 

instrument), and the resulting optically stimulated luminescence (OSL) emission could be 

used to determine the De. This method had the advantage that it only measured the part of 

the luminescence signal that was most sensitive to daylight, and thus there was no need to 

remove a residual signal. For desert dunes this made it possible to generate ages covering 

very recent periods of time, providing high temporal resolution for events in the last few 

millennia (Thomas et al. 1997).  

The Research Laboratory for Archaeology and the History of Art in Oxford obtained an 

argon-ion laser like that used by Huntley et al. (1985) and undertook a great deal of research 

on desert dunes (e.g. Stokes et al. 1997). However, the expense and complexity of these 

lasers meant that no other laboratories made significant use of them, severely limiting the 

adoption of this method. Hütt et al. (1988) provided an alternative when they showed that 

it was possible to stimulate an OSL signal from feldspars using infrared light (~880 nm). Light 

emitting diodes of the type used in domestic remote controls for televisions provided an 
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affordable and easily controlled source of IR, and many laboratories either built their own 

instruments or purchased affordable commercial systems. The application of infrared 

stimulated luminescence (IRSL) methods was also boosted by the development of single 

aliquot methods of De determination (Duller 1991). 

However, a major challenge for IRSL measurements of feldspars was the phenomenon of 

anomalous fading (Wintle 1973). This term describes the loss of trapped charge at a rate 

that is much faster than would be predicted from a simple interpretation of the physical 

characteristics of the crystal defects at which charge is trapped. If anomalous fading occurs 

then it will lead to a measurement of De that is smaller than would be expected, and hence 

an underestimate of the age. A recurring point of discussion through the 1990’s and early 

2000’s was whether anomalous fading was a universal phenomenon affecting all types of 

feldspars (e.g. Huntley and Lamothe 2001), or whether there were some feldspars that were 

not affected. Some authors chose to attempt to measure the rate of anomalous fading and 

correct for it, whilst others reported that they did not observe any fading, and thus did not 

correct. In Arabia, the very long sequence from Oman reported by Preusser et al. (2002; 

records ARBL0027-98) was dated using IRSL measurements, and they reported that they 

could not observe any fading. Until recently there has been little standardisation in how 

measurements have been made to assess the degree to which a sample of feldspar is 

affected by anomalous fading. In recent years it has become commonplace to measure the 

extent of fading and characterise it by a g-value (Huntley and Lamothe 2001). g-values are 

quoted as a percentage figure and values in excess of ~1.5% per decade are sufficiently large 

that they require some form of correction (Buylaert et al. 2012). Unfortunately many earlier 

publications do not express their fading measurements in this way, making it difficult to 

assess whether fading was significant or not. 

While infrared (IR) light emitting diodes are able to stimulate an IRSL signal from feldspars, 

quartz requires a different light source. The Ar-ion laser originally used by Huntley et al. 

(1985) emitted light at 514 nm. In the late 1990’s green, and then blue, light emitting diodes 

became commercially available, and these were ideally suited for generating an OSL signal 

from quartz (Galloway 1992; Bøtter-Jensen et al. 1999). Commercial instruments based 

especially upon blue LEDs rapidly became standard in luminescence laboratories, and 

together with the development of single aliquot methods of De determination (see below), 

this became a very standard method of analysis for desert dunes. The current database is 

now dominated by luminescence ages measured on quartz grains using the OSL signal 

generated using blue light emitting diodes. 

 

3. Methods of equivalent dose determination: multiple aliquot and 

single aliquot 

Calculation of the equivalent dose (De) from a sample involves comparing the intensity of 

the luminescence signal resulting from trapped charge acquired during burial of the 

sediment with the luminescence resulting from exposure of the sample to laboratory 

irradiations from radiation sources that are precisely calibrated (Duller 2008; Rhodes 2011). 

http://dx.doi.org/10.1016/j.quaint.2016.01.028
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Early luminescence work used many different sub-samples of each sample to determine a 

single value of De and these are termed multiple aliquot methods. Each sub-sample, called 

an aliquot, was given a different treatment: some were used to measure the luminescence 

arising from irradiation in nature, while others were used to measure the response to 

laboratory irradiation, or the response to exposure to daylight. All of these measurements 

on multiple aliquots were then combined together to generate a single value of De.  

