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Spatial knowledge plays an essential role in human reasoning, permitting tasks such as locat-
ing objects in the world (including oneself), reasoning about everyday actions and describing
perceptual information. This is also the case in the field of mobile robotics, where one of
the most basic (and essential) tasks is the autonomous determination of the pose of a robot
with respect to a map, given its perception of the environment. This is the problem of robot
self-localisation (or simply the localisation problem). This paper presents a probabilistic al-
gorithm for robot self-localisation that is based on a topological map constructed from the
observation of spatial occlusion. Distinct locations on the map are defined by means of a
classical formalism for qualitative spatial reasoning, whose base definitions are closer to the
human categorisation of space than traditional, numerical, localisation procedures. The ap-
proach herein proposed was systematically evaluated through experiments using a mobile
robot equipped with a RGB-D sensor. The results obtained show that the localisation algo-
rithm is successful in locating the robot in qualitatively distinct regions.
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1. Introduction

Currently the most successful algorithms for robot self-localisation are based on prob-
abilistic methods that assume maps of the environment defined by means of metric
information (Thrun et al., 2005; Wolter et al., 2008). One of the shortcomings of these
methods, however, is that they largely ignore the knowledge that humans have (and use)
about the environment (Thrun, 2003). Bridging the gap between probabilistic methods
in robotics and knowledge about the robot’s domain is not only of theoretical interest,
but it is also an essential step towards equipping robots with the capability of interpret-
ing sensor data using high-level knowledge (Falomir et al., 2013; Tapus and Siegwart,
2006). The use of common-sense knowledge represented as spatio-temporal concepts is
also of utmost importance in the development of robotic systems capable of interacting
with humans in a natural way (Deits et al., 2013; Moratz and Ragni, 2008).

The field of Qualitative Spatial Reasoning (QSR) (Cohn and Renz, 2008) (a subfield
of Knowledge Representation in Artificial Intelligence) attempts the representation of
commonsense spatial knowledge based on qualitative properties of the domain, aiming
to achieve cognitively plausible theories about spatial information. For instance, QSR
theories include a mereotopological theory based on the connectivity between spatial
regions, the definition of occlusion and parallax, the formalisation of relative location
and spatial vagueness, as well as the definition of qualitative theories about distance,
boundaries, shapes and so forth (as overviewed in Ligozat (2011)).

Traditional QSR formalisms, however, are independent of observer viewpoints (apart
from a few exceptions, e.g. (Randell et al., 2001)), giving limited application to robotics
research. In previous work (Fenelon et al., 2013; Santos, 2007; Santos et al., 2009;
Souchanski and Santos, 2008), we have proposed a dynamic formalism about space in
which qualitative changes observed by a mobile robot are the building blocks of the
system, therefore including the observer in a QSR formalism. These approaches were
developed in classical logic languages and, therefore, were not capable of handling sensor
uncertainties.

In this context, the present paper proposes a probabilistic localisation algorithm based
on a qualitative representation derived from a QSR formalism about object occlusion.
We, therefore, bring together both qualitative and probabilistic (quantitative) reasoning
techniques to bear on a problem which is inherently viewpoint-dependent. The contribu-
tions of this work are two-fold: first, it contributes to research on robot localisation by
introducing an algorithm that accomplishes probabilistic localisation using non-metric
information defined over a qualitative spatial reasoning formalism; second, this work
contributes to QSR by presenting an experimental evaluation of a viewpoint-based QSR
theory implemented within a probabilistic localisation algorithm in a real robotic domain.

The algorithm presented in this paper was tested on our ActiveMedia Pioneer People-
bot mobile robot that was tele-operated through an indoor environment while an RGB-D
sensor (that is, a Microsoft Kinect) captured a sequence of snapshots around reference
objects.

This work builds upon various QSR formalisms, in particular the Region Connection
Calculus (Randell et al., 1992) and the Region Occlusion Calculus (Randell et al., 2001).
We outline the works which provide our foundation in Section 3, with our proposed
extensions described in Section 4. For reasoning about space we define a qualitative
map, upon which the robot can be localised: this stage is presented in Section 5.

The key technical contribution of this paper is a set of algorithms linking the qualitative
map, the QSR formalism and robot perception via probabilistic reasoning. This can be
found in Section 6, with our experimental setup and evaluation in Section 7.

The novelty of the work proposed in this paper is the investigation of a high-level
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representation of space information, and how to combine it with probabilistic methods,
in order to provide an intuitive way of handling robot localisation at a level of abstraction
closer to the human categorisation of space.

2. Related Work

Research in robot mapping has over 30 years of history and its major results are sum-
marised in the extensive literature surveys presented by Thrun (2003) and Boal et al.
(2014). Boal et al. (2014) divides the maps currently investigated in the robotic litera-
ture into four classes: (1) metric maps that represent the robot domain by means of its
geometrical properties (Filliat and Meyer, 2003; Leonard and Durrant-Whyte, 1991); (2)
topological maps that encode the environment by a graph whose nodes represent possi-
ble locations and edges between nodes represent that two locations are connected (Liu
and Siegwart, 2014; Ranganathan and Dellaert, 2011; Remolina and Kuipers, 2004); (3)
hybrid (or hierarchical) maps which represent the environment by a combination of met-
rical and topological information (Konolige et al., 2011; Zivkovic et al., 2005); and, (4)
semantic (or cognitive) maps that contain high-level information about the environment,
including object types, functionalities, and their interrelations (Nüchter and Hertzberg,
2008; Posada et al., 2014; Vasudevan et al., 2007). According to Boal et al. (2014) metric
representations of maps allow very accurate localisation algorithms, at the expense of an
increasing computational complexity related to the high dimensionality of the entities
involved. Topological maps, on the other hand, provide a more compact representation
of the robot’s domain than the metric approach, but require more complex processing of
the sensory information and are more prone to perceptual aliasing (which is the problem
of two distinct places being perceived as the same location). The development of hybrid
maps aims to combine the precision of a metric representation with the more abstract
representation of the robot’s location given by the topological map. Semantic maps go
one step upwards in terms of abstracting the robot’s space, where relational information
is used to allow high-level reasoning along with localisation procedures.

