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Backward Fuzzy Rule Interpolation
Shangzhu Jin, Ren Diao, Chai Quek, Senior Member, IEEE, and Qiang Shen

Abstract—Fuzzy rule interpolation offers a useful means to en-
hancing the robustness of fuzzy models by making inference pos-
sible in sparse rule-based systems. However, in real-world appli-
cations of interconnected rule bases, situations may arise when
certain crucial antecedents are absent from given observations.
If such missing antecedents were involved in the subsequent in-
terpolation process, the final conclusion would not be deducible
using conventional means. To address this important issue, a new
approach named backward fuzzy rule interpolation and extrapo-
lation (BFRIE) is proposed in this paper, allowing the observations,
which directly relate to the conclusion to be inferred or interpo-
lated from the known antecedents and conclusion. This approach
supports both backward interpolation and extrapolation which in-
volve multiple fuzzy rules, with each having multiple antecedents.
As such, it significantly extends the existing fuzzy rule interpola-
tion techniques. In particular, considering that there may be more
than one antecedent value missing in an application problem, two
methods are proposed in an attempt to perform backward in-
terpolation with multiple missing antecedent values. Algorithms
are given to implement the approaches via the use of the scale
and move transformation-based fuzzy interpolation. Experimen-
tal studies that are based on a real-world scenario are provided to
demonstrate the potential and efficacy of the proposed work.

Index Terms—Backward interpolation, fuzzy rule interpolation
(FRI), missing antecedents, transformation-based interpolation.

I. INTRODUCTION

FUZZY rule interpolation (FRI) was originally proposed
in [28] and [29]. It is of particular significance for reasoning

in the presence of insufficient knowledge or sparse rule bases.
When a given observation has no overlap with antecedent values,
no rule can be invoked in classical fuzzy inference, and therefore,
no consequence can be derived. A number of important interpo-
lation approaches have been proposed in the literature, includ-
ing [1], [7], [10], [13], [19]–[21], [27], [30], [43], [50]–[53],
most of which can be categorized into two classes with several
exceptions (e.g., type-II fuzzy interpolation [8], [9], [34]).

The first category of approaches directly interpolates rules
whose antecedents match the given observation. The conse-
quence of the interpolated rule is thus the logical outcome.
Typical approaches in this group [28], [29], [44] are based on
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Fig. 1. System structure that may benefit from BFRIE.

the use of α-cuts (α ∈ (0, 1]). The α-cut of the interpolated con-
sequent fuzzy set is calculated from the α-cuts of the observed
antecedent fuzzy sets, and those of all the fuzzy sets that are
involved in the rules used for interpolation. Having found the
consequent α-cuts for all α ∈ (0, 1], the consequent fuzzy set is
then assembled by applying the Resolution principle.

The second category is based on the analogical reasoning
mechanism [6]. Such approaches first interpolate an artificially
created intermediate rule so that the antecedents of the interme-
diate rule are similar to the given observation [1]. Then, a con-
clusion can be deduced by firing this intermediate rule through
analogical reasoning. The shape distinguishability between the
resulting fuzzy set and the consequence of the intermediate rule
is then analogous to the shape distinguishability between the
observation and the antecedent of the created intermediate rule.
In particular, the scale and move transformation-based approach
(T-FIR) [20], [21] offers a flexible means to handle both inter-
polation and extrapolation involving multiple multiantecedent
rules.

Despite the numerous approaches developed, FRI techniques
are relatively rarely applied in practice [32]. One of the main
reasons for this is that many applications involve multiple-input
and multiple-output problems. The rules are typically irregular
in nature (i.e., not always addressing the same antecedents). In
particular, rules may be arranged in an interconnected mesh,
where observations and conclusions in between different sub-
sets of rules could be overlapped, and yet not directly related
throughout the entire rule base. For such complex systems, any
missing values in a given set of observations may lead to fail-
ure in interpolation. In Fig. 1, Ri, i = 1, . . . , n form the rule
base, including interpolated rules, and xp, xq , p, q = 1, . . . ,m
are the variables covering antecedents and consequence. Ai

q (q =
1, . . . ,m, i = 1, . . . , n) is the fuzzy set on the qth dimension,
which is included in the ith rule. The final conclusion Bn of
rule Rn cannot be interpolated straightforwardly, because the

1063-6706 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Hierarchical fuzzy reasoning structure for terrorist bombing threat.

three missing observations An
p , An

r , and An
m cannot be deduced

by conventional means.
For instance, consider a practical scenario in detecting terror-

ist bombing threats. The Explosion likelihood may be directly
related to the Crowdedness of a place and the Safety precau-
tions. The number of people in an area may be affected by the
Popularity of the place, the level of Travel convenience, and the
amount of Safety precautions. A hierarchical structure for this
scenario is shown in Fig. 2. For traditional forward interpolative
reasoning, in order to interpolate Explosion likelihood, the ob-
served values for Crowdedness and Safety precautions must be
both provided. The variable Safety precautions is particularly
important, as without it, no matter what other information is
available, forward interpolation would still fail. Therefore, the
interpolation of such crucial missing values may become nec-
essary, in order to allow required inferences to be performed.