Duller (1991) described the first practicable method for making all of the measurements 

necessary for De determination on a single sub-sample. Such single aliquot methods are now 

the norm in luminescence dating. The methods proposed by Duller (1991) were designed for 

the IRSL signal from feldspars. Whilst these were used extensively through the 1990’s (e.g. 

ARBL00245-251) difficulties were encountered when they were transferred for use with the 

OSL signal from quartz (Stokes et al. 2000). Murray and Wintle (2000) proposed a different 

single aliquot method termed the single aliquot regenerative dose (SAR) method. This 

method has proved extremely successful and has been tested extensively using samples 

with independent age control (e.g. Murray and Olley 2002 updated in Rittenour 2008). The 

SAR method, with blue LEDs as a convenient method of stimulating an OSL signal, has 

proven highly successful, as shown by the high proportion of ages in the Arabian database 

(76% of 385 ages) that have used this combination. 

 

4. The challenge of obtaining reliable luminescence chronologies for 

older desert dunes 

Farrant et al. (2015) have reviewed the database of luminescence ages for the northern Rub’ 

al-Khali with the UAE, whilst Leighton et al. (2014) compiled a database focussing on the late 

Pleistocene, and the INQUA Dune Atlas builds upon these databases. The geographical 

spread of ages in the Arabian part of the INQUA dunes atlas (Fig. 1) shows that the majority 

of work done in the region has either occurred in the UAE or Oman, and the UAE ages are 

67% of the total (258 out of 385 ages). Whilst Farrant et al. (2015) and Leighton et al. (2014) 

were able to see tightly clustered groups of ages in the Holocene and to a lesser extent 

within Marine Isotope Stages (MIS) 3-4, the luminescence ages demonstrate that a much 

longer record of aeolian activity is present, but it becomes increasingly more difficult to 

define as one goes further back in time. The reasons for this are discussed below. 

4.1. Uncertainty on individual luminescence ages 

The uncertainty on individual luminescence ages are typically in the range 5-10% of the 

calculated age. Fig. 2 shows for the suite of luminescence ages from Arabia that the majority 

of the younger ages (less than 30 ka) the uncertainty is typically 5%, especially for the quartz 

OSL ages generated using the SAR procedure. A small number of ages generated in the 

1990’s using a single aliquot additive dose method for the IRSL signal from feldspars have 

uncertainties that are significantly higher, up to 20%, though it is not clear how such large 

errors were determined.  

http://dx.doi.org/10.1016/j.quaint.2016.01.028
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The uncertainty in luminescence ages derives from the uncertainty in the values of both De 

and Dr used to calculate the age. In many environments the main source of uncertainty in Dr 

arises from uncertainty in the water content of sediments during burial. For ages based 

upon measurements of sand sized quartz grains a 1% change in the water content 

(expressed as weight of water divided by the weight of dry sediment) will typically produce 

a 1% change in Dr, and hence a 1% change in age. However, most desert dunes have very 

low water contents, and this source of uncertainty plays a relatively small role in the overall 

uncertainty on the age.  

The other source of uncertainty arises from measurement of the De. When using multiple 

aliquot methods of De determination it is normal practice to only generate a single estimate 

of De, but with single aliquot methods it is common to determine De for 10, 20 or more 

aliquots. This larger number of measurements allows the uncertainty on the average De to 

be reduced significantly. In Fig. 2 uncertainties for ages calculated using multiple aliquot 

methods are typically nearer 10%, whilst those from single aliquot methods are nearer 5%. 

A notable feature of Fig. 2 is that for samples whose age is greater than ~80 ka the 

uncertainty on the individual ages measured using any method are typically 10%, and often 

greater than this. This increased uncertainty derives in part from saturation of the 

luminescence signal, leading to greater uncertainty in the calculation of De.  