In this work we investigate a probabilistic localisation algorithm on topological maps
defined over qualitative (or non-metrical) spatial relations. Therefore, the work proposed
in this paper falls at the intersection between topological and semantic mapping.

Methodologically, our work has its roots on the localisation procedure presented by
Levitt and Lawton (1990), where a topological map was built by regions bounded by
sets of lines connecting pairs of point-wise landmarks. This idea inspired the develop-
ment of several spatial representations. For instance, Schlieder (1996) proposes a spatial
representation (called panorama) that constrains the location of a point with respect
to the visual ordering of point-wise objects observed around the robot. The notion of
qualitative navigation is defined in Schlieder (1996) and Stolzenburg (2010) in terms of
changes in this ordering information, as the observer crosses each of the virtual lines
defined by the reference objects.

An approach closely related to our work is that of Fogliaroni et al. (2009), which con-
siders extended convex objects to be landmarks, and decomposes navigable space based
on a model of object occlusion and visibility. More specifically, that model generates a
tessellation of the navigable space in terms of portions of space that were visible, partially
visible and occluded. The ordering in which these attributes are observed is also used to
qualify the regions of space within the tessellation. Following similar ideas, Santos et al.
(2009) propose a qualitative spatial theory based on a logical formalisation of occlusion
and the observation of cast shadows. Preliminary results of applying this theory to a
mobile robot domain for the task of localisation were presented in Fenelon et al. (2013).
Also related to the approach proposed here is the method introduced in McClelland et al.
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(2013) which builds a map using the relative positions of landmarks. These methods are
usually based on some human-level conceptualisation of space, some of them grounded on
recent findings in cognitive psychology (Wolter et al., 2008). However, they are incapable
of handling sensor noise, which limits their applicability to well-controlled, deterministic
domains. A more complete overview of qualitative representations for robot localisation
is presented in Wolter et al. (2008).

The most successful localisation methods in robotics are based on probabilistic al-
gorithms. Probabilistic localisation algorithms are usually defined on top of Bayesian
filtering (Thrun, 2003; Thrun et al., 2005). In a nutshell, this is a recursive algorithm
consisting of two parts: prediction (where the belief over the current state of a robot –
usually its position and orientation – is calculated on the prior belief of a previous state);
and measurement update (whereby the predicted current state is weighted by the proba-
bility of a measurement on this state). This basic definition summarises works on Markov
localisation (Fox et al., 1999) and localisation procedures that use Kalman filters (Chen,
2012). The latter is a special case of the former, where sensor and motion models are
linear Gaussian functions. Methods known as Monte Carlo localisation (Dellaert et al.,
1999) extend the basic Markov localisation by applying a particle filter to represent the
distribution of possible states. These particles are updated according to the prediction
of the next state (given the robot’s motion) and are resampled according to the agent’s
perception. These ideas have such a high acceptance in the robotics field that the seminal
work of Dellaert et al. (1999) has over a thousand citations, most of which related to the
direct application of the method. Therefore, a complete survey of recent works related
to probabilistic localisation algorithms is a hard task. Surveys of early approaches to
probabilistic robot localisation can be found in Thrun (2003); Thrun et al. (2005).

Preliminary results on the framework reported in the present paper were shown in
Pereira et al. (2013), where a qualitative-probabilistic approach is developed combining
the ideas of qualitative localisation using cast shadows proposed in Fenelon et al. (2013)
with a Bayesian filter. This approach proved to be successful on the tasks of robot
localisation and self-calibration of the robots vision system through experiments using a
mobile robot in a real environment. The experiments reported in Pereira et al. (2013),
however, assumed the localisation of a robot manoeuvring around a single object and its
unique shadow. The present paper generalises this idea assuming a map defined over the
occlusion between (any number of) pairs of objects. Thus, the ideas presented here can be
applied to maps over any number of occluded bodies. To the best of our knowledge, this
is the first work that presents empirical results on a probabilistic localisation algorithm
based on qualitative spatial information.

This paper assumes the usual notation in logic languages where lower-case roman
letters refer to variables and upper-case to constants (unless explicitly stated otherwise).
Bold fonts in formulae will be reserved for sets and probability distributions. The theory
of occlusion upon which this work is grounded is described in the next section.

3. Region Occlusion Calculus

The basic spatial theory used in this work is the Region Occlusion Calculus (ROC)
(Randell et al., 2001), which is an extension of the Region Connection Calculus (RCC)
(Randell et al., 1992). RCC is a first-order axiomatisation of spatial relations based on
a reflexive, symmetric and non-transitive dyadic primitive relation of connectivity (C/2)
between two regions. Informally, assuming two regions x and y, the relation C(x, y), read
as “x is connected with y”, is true if and only if the closures of x and y have at least one
point in common.

Assuming the C/2 relation, and two spatial regions x and y, the following base relations
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can be defined: disconnected from (DC), part of (P ), equal to (EQ), overlaps (O); partially
overlaps (PO); externally connected (EC); tangential proper part (TPP ); non-tangential
proper part (NTPP ). RCC also includes the inverse relations of P , TPP and NTPP ,
which are represented by a capital ’I’ appended to the relative relation: PI, TPPI and
NTPPI.

The set constituted by the relations DC, EQ, PO, EC, TPP , NTPP , TPPI, and
NTPPI is the jointly exhaustive and pairwise disjoint set (JEPD) usually referred to
as RCC8. The continuous transitions between the RCC8 relations, for two regions x and
y, are shown as a conceptual neighbourhood diagram (CND) in Figure 1. By continuous
transitions we mean that in between adjacent vertices of the graph there can be no
other possible relation qualifying the state of the two regions. That is, assuming that the
objects move continuously on the plane, these are the only transitions that are possible.

y

x

x

x y
x

y

x

y

y yx

xy

NTPP

DC EC PO

EQ

TPP

TPPI

NTPPI

y

x

Figure 1. The RCC8 relations and their conceptual neighbourhood diagram (Randell et al., 1992).