To address such problems, this paper proposes a novel ap-
proach termed backward fuzzy rule interpolation (BFRIE) by
substantially expanding and refining the initial preliminary work
of [23] and [24]. This approach enables unknown antecedent
values to be interpolated, given other antecedents and the con-
clusion. Using the earlier example of Fig. 1, the unknown an-
tecedents An

p and An
r can be backward interpolated according

to rules Rj and Ri , where the conclusions Bj , Bi , and the
other terms are known. The last missing antecedent value An

m

can then be interpolated using R1 , and subsequently, Bn can
also be computed, as now all required antecedents are known
to perform forward interpolation. As such, the proposed tech-
niques support flexible interpolation when certain antecedents
are missing from the observation, where traditional FRI meth-
ods fail. In addition, BFRIE also enables indirect interpolative
reasoning, which involves several fuzzy rules, each with mul-
tiple antecedents. Therefore, it offers a means to broaden the
application of FRI and fuzzy inference.

General BFRIE (with multiple missing antecedent values) is
common in practical problems such as medical diagnosis [16],
network intrusion detection [42], oil exploration [49], and in-
telligence data analysis [4]. To address this challenging issue,
two methods are developed. The first directly extends the single
missing antecedent case, by computing and searching for good
quality parameter combinations for the T-FIR process. The sec-
ond approach works more closely with conventional FRI pro-
cedures by estimating the possible missing antecedent values
and, subsequently, verifying the interpolative outcome against
the observation.

The remainder of this paper is organized as follows.
Section II reviews the general concepts of T-FIR, which is

adopted to implement the subsequent developments. Section III
introduces the basic form of BFRIE that deals with one
single missing antecedent value, along with worked examples.
Section IV presents two possible extensions that support
the scenarios where multiple antecedent values are missing.
Section V describes a real-world application to demonstrate
the efficacy of the proposed approach. Systematic randomized
experiments are also conducted in order to better compare
and verify the accuracies of the proposed methods. Section VI
concludes the paper and suggests future enhancements.

II. BACKGROUND OF TRANSFORMATION-BASED

INTERPOLATIVE REASONING

This section introduces the interpolation procedures involved
in T-FIR [21], and defines its underlying key concepts. T-FIR
offers a flexible means to handling both interpolation and ex-
trapolation involving multiple multiantecedent fuzzy rules. It
guarantees the uniqueness, normality, and convexity of the re-
sulting fuzzy sets. It is also able to handle various fuzzy set rep-
resentations, including polygonal, Gaussian, and bell-shaped
fuzzy membership functions. However, triangular and trape-
zoidal membership functions are the most frequently used fuzzy
set representations in fuzzy systems. Therefore, they are adopted
in the algorithm description below.

A key concept used in T-FIR is the representative value
Rep(A) of a given fuzzy set A. When trapezoidal represen-
tation is used, Rep(A) is defined as the center of gravity of its
four points (a0 , a1 , a2 , a3)

Rep(A) =
a0 + a1 +a2

2 + a3

3
(1)

where a0 , a3 represent the left and right extremities (with mem-
bership values 0), and a1 , a2 denote the normal points (with
membership value 1), as shown in Fig. 3(a).

As a specific case of trapezoids, where a1 and a2 are col-
lapsed into a single value a1 , the fuzzy set becomes a triangular
set (a0 , a1 , a2). In particular, the corresponding Rep(A) degen-
erates to the average value of the triple, as given below and
shown in Fig. 3(b)

Rep(A) =
a0 + a1 + a2

3
. (2)

In the following, the T-FIR method is outlined using trapezoidal
fuzzy sets unless otherwise stated.
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(a)

(b)

Fig. 3. Representative values of fuzzy sets. (a) Trapezoidal. (b) Triangular.

A. Determination of the Closest Rules

In this paper, given a rule base U , a fuzzy rule R ∈ U with
M antecedents Ak , k = 1, 2, . . . ,M , and an observation O are
expressed in the following format:

R: IF x1 is A1 , . . ., and xk is Ak , . . ., and xM is AM , THEN
y is B

O: A∗
1 , . . . , A∗

k , . . . , A∗
M .