4.2. Saturation of the luminescence signal 

A key element in luminescence dating is measuring the growth of the luminescence signal in 

response to laboratory irradiation and determining the laboratory radiation dose that yields 

the same luminescence intensity as the signal resulting from irradiation during burial. This is 

the equivalent dose (De). The general shape of all dose response curves are similar and can 

be described by a saturating exponential equation of the form shown below (Eq. 2). A 

typical dose response curve for the OSL signal from a sample of quartz is shown in Fig. 3.  

𝐿𝐷 = 𝐿𝑀𝑎𝑥 (1 − 𝑒
(

𝐷

𝐷0
)
)   Eq. 2 

where the luminescence intensity at dose D (LD) is a function of the maximum luminescence 

intensity (LMax), the radiation dose (D) and D0, which is a parameter that describes how 

rapidly the signal reaches saturation. As part of the process of obtaining a value of De, in 

order to generate an age, laboratory measurements are made of the increase in the 

luminescence signal as a function of different doses. Where the luminescence signal 

increases rapidly with increasing radiation dose (i.e. at low radiation doses), it is relatively 

straightforward to use these measurements to determine the De for each aliquot. However, 

at high doses, the rate at which the luminescence signal changes becomes smaller, and it 

becomes increasingly difficult to use these measurements to determine De. Knowing how 

high a radiation dose can be reliably determined is difficult (Murray et al. 2002). There are 

potentially two complications and these are discussed below.  

The first effect is a loss of precision as one approaches saturation. As with all measurements 

of physical quantities, luminescence measurements have uncertainties associated with 

http://dx.doi.org/10.1016/j.quaint.2016.01.028
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them, arising primarily from the reproducibility of the instrumentation and the counting 

statistics of the luminescence signal that is observed. These uncertainties are propagated 

through into the final De (Duller 2007) and ultimately the age. As samples approach 

saturation, even though the uncertainty in the luminescence measurements remains 

proportional, the impact of these uncertainties upon the uncertainty in the De becomes 

much larger, and the uncertainties on the De become asymmetric (Error! Reference source 

not found.).  

The second complication is the potential for a loss of accuracy due to systematic errors 

which may exist in the methods. The occurrence of this type of effect is much more difficult 

to assess, but Chapot et al. (2012) have made measurements on samples from Luochuan on 

the Chinese Loess Plateau where they were able to use the stratigraphic framework 

provided by the loess-palaeosol sequence to correlate to the MIS timescale, and thus 

provide independent age estimates for each of their samples. They observe a systematic 

mismatch between the luminescence signals that they observe in nature and in the 

laboratory which result in increasingly inaccurate age estimates. Chapot et al. (2012) 

observed a systematic underestimation of the real age of a sample as they approached 

saturation. However, since the cause of this systematic mismatch is unknown, it is unknown 

whether this is a general phenomenon that affects all quartz OSL measurements, and 

whether it is possible that some samples may exhibit systematic overestimation of age 

instead of underestimation.  

The combined impact of these two complications upon datasets such as the INQUA Dunes 

Atlas is difficult to model because of the variability in the properties of the minerals being 

analysed (e.g. their D0 values, Duller 2012), differences in dose rate, and the different 

analytical protocols that have been used. A major challenge in the study of aeolian activity 

in desert environments is that opportunities for obtaining samples from long sequences of 

stacked sediments are rare. Commonly samples are collected from relatively shallow depths 

(a few metres) because of limitations of access, and comparisons are made across large 

geographical distances. The Arabian dataset is unusual in containing a number of deep core 

records (e.g. Preusser et al. (2002) ARBL00027-98; Bray and Stokes (2003) ARBL00001-12; 

Stokes and Bray (2005) ARBL00130-142). Where these long sequences are available the 

impacts of the decrease in precision can be clearly seen, though it is not possible to judge 

whether there is any systematic deviation such as that seen by Chapot et al. (2012). 

Wintle and Murray (2006) suggested that where De was beyond two times the value of D0 

(Eq. 2) the rate at which the luminescence was growing was very slow and so the results 

should be treated with caution. A simulation of the impact of saturation is shown in Error! 

Reference source not found.. The simulated dose response curve has a D0 value of 50 Gy. 