Using RCC8 relations, along with the primitive relation TotallyOccludes(x, y, ν)
(which stands for “x totally occludes y with respect to the viewpoint ν”), the Region
Occlusion Calculus (ROC) defines the 20 base JEPD relations. Figure 2 shows a graphi-
cal representation of the ROC relations between two objects, represented as a white and
a shaded region. In this figure, the shaded region corresponds to the first argument, and
the white region to the second argument of ROC relations. For instance, the relation
PartiallyOccludesTPP (x, y) is depicted with the shaded region x occluding the white
region y, while the 2D projection of the shaded object is a tangential proper part (TPP )
of the 2D projection of the white object. It is worth noting that the relations on mutual
occlusion only occur if and only if at least one of the objects is non-convex. ROC also
defines a conceptual neighbourhood diagram (introduced in Randell, Witkowski (2002))
that we do not present in this paper for brevity.

Region Occlusion Calculus makes a distinction between the occupancy regions of bodies
and their images (or projections) from the viewpoint of an observer. This distinction is
accomplished by assuming two functions: the function region(x), which maps a body x
to its 3D occupancy region, and the function image(x, ν) that maps a body x to the
body’s 2D projection, as seen from a viewpoint ν. The viewpoint in ROC is modelled as
a pinhole camera whose parameters are not important for the qualitative theory.

It is worth pointing out also that the “I” in the relations TotallyOccludesTPPI (x, y, ν)
and TotallyOccludesNTPPI (x, y, ν) represents the inverse of TPP and NTPP , respec-
tively; so, for instance, TotallyOccludesTPPI (x, y, ν), means that the body x totally
occludes the body y, but image(y) is the tangential proper part of image(x) (i.e.,
TPPI(image(x, ν), image(y, ν)) ). The superscript “−1” in some ROC relations rep-
resents the inverse of the occlusion part of the relation.
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Figure 2. ROC relations between two objects (white and shaded regions).

4. Relative Positions

As well as the 20 ROC relations, this work assumes observer-relative positions of pairs of
objects by means of the relations Left, Right, C loser and Further. Given two distinct
bodies x and y and a viewpoint ν (and assuming that the observer’s horizon is fixed and
that the field of view is restricted) the relative positions are as follows:

• Left(x, y, ν), representing the fact that “x is to the left of y from viewpoint ν”
(analogously, Right(x, y, ν));
• Further(x, y, ν), represents the fact that “x is further than y from viewpoint ν”

(analogously, Closer(x, y, ν)).

In this work, these relations are grounded on data from the vision system, given the
depth information (e.g., provided by an RGB-D sensor) and the distance from the cen-
troids of the objects’ images to the left border of the camera field of view. More formally,
let dist from left(image(o, ν)) (read as distance from the left border) be a function that
maps an image of an object o and a viewpoint ν to the distance of the image’s centroid
to the left border of ν’s field of view; and, depth(image(o, ν)) be a function that maps
the image of an object o to the depth of o with respect to ν (i.e., the distance from the
object to the observer). Thus, the relations Left, Right, C loser and Further can be
defined by the formulae below.

Left(x, y, ν)↔ dist from left(image(x, ν)) < dist from left(image(y, ν)).

Right(x, y, ν)↔ dist from left(image(x, ν)) > dist from left(image(y, ν)).

Further(x, y, ν)↔ depth(image(x, ν)) > depth(image(y, ν)).

Closer(x, y, ν)↔ depth(image(x, ν)) < depth(image(y, ν)).

The relations on relative positions introduced above are transitive, irreflexive and asym-
metric. For completion we also have to include the relations NonLeftRight(x, y, ν) (stating
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that “x is neither left nor right of y”) and NonCloserFurther(x, y, ν) (stating that “x is
neither closer nor further than y”). However, these cases rarely occur in real vision data.

5. Qualitative Map

Although ROC is defined on non-convex physical bodies, in this work we use the subset of
ROC that is related to convex objects only. This constraint simplifies the base vocabulary
of ROC without interfering on the generality of the localisation procedure, since in this
paper the localisation is accomplished over the convex hulls of the objects’ images.

Considering the ROC relations between (the convex hulls of) objects o1 and o2 from a
viewpoint ν, only the following relations and their inverses have models since the mutually
occludes relations do not hold with respect to convex hulls:

• NonOccludesDC(o1, o2, ν);
• NonOccludesEC(o1, o2, ν);
• PartiallyOccludesPO(o1, o2, ν) (and PartiallyOccludesPO(o1, o2, ν)−1);
• PartiallyOccludesTPP (o1, o2, ν) (and PartiallyOccludesTPP (o1, o2, ν)−1);
• PartiallyOccludesNTPP (o1, o2, ν) (and PartiallyOccludesNTPP (o1, o2, ν)−1);
• TotallyOccludesTPPI(o1, o2, ν) (and TotallyOccludesTPPI(o1, o2, ν)−1);
• TotallyOccludesEQ(o1, o2, ν) (and TotallyOccludesEQ(o1, o2, ν)−1);
• TotallyOccludesNTPPI(o1, o2, ν) (and TotallyOccludesNTPPI(o1, o2, ν)−1).

The definition of a qualitative map using occlusion relations depends on the notion of
lines of sight, that is understood here as the virtual tangent lines that can be drawn on
the borders between pairs of objects.

Considering the lines of sight and ROC relations, we define a discretisation of the space
around pairs of objects into qualitatively distinct relations. This discretisation, exempli-
fied in Figure 3, represents a qualitative map defined on occlusion relations between two
objects (O1 and O2), whereby the regions marked with the numbers 1, 2, 3, 4, and 5
refer to regions where a viewpoint ν would observe Right(O1, O2, ν) and also:

• in Region 1 ν observes NonOccludesDC(O1, O2, ν);
• in Region 2: NonOccludesEC(O1, O2, ν);
• in Region 3: PartiallyOccludesPO(O2, O1, ν);
• in Region 4: TotallyOccludesTPPI(O1, O2, ν); and,
• in Region 5: TotallyOccludesNTPPI(O1, O2, ν).

An analogous qualification applies for the non-labelled regions in Figure 3. This idea
can be easily extended to any number of referent objects: Figure 4 shows an analogous
map related to three objects.

O1 O2

1 2
3

5

4

Figure 3. Distinct regions implied by the observation of occlusion relations between two objects (global view).

The qualitative map shown in Figure 4 divides the space around the three objects (red
(r), blue (b) and green (g) boxes) into 28 regions defined by the lines of sight between
every pair of these objects and their observer-relative positions. It is worth noting that
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Figure 4. A representation of the qualitative map with 28 distinct regions. The lines of sight between the objects
define the boundaries between regions. The colours of the lines in this figure are only to help its visualisation, they

do not have any special meaning.

there are regions around the target objects in Figure 4 that were not marked (and not
considered in the map). These are regions that are near the target objects (or are results
of multiple intersections of regions defined with respect to various pairs of objects) and
whose sizes are negligible with respect to the size of the robot and, thus, were not
considered as positions in the map. As we shall see later in this paper, if the robot
happens to pass over these regions, it keeps the belief in the previous location inferred
until it reaches the next region marked in the map.

The regions in the map on Figure 4 are defined by Formulae 1 to 28 below.

located(R1, ν, b, g, r)← ((PartiallyOccludesTPPI(b, g, ν) ∧ (1)

Right(b, g, ν) ∧ Further(b, g, ν)))

∧((NonOccludesDC(b, r, ν) ∧
Left(b, r, ν)))

∧((NonOccludesDC(g, r, ν) ∧
Left(g, r, ν) ∧ Closer(g, r, ν))).

located(R2, ν, b, g, r)← TotallyOccludesNTPPI(b, g, ν) (2)

∧((NonOccludesDC(g, r, ν) ∧
Left(g, r, ν) ∧ Closer(g, r, ν))).

...

located(R12, ν, b, g, r)← (NonOccludesDC(b, g, ν) (12)

∧Left(b, g, ν) ∧ Front(b, g, ν))

∧(PartiallyOccludesPO(b, r, ν)

∧Right(b, r, ν) ∧ Front(b, r, ν))

∧(NonOccludesDC(g, r, ν) ∧Right(g, r, ν)).

8
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...

located(R28, ν, b, g, r)← NonOccludesDC(b, r, ν) ∧ (28)

NonOccludesDC(b, g, ν) ∧
NonOccludesDC(g, r, ν).

According to Formula (12), a robot located in region R12 (on the map in Figure 4) will
see objects b and g as NonOccludesDC; b will be to the left and in front of g; b and r
will be PartiallyOccludesPO; while b will be to the right and in front of r; and, finally,
g and r will be seen as NonOccludesDC and g will be to the right of r. A snapshot taken
by the robot located in R12 is shown in Figure 5.

Figure 5. A snapshot captured while the robot was on region R12 on the map (Figure 4).

In order to accomplish robot self-localisation, we extend the probabilistic algorithm
proposed in Pereira et al. (2013) to take into account occlusion information from any
number of objects in the scene. Although the localisation procedure can be applied over
any finite number of objects, in the presentation below we always refer to the 28 regions
defined on the occlusion relations between three distinct objects (as shown in Figure 4).

6. Probabilistic Qualitative Self-Localisation

We refer to belief distribution as the posterior probabilities over state variables, condi-
tioned on the available data. We use the notation bel(st) := P (st|e0:t); that is, the belief
bel(st) is the probability of a state (st) given all the evidence (e0:t) up to an instant
(t). In this work, the state st indicates the region where the robot is located at instant
t (given by qualitative maps such as that shown in Figure 4), and (e0:t) represents the
evidence, denoted in terms of occlusion relations between pairs of objects from instant 0
to instant t. This evidence is provided by the ROC relations as observed from a viewpoint
(cf. defined in Formulae (1) to (28) for the diagram in Fig. 4). The goal of the algorithm
is to find the value of st that maximises bel(st).

In the remainder of this paper we use the letter N to represent the number of distinct
locations on a map (e.g. N=28 on the map shown in Fig. 4).

9
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In order to compute the beliefs we use:

bel(st) = P (st|e0:t)

= P (st|e0:t−1, et)

= ηP (et|st, e0:t−1)P (st|e0:t−1),

where η is a normalisation constant. Using a Markov hypothesis, the next state is inde-
pendent of earlier measurements e0:t−1; hence:

bel(st) = ηP (et|st)P (st|e0:t−1).

This expression is the measurement update (Thrun et al., 2005). Its first term P (et|st)
is, in fact, the image model. Its second term (known as the updated belief P (st|e0:t−1) =
bel(st)) must be calculated before incorporating the evidence et.

The updated belief bel(st) represents a one-step prediction of the next state st, obtained
by conditioning st on the previous state st−1, as follows:

bel(st) =
∑
st−1

P (st|st−1, e0:t−1)P (st−1|e0:t−1)

=
∑
st−1

P (st|st−1)P (st−1|e0:t−1).

In the previous expression, the term P (st|st−1) is the state transition model. In this
work the transition model P (st|st−1) refers to the qualitative motion across the regions
defined in the qualitative map (such as those shown in Figure 4). The transition model
encodes the probability of a state change, given a moving action and the ROC conceptual
neighbourhood diagram (as explained in detail in Section 6.2 below).