Simulations were undertaken to show the variability in the De values that would be 

expected when working with samples in different parts of the dose response curve. At doses 

of 50 Gy or less (i.e. S1 on Fig. 4 which equates to a value of De that is equal to D0) the 

growth of the luminescence signal with dose is relatively rapid and there is limited scatter in 

the resulting De values. However, when working near saturation (e.g. S3 on Error! Reference 

source not found. which equates to a value of De that is three times D0) stochastic variation 

http://dx.doi.org/10.1016/j.quaint.2016.01.028


Published in Quaternary International – http://dx.doi.org/10.1016/j.quaint.2016.01.028 
 

8 
 

in the luminescence measurements results in very large scatter in the resulting De values. 

Differentiating between different episodes of dune activity would become increasingly 

difficult as the precision of the luminescence ages decreases. An increasing awareness of the 

challenge of working at high doses means that recent studies tend to give values of D0 so 

that values of De can be compared with this (e.g. Farrant et al. 2015). 

It is important to note that the limitation due to saturation is a limit in the size of the 

equivalent dose. Chapot et al. (2012) observed that the deviation between the expected and 

the calculated ages became significant above about 150 Gy. What this represents in terms 

of age depends upon the dose rate. If the environmental dose rate is low (e.g. 0.5 Gy/ka) 

then this would imply that it was possible to date reliably to 300 ka, but if the dose rate was 

1.5 Gy/ka then the limit would be 100 ka. 

 

4.3. New signals from quartz and feldspar: TT-OSL and post-IR IRSL 

In the last decade two new luminescence signals have been explored in the search for 

signals that are able to overcome the problems of saturation of the quartz OSL signal and 

the problem of anomalous fading of the IRSL signal from feldspars, and these are described 

here. 

The use of the SAR method applied to the OSL signal from quartz has been extremely 

successful in the last 15 years. However, one of the challenges with this method is that the 

OSL signal becomes saturated after irradiation with between 100 and 500 Gy of radiation 

(Fig. 3). This limits the time period over which dates can be obtained, and typically restricts 

analysis to the last ~150 ka. Wang et al. (2006) were the first to describe the use of a 

different luminescence signal from quartz called the thermally transferred optically 

stimulated luminescence (TT-OSL) signal which has the potential to date much older 

sediments. Exposure of a quartz sample to stimulating light from blue LEDs for between 100 

and 200 seconds generates the OSL signal normally used in OSL dating. After this 

measurement the remaining OSL signal is near instrumental background. If the aliquot is 

then heated to 260°C and then cooled back to 125°C and blue LEDs are used for stimulation 

again, a new signal appears. This OSL signal arises from charge that has been moved from 

one defect to another by heating to 260°C, and hence the signal is termed thermally 

transferred OSL (see review by Duller and Wintle 2012). What makes this signal of interest is 

that whilst the OSL signal may increase for doses up to between 100 and 500 Gy and then 

cease to grow, the TT-OSL signal grows at doses up to many thousands of Gray (Fig. 3). 

Rosenberg et al. (2013) used a combination of OSL and TT-OSL applied to quartz from dunes 

buried by lacustrine sediments in the Nafud Desert and were able to obtain ages as old as 

688 ± 71 ka (ARBL00300). 

A new luminescence signal has also been explored from feldspars. The work of Thomsen et 

al. (2008), elaborated by Buylaert et al. (2012), described a luminescence signal from 

feldspars that appears not to be affected by anomalous fading. To obtain this signal, the 

IRSL signal that was previously used for dating is measured, but then the sample is heated to 

a high temperature (typically between 225 and 290°C) and whilst being held at that 

http://dx.doi.org/10.1016/j.quaint.2016.01.028
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temperature the IRSL signal is measured again. This second signal, known as the post-IR IRSL 

signal, appears to be much less affected by anomalous fading. The dose response curve for 

this signal appears to be similar to that for the IRSL signal (Buylaert et al. 2009), and 

generally can be used to produce ages over a wider range than the OSL signal from quartz, 

but not as far back as the TT-OSL signal (Fig. 3). 