The value of a state st is a region Ri where i = 1, . . . , N . The term P (st−1|e0...t−1) is
the belief calculated on the previous iteration:

bel(st−1) = P (st−1|e0:t−1).

Therefore, the posterior belief (or prediction) is the combination of previous expressions:

bel(st) =
∑
st−1

P (st|st−1)P (st−1|e0:t−1) =
∑
st−1

P (st|st−1)bel(st−1).

Finally, the belief is given by:

bel(st) = ηP (et|st)bel(st) = ηP (et|st)
∑
st−1

P (st|st−1)bel(st−1).

6.1. The localisation procedure

The robot estimates its relative location using images captured from an RGB-D sensor.
Given the robot’s perceptions described as ROC relations between pairs of objects, a
Bayesian filter is used to infer the robot’s position.

This ROC-enhanced Bayesian filter we call the Probabilistic Qualitative Self-
Localisation algorithm (PQS), shown in Algorithm 1. The algorithm is initialised with a
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(a) Segmentation (b) Contours (c) Connectivity

Figure 6. Example of the segmentation process applied on the original snapshot shown in Figure 5.

uniform distribution on the robot’s position (P(S0) in Alg. 1). Then PQS calls a Percep-
tual Procedure (called PP algorithm, shown in Algorithm 2) that returns the evidences
with maximum probability from the set of all evidences (i.e., every region on the qual-
itative map). The PP algorithm is subsequently detailed further in this paper. Given
the evidence set, the PQS algorithm first calculates probabilities for all the N regions
of the qualitative map (here the set of regions is denoted by St), then it returns the
beliefs about the current region (st). Finally, PQS runs a Bayesian prediction step where
the posterior belief bel(St+1) is calculated, which takes into account the current beliefs
for all states (given the evidence). The probability of the next states (given the current
state) is given by the transition model.

Algorithm 1 PQS(〈S1, . . . , SN 〉, image, ν)

1: bel(S1) = P(S0) = [ 1
N , . . . ,

1
N ]

2: while (1) do
3: Et ← maxPP (image, ν)
4: bel(St) = ηP(St|E0:t) = ηP(Et|St) ∗ bel(St)
5: st ←− arg max

st
P(St|E0:t)

6: bel(St+1) =
∑
st

P (St+1|st)P (st|et)

7: end while

In the Perceptual Procedure (PP), described in Algorithm 2, the occlusion and relative
position relations between pairs of objects are evaluated by detected features. These
features are the degree of connectivity between the nearest sides of the objects, the
distance between the objects, the object’s depth, the ratio between the area of their
bounding boxes, and also the relative position of the object’s bounding box.

All the necessary features are extracted from the images using off-the-shelf computer
vision algorithms. In order to obtain the object’s bounding boxes from the snapshots
taken from the robot’s viewpoint, we use a morphological operator along with saturation
values on the images obtained to perform the region of interest segmentation. Figure 6
shows an output of this segmentation procedure. The relative positions between pairs of
objects are obtained directly from the sensor data, as described in Section 4.

The algorithm analyses pairs of objects and qualifies the qualitative relations between
them (i.e., the relations on occlusion and relative positions detailed in Section 3). This
is accomplished by considering the connectivity between segmented objects, along with
depth information, in a two-tier procedure: firstly, the contours of all segmented objects
are normalised to a fixed value and summed up, pixel by pixel; subsequently, this fixed
value is subtracted once from all contours. As a result, only the pixels where overlapping
objects were detected remain in the image (as exemplified in Figure 6).

Cases where total occlusion occurs are handled by using a flag that is set if occlusion
was detected in immediately previous frames. This flag is then cleared once a transition

11
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is observed.

Algorithm 2 PP (Scene, ν)

1: Segment scene to obtain the region of interest
2: Qualitatively classify the spatial relations between pairs of objects
3: for all regions Ri on the qualitative map do
4: P (e = Ri)← Φ(located(Ri, ν, b, g, r))
5: end for
6: return arg maxe P (E);

In Algorithm 2, the function Φ maps every possibility of localisation to a real value in
the interval [0, 1]. This value is defined by the number of predicates satisfied in the body
of the located formula. For instance, a formula that has all of its body satisfied receives
value 1, whereas a formula that has 3 out of 4 body predicates satisfied receives the value
0.75.

6.2. Models

The Bayesian filter presupposes the definition of two probability models: the sensor model
and the transition model. In Algorithm 1, the sensor model is the image model (P(et|st)),
whilst the transition model (P(St+1|st)) represents the transition between regions in the
map and is used for calculating the posterior belief (line 6 of Algorithm 1). Next, we
describe how the image and motion models were designed.

The image model

The image model is encoded by P(et|st), which indicates the probability of the sensor
to perceive the correct evidence related to a given state. In this paper we assumed a
discretised Gaussian model. This is a N ×N matrix that shows high probability values
on the main diagonal and a fast decrease in value the further the matrix entry is from
the main diagonal. This represents the idea that the greater the number of regions that
have to be traversed in order to go from a region Ri to a region Rj (i 6= j), the smaller
the corresponding probability of transition.

The transition model

The transition model conveys the probability of a change in the robot’s location given a
moving action and the ROC conceptual neighbourhood diagram (CND). Informally, con-
sidering a map (such as that shown in Figure 4), and a possible location of the observer,
the CND of the Region Occlusion Calculus gives the possible changes in the sensor data
as the robot moves to the neighbouring regions on the map (i.e. any of the relations
on the CND graph that is connected by an edge to the relation qualifying the current
observation). Assuming a steady speed of robot motion around the target objects, the
transition model assigns a weight on the possible next position of the robot representing
the probability of changes between locations. This weight is inversely proportional to the
regions’ sizes and is dependent on the neighbouring relations on the CND with respect
to the current perception (this dependence is represented as a function of the motion
action).

More specifically, the transition model is represented by a N × N transition matrix
relating every possibility of state transition in the map (in the case of the map shown in
Figure 4 it is a 28× 28 matrix). The entries in this matrix are composed of a multiplication

12
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(a) Snapshot of the test domain. (b) Robot trajectory around the objects.

Figure 7. Experimental Scenario

by a real constant (representing the weight) and the function of the moving action. As
mentioned above, the real constant is inversely related to the size of the region in the
map, representing the probability of state transitions according to the size of the region:
the larger the region, the lower the probability of state transition. The function represents
perceived occlusion features that modulate the probability for a state change (i.e. the
probability will be greater with respect to changes to locations related to neighbouring
relations on the ROC CND, degrading gracefully to more distant regions). It is worth
recalling that, in this work, the robot’s motion is inferred from image changes with respect
to visual features qualifying occlusions between pairs of objects. Thus, when the robot
approximates a borderline region, the detection of certain occlusion features related to
the next region increases the probability of a state change.

The entries in the N × N transition matrix representing the motion model are nor-
malised by rows.

7. Experimental Results

To verify the performance of the proposed PQS algorithm, experiments were conducted
using our ActiveMedia Pioneer Peoplebot mobile robot, whose onboard computer runs
the Robot Operating System (ROS) (Quigley et al., 2009). Three boxes of distinct colours
(red, green and blue) and varying sizes were carefully positioned in a triangular formation
in an indoor environment forming a qualitative map akin to that illustrated in Figure 4.
In addition, in order to capture both colour and depth images, the well-known Microsoft
Kinect sensor was mounted on the base of the robot, whilst a joystick was used to tele-
operate the robot through the environment. Figure 7(a) shows a snapshot of the robot
in the environment during the experiments.

It is worth pointing out two key design issues of our experimental setup. Firstly, the
Kinect sensor has an angular field of view of 57o horizontally and 43o vertically. Secondly,
the distance between the boxes was, at most, 5 metres, due to space constraints. As a
result, the Kinect sensor was conveniently mounted facing leftwards and the trajectory
was carefully planned so that only left turns would be performed during the experiments,
also ensuring that all regions of the qualitative map were visited at least once. The
immediate area in which the robot was acted was in an open floor, where people were
able to move around the room, thus the experiment involved considerable noise.

A detailed log was obtained from three subsequent runs that were saved for off-line
processing. Figure 7(b) shows the trajectory followed during the first of three runs around
the objects. The log is comprised of the robot’s raw odometry data (logged at 10 Hz), as
well as registered pairs of colour and depth images with resolution of 640 × 480 pixels
(saved at 30 Hz) – a total of 9483 pairs of images. At each run the trajectory followed was
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deliberately veered off-course at random – whilst keeping the same route – in order to
a) increase variability of the collected samples, hence increasing the number of distinct
viewpoints; and, as a result, b) prevent the recorded dataset from issues such as biasing
and lack of generalisation.

Within the dataset, only 11% of the collected images contained all three target objects,
whilst 45% contained two objects, 41% had only one object, and in 3% of the images no
object was present. The ground truth of the dataset was manually annotated. In order
to facilitate this annotation, we used markings on the floor (invisible to the robot) to
represent the borders of the regions in the qualitative map.

Results from the PQS algorithm tested on the recorded dataset were compared with
the answers from the PP-algorithm (described in Section 6.1), that provides the possible
location of the robot by simply evaluating the qualitative relations (i.e. without using the
Bayesian filter). From this comparison we verified whether the probabilistic algorithm
contributed to the localisation procedure in map locations where not all target objects
could be perceived.

Table 1 represents a confusion matrix with the results of PQS algorithm, in which the
rows represent the actual location of the robot and the columns represent the algorithm
output. The main diagonal of this matrix represents the percentage of true positives. We
can see that in regions R2, R3, R4, R6, R10, R11, R12, R13, R15, R21, R22, R24, R25
and R28 the PQS algorithm had above 90% accuracy. Accuracy between 70% and 90%
was obtained in regions R1, R5, R14, R16, R19, R20 and R23 and between 50% and 70%
was obtained in regions R7, R17 and R26. The localisation procedure in regions R8, R9,
R18 and R27 had accuracy below 50%.

Table 1 also shows that most false positives were cases where the algorithm located
the robot in the immediate neighbourhood of its actual location. This is represented by
the high density of false positives around the main diagonal of matrix 1, but also in
some of the entries far from the main diagonal (whose cells also represent neighbouring
regions of the correct robot location). These cases happened mainly at positions closer to
the border limits of the regions, where the visual distinction between occlusion relations
cannot be precisely captured by the vision system. Considering, however, that we want
a system capable of locating a robot in qualitatively distinct regions of space, and that
the border limits in the map cannot be distinguished from the bordering regions, it is
conceivable to include the immediate neighbour regions to a robot location (that falls in
the direction of the robot motion) as true positives. By doing that, the overall accuracy
of our localisation algorithm improves considerably (as shown in Table 2).
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Table 2 presents a more detailed description of the results obtained with PQS compared
with the results obtained by running the localisation procedure using only the Perceptual
Procedure (PP) algorithm (without the Bayesian filter). The first two columns of Table
2 represent, respectively, the actual location of the robot (column “Region”) and the
number of snapshots taken at this location (column “#im”); next, there are four columns
under the label “#objects per image” representing the number of objects contained in
the set of images of the related location. Accuracy results for the localisation procedure
using only the PP algorithm are shown in column “PP”, whereas accuracy results for the
probabilistic algorithm introduced in this paper are under the label “PQS”. The columns
“PP-n” and “PQS-n” represent the results of PP and PQS including as true positives
the inferred locations that were direct neighbours of the robot’s actual location, taking
into account the robot’s direction of motion.

Comparing the results shown in columns “PP” and “PQS” (Table 2), we see that
the Bayesian filter considerably improved the robot localisation provided by the PP
algorithm in some regions where only one object could be seen (regions R6 and R28). In
the remaining regions the accuracy results for both PP and PQS were similar.