One drawback to both the TT-OSL signal and the post-IR IRSL signal is that they are not reset 

by exposure to daylight as rapidly as the OSL or IRSL signals (Duller and Wintle 2012; 

Colarossi et al. 2015), and their resetting more closely resembles the behaviour of the TL 

signals from these two minerals. Thus TT-OSL and post-IR IRSL may not be well suited to 

dating recent events, but could be extremely valuable for dating older sediments. 

5. Conclusions 

Luminescence methods are ideally suited to dating deposition of desert dunes and have 

provided key data that has improved our understanding of their response to environmental 

change in the late Quaternary. The nature of luminescence methods is such that the 

majority of ages have uncertainties of between 5 and 10%, and currently there is no 

prospect of dramatically reducing these. The impact of these uncertainties is to make it 

increasingly difficult to resolve episodes of environmental change as one goes back in time. 

For instance, at 100 ka a typical uncertainty of 10 ka is almost half a precessional cycle. OSL 

from quartz is the signal that is most commonly used in luminescence dating, and for this 

signal the effect of saturation may also increase the problem for ages of 100 ka or older, 

leading to even worse precision. One potential approach to improve precision would be to 

average dates from multiple samples, and this could be a strategy for obtaining higher 

precision ages for key events. However, systematic deviations such as that seen by Chapot 

et al. (2012) which would result in increasingly inaccurate ages (though not necessarily 

imprecise ages) would not be resolved by making replicate measurements. 

The last decade has seen the development of an increasingly diverse range of luminescence 

dating methods based upon measurement of different signals from both quartz and 

feldspar. Because these different signals grow at different rates (Fig. 3) and use different 

defects within the minerals, obtaining ages from each sample using these multiple 

chronometers has enormous potential for improving the reliability of older ages, and for 

extending the range over which luminescence dating can be used. However, there are 

clearly very large resource implications of obtaining multiple ages using multiple signals. For 

younger samples any increase in confidence in the age would be small and the increased 

effort would normally not be worthwhile. In contrast, for older samples, especially those 

approaching, or beyond, the range of the quartz OSL signal, the increased confidence in the 

age may well be sufficient to justify the increased resources. 

In the INQUA Dunes Atlas Arabian dataset 122 of the 385 ages are beyond 100 ka. Almost 

half of these are from IRSL measurements of feldspars, but 55 (almost 15%) are based on 

measurements of quartz OSL. For the global database 7% of the ages are over 100 ka, 

equating to 265 ages. Thus there is already a significant database of old luminescence ages. 

Many of these were determined using quartz OSL but depending upon the dose rate these 

http://dx.doi.org/10.1016/j.quaint.2016.01.028


Published in Quaternary International – http://dx.doi.org/10.1016/j.quaint.2016.01.028 
 

10 
 

may face problems of saturation, and are likely to have large uncertainties. The 

development of luminescence methods based on new signals from quartz (e.g. TT-OSL) and 

feldspar (e.g. pIR IRSL) provide enormous potential in the future for obtaining more accurate 

ages over longer periods of time to explore the response of desert dune systems under a 

wider range of boundary conditions. 
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Fig. 1: Google Earth map of INQUA dune database coverage in Arabia showing concentration 

of effort in UAE and Oman, and also showing recent research in Saudi Arabia. Each red dot 

marks the position of one or more luminescence ages. 
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Fig. 2: Relationship between age and uncertainty for luminescence ages in the INQUA 
database.  
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Fig. 3: Comparison of dose response curves from the OSL signal from quartz, the pIR IRSL225 
signal from feldspars and TT-OSL signal from quartz (data from Duller et al. 2015 and 
Buylaert et al. 2009). As well as plotting data as a function of dose, the equivalent age is also 
plotted on the x-axis assuming a dose rate of 1.5 Gy/ka. 
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Fig. 4: The impact of saturation upon the variability in De, and hence age, for samples. Three 

different luminescence signal levels were simulated (S1, S2 and S3) such that they generate 

De values that are equal to D0 (S1), to two times D0 (S2) and to three times D0 (S3). For each 

signal level 4000 De values have been simulated using a Monte Carlo process and the 

distribution of these De values are shown by the shaded areas. At three times D0 (S3) the 

scatter in De values becomes very large, and becomes asymmetric because of the shape of 

the dose response curve. 
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