When considering the direct neighbours of the correct robot location (shown in columns
“PP-n” and “PQS-n”), we can see a considerable improvement in accuracy in both
algorithms. However, PQS had a more expressive improvement, as we can see on regions
R5, R9, R18 and R27. In particular R9, R18, R27 and R28 were regions where the
robot always observed a single object and, therefore, the decision of the robot’s location
based solely on occlusion was under-constrained. In this case, the probabilistic algorithm
provided the necessary support to infer the robot’s location to the immediate neighbour
of its actual position.

The regions where the accuracy results of PP and PQS had the lowest results (whether
considering the neighbourhoods or not) were R8, R17 and R26. Two factors explain this
poor performance: the size of these regions (as shown in the map on Figure 4) and the
camera’s limited field of view. Looking at Figure 4 we note that R8, R17 and R26 are
the largest regions on the map and that they are defined by means of the observation
of every pair of the three objects r, v and g as NonOccludesDC. However, the camera
used to observe the environment had a limited field of view, implying that most images
captured in these regions had only one or two objects. Therefore PP and PQS could
not pin down the exact robot location, as there were other (competing) possibilities,
given the observations of distinct objects in these regions. This problem could be solved
by including an active vision system that searches for every object pair before making a
decision. The development of such system within our framework is an issue left for future
work.

8. Discussion

The use of a formal representation of object occlusion in robotic localisation tasks was
hypothesised in the paper that introduced the Region Occlusion Calculus (Randell et al.,
2001); Fogliaroni et al. (2009) explored a similar idea on a deterministic localisation
algorithm that was further extended in Tassoni et al. (2011) to represent 3D maps of
the environment. The maps used for localisation in the present paper resemble the maps
defined in Fogliaroni et al. (2009) and Tassoni et al. (2011). However, to the best of our
knowledge, the present work is the first working implementation of these ideas within a
probabilistic algorithm and the first to evaluate the resulting localisation procedure on
real robot data.

The qualitative maps based on occlusion (as proposed in this paper) are constructed
with the lines of sight between pairs of landmarks. Taking that literally, we may have to
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Table 2. PP and PQS accuracy results considering the number of objects per image.

#objects per image
Region #im 0 1 2 3 PP(%) PQS(%) PP-n(%) PQS-n(%)

R1 112 0 3 78 31 85.7 84.8 99.1 100.0
R2 115 0 55 60 0 100.0 99.1 100.0 100.0
R3 415 0 3 346 66 96.1 97.1 100.0 100.0
R4 290 0 0 46 244 96.9 96.9 97.6 97.6
R5 101 0 9 87 5 70.3 70.3 76.2 79.2
R6 64 0 64 0 0 71.9 100.0 71.9 100.0
R7 87 0 7 80 0 70.1 70.1 75.9 78.2
R8 1452 0 661 698 93 38.4 38.2 43.9 44.1
R9 194 1 193 0 0 0.0 0.0 0.0 87.1
R10 102 0 4 71 27 92.2 92.2 100.0 100.0
R11 124 0 50 74 0 100.0 100.0 100.0 100.0
R12 91 0 3 30 58 92.3 92.3 100.0 100.0
R13 240 0 0 105 135 91.7 91.7 97.9 97.9
R14 54 0 7 31 16 83.3 83.3 100.0 100.0
R15 162 0 148 14 0 100.0 100.0 100.0 100.0
R16 44 0 7 37 0 84.1 84.1 100.0 100.0
R17 1651 0 577 986 88 52.0 51.8 52.4 52.5
R18 509 0 509 0 0 0.0 0.0 0.0 90.2
R19 46 0 1 15 30 73.9 73.9 84.8 84.8
R20 263 0 103 160 0 76.4 76.4 76.4 76,4
R21 34 0 0 4 30 85.3 97.1 100.0 100.0
R22 52 0 0 0 52 92.3 92.3 100.0 100.0
R23 56 0 3 5 48 87.5 87.5 92.9 94.6
R24 252 0 95 157 0 91.7 92.1 91.7 92.1
R25 64 0 2 32 30 95.3 98.4 98.4 100.0
R26 1970 0 725 1109 136 60.1 62.5 60.5 63.5
R27 503 3 497 3 0 0.0 0.0 0.0 99.4
R28 436 295 141 0 0 0.0 100.0 0.0 100.0

consider, for every pair of landmarks, the combination of diagrams such as that shown in
Figure 3. The tessellation of space generated by this combination, assuming an increasing
number landmarks, would impose a dense map to the algorithm, that may not have
much relation to the high-level, qualitative, knowledge of the world that motivates the
development of this work. Instead, we assume a strategy to select the most salient objects
in the environment as target objects. Thus, not all objects in the environment should
serve as landmarks, but only a selected few objects: those that are relevant to the task
at hand (e.g. a service robot in a warehouse may have to use containers as landmarks),
or that are distinctive features in the environment (e.g. most people navigate around the
city of San Francisco using the relative positions of China Town, Fisherman’s Wharf and
the Ferry Tower). Currently, the map is given as input to the robot (i.e. the landmarks are
selected by the system designer), automatic map building following the ideas presented
here is an open issue.

In short, the localisation procedure developed in this paper is a Bayesian filter, with
appropriate probabilities attached to sensor and transition models. The complexity of
the Bayesian filter iteration is quadratic on the number of possible states (that is, in the
number of distinct regions N). Consider n objects in our environment; for each pair of
objects, we have to consider four lines of sight when we build the relevant regions in our
qualitative map (see Figures 3 and 4 as examples). Now the number of distinct regions
generated by an arrangement of m lines is 1+m+m(m−1)/2 (Stanley, 2004, Section1.1);
to these regions we should add a polynomial (in m) number of possible regions on the
lines themselves. Hence we have a number of regions that is polynomial on the number
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of objects (note that this is an upper bound on the number of regions, because many
regions that are geometrically possible are not used in the qualitative map, as mentioned
in Section 5). In other words, with n objects we have m = O(n2) lines and N = O(m2)
regions; if the Bayesian filter algorithm has complexity in O(N2), it follows that it has
complexity O(n8) with respect to the number n of objects (since O(N2) = O((m2)2) =
O(m4) = O((n2)4) = O(n8)).

The practical implications of this work reside in the fact that the qualitative repre-
sentation of possible robot locations facilitates the definition of robot goals in terms of
high-level relations. Such relations are both easily understandable by a non-expert user,
and directly related to the map of the robot’s environment. Additionally, various robot
tasks do not require a fully defined metrical map, or the exact location of the agent, but
only a relative localisation of the robot with respect to objects in the domain.

The qualitative-probabilistic self-localisation algorithm proposed in this work (called
PQS) was evaluated on data from three distinct runs of a robot around coloured objects
(red, blue and green boxes) disposed around an indoor corridor connecting various offices.
Coloured boxes were chosen as target objects in order to simplify the vision processing
task, whose development towards the perception of more complex target objects was
outside the scope of this paper.

It is worth reiterating whilst the space around the boxes was free to allow manoeuvring,
the robot environment was not completely empty, as there were doors, plants and other
objects located around. Data collection was accomplished with humans moving normally
within the area.

The experimental results presented in the previous section show that the localisation
algorithm was capable of locating the robot in the correct region in most of the images
collected. This is represented by the high accuracy values shown in the main diagonal of
the confusion matrix (Figure 1). It is worth noting that in the majority of the cases where
the algorithm was not capable of providing the exact location, it placed the robot in a
neighbouring region of the actual robot’s location (according to the map in Figure 4). As
mentioned above, these cases were related to positions closer to the border limits of the
regions, where the visual distinction between occlusion relations could not be precisely
captured by the vision system.

We also compared PQS with a deterministic algorithm (PP algorithm, Algorithm 2),
that works by simply comparing the observation with a set of rules relating the robot’s
location with the observation of object’s occlusion. This comparison shows that the
Bayesian filter, applied on qualitative information, was successful in improving the accu-
racy results of the localisation algorithm in regions of high uncertainty (i.e. in locations
where the robot could not observe all the occlusion relations necessary to precisely define
its position in the map).

The perceptual procedure (PP) method is a deterministic algorithm, that works fine
provided that there is enough information to infer a fact (in the present case it infers the
heads of Formulae 1 – 28 provided that the relations in their bodies hold). However, in
the absence of information it fails. In contrast, the Bayesian filter, implemented in the
PQS algorithm, allows the inference of the robot’s position in these situations, since it
takes into account past perceptions and a previous prediction of the current location,
as well as the current perception. This fact is illustrated in Table 3 that relates the
number of target objects observed in the scenes (column “#Objects”) with the accuracy
results for the Perceptual Procedure (column “PP”) and the Probabilistic Qualitative
Self-Localisation algorithm (Column “PQS”) over all regions in the map. In this table we
see that PQS greatly outperforms PP in situations where no object, or only one object,
is present in the scene, whereas both algorithms have similar performances in situations
where more than one object is observed.
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Table 3. Algorithm performance with respect to the number of objects per scene.

#Objects # Images PP (%) PQS (%)
0 299 0.0 70.9
1 3867 11.4 44.1
2 4228 86.8 90.2
3 1089 89.7 99.3

It is worth noting also, from Table 3, that PQS had a better performance in the
situations where no object was observed, than in situations containing only one object.
This is due to the fact that, in the latter situation, the predicted belief was competing
with the hypothesis of “total occlusion”, whereas there were no competing hypotheses
with respect to the former case: the inference was guided mainly by the prediction step
of the Bayesian filter.

9. Conclusion and open issues

This paper developed a novel approach to robot localisation using a qualitative repre-
sentation about spatial relations implemented within a Bayesian filter. Qualitative rep-
resentations, in general, provide a higher-level (compact) abstraction than metric data
that is closer to the human conceptualisation of the world. Therefore, the ultimate aim
of this work is the development of intelligent robot systems capable of reasoning and
interacting on the human environment using common-sense knowledge. This goal was
highlighted in Thrun (2003) as one of the shortcomings of the pure probabilistic algo-
rithms for robotics, and is on the research agenda of the cognitive robotics field (Levesque
and Lakemeyer, 2008; Reiter, 2001). Within this context, the present paper concentrates
on a particular aspect of qualitative space representation, which is one of the key aspects
in robot navigation using vision sensors: the representation of (and reasoning about)
object occlusion.

The main contribution of the work proposed in this paper is providing a higher-level
of representation to complement current Simultaneous Localisation And Map-Building
(SLAM) algorithms in order to leverage human-like knowledge representation and rea-
soning, and thus to provide an intuitive way of handling localisation at a level of abstrac-
tion closer to the human categorisation of space. This is a step toward a more effective
interaction between humans and robots. We do not claim that the algorithm investigated
in this paper outperforms traditional localisation techniques on metric, topological or se-
mantic maps. Rather than comparing the algorithm proposed in this work with current,
numerical, methods for localisation, we intend to combine both approaches in order to
use the high-precision of the numerical methods with our localisation procedure based
on a qualitative way of representing the world. This is a task for future investigations.

We are also currently investigating extensions of the ideas presented in this paper to-
wards the representation of a 3D map that could be used by a flying agent (such as
a quadrotor). To this end, there is the need to consider other modalities of qualitative
relations in the underlying theory, such as relations about direction or shape. The devel-
opment of a more robust object recognition module, so that general objects could be used
as targets, is also in order. Although the environment in which the robot was immersed
was not static (as there were people moving in the corridor) the target objects did not
move. Relaxing this constraint is also an issue for future investigations.

We believe that the approach described in this paper could be used within a com-
plete SLAM algorithm, so that the whole qualitative map could be learned from the
observations of the robot around the environment. This is another issue for future work.
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