The distance d between a rule and an observation is de-
termined by computing the aggregated distance of all the an-
tecedent variables

d =

√
√
√
√

M∑

k=1

d(Ak ,A∗
k )2 , d(Ak ,A∗

k ) =
d(Rep(Ak ), Rep(A∗

k ))
rangeAk

(3)
where rangeAk

= maxAk
− minAk

is the domain range of the
variable xk . d(Ak ,A∗

k ) ∈ [0, 1] is the normalized result of the
otherwise absolute distance measure so that distances are com-
patible with each other over different variable domains. The
N (N ≥ 2) rules which have the least distance measurements
with regard to the observed values A∗

k , and the conclusion B∗,
are then chosen to be used in the later steps. To help explain,
assume that the observation O and a certain set of closest rules
Ri, i = 1, . . . , N,Ri ∈ U that are returned by this step are rep-
resented as follows:

O: A∗
1 , . . . , A∗

k , . . . , A∗
M

Ri : IF x1 is Ai
1 , . . ., and xk is Ai

k , . . ., and xM is Ai
M , THEN

y is Bi.

B. Construction of the Intermediate Rule

Let the normalized displacement factor ωAi
k

denote the
weight of the kth antecedent of Ri

ωAi
k

=
ω′

Ai
k

∑N
i=1 ω′

Ai
k

, ω′
Ai

k
= 1/d(Ai

k , A∗
k ). (4)

The intermediate fuzzy terms A†
k that are to be used to build the

required intermediate rule are constructed from the antecedents
of the N closest rules. These are then shifted to A′

k such that
they have the same representative values as those of A∗

k

A′
k = A†

k + δAk
rangeAk

, A†
k =

N∑

i=1

ωAi
k
Ai

k (5)

where the coordinates of the new fuzzy set A†
k are calculated on

a point-by-point basis, and δAk
is the bias between A∗

k and Ak
′

on the kth variable domain

δAk
= d(A∗

k , A†
k ). (6)

Similar to (5), the shifted intermediate consequence B′ can
be computed, with the parameters ωB i and δB being aggregated
from the corresponding values of Ak

′, such that

B′ =
N∑

i=1

ωB i Bi + δB rangeB

ωB i =
1
M

M∑

k=1

ωAi
k
, δB =

1
M

M∑

k=1

δAk
. (7)

C. Scale Transformation

For each antecedent variable of the N chosen rules, the scale
transformation works by calculating two scale rates sAk

and
sAk

. The support (a′
0 , a

′
3) of the corresponding shifted fuzzy

set A′ is transformed into a new support (a′′
0 , a

′′
3), and the core

(a′
1 , a

′
2) is transformed into another (a′′

1 , a
′′
2), such that

sAk
=

a′′
3 − a′′

0

a′
3 − a′

0
(8)

and

sAk
=

a′′
2 − a′′

1

a′
2 − a′

1
. (9)

This leads to a scaled fuzzy set A′′
k = (a′′

0 , a
′′
1 , a

′′
2 , a

′′
3). The cor-

responding parameters sB and sB of fuzzy set B∗ can be calcu-
lated as follows:

sB =
1
M

M∑

k=1

sAk
sB =

1
M

M∑

k=1

sAk
. (10)

To maintain the convexity of a scaled fuzzy set, it is necessary
to ensure that the scaled support is wider than the core. For this,
the following scale ratioS is applied, which represents the actual
increase of the ratios between the core and the support

S =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a ′
2 −a ′

1
a ′

3 −a ′
0
− a2 −a1

a3 −a0

1 − a ′
2 −a ′

1
a ′

3 −a ′
0

, if s ≥ s ≥ 0, S ∈ [0, 1]

a ′
2 −a ′

1
a ′

3 −a ′
0
− a2 −a1

a3 −a0

a ′
2 −a ′

1
a ′

3 −a ′
0

, if s ≥ s ≥ 0, S ∈ [−1, 0].

(11)
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Then, the sB of consequence B∗ is relevant to scale ratio S

sB =

⎧

⎨

⎩

sBS

sB
− sBS + sB , if sB ≥ sB ≥ 0

sBS, if sB ≥ sB ≥ 0.

(12)

Note that for triangular fuzzy sets, the support (a′
0 , a

′
2) of the

shifted fuzzy set A′ is transformed into a new support (a′′
0 , a

′′
2),

such that the scale rate sAk
is calculated as follows:

sAk
=

a′′
2 − a′′

0

a′
2 − a′

0
. (13)

D. Move Transformation

In general, for multiple antecedent rules, each variable di-
mension has its own move rate mAk

, in order to move each of
the scaled fuzzy sets A′′

k to new locations that coincide with
those of the originally observed values. This allows the initially
constructed intermediate fuzzy terms to completely transform.
The final transformed fuzzy sets then match the exact shapes of
the observed values A∗

k . Without losing generality, for a given
scaled intermediate fuzzy term A′′

k = (a′′
0 , a

′′
1 , a

′′
2 , a

′′
3), its current

support (a′′
0 , a

′′
3), and core (a′′

1 , a
′′
2) can be moved to (a0 , a3) and

(a1 , a2), using a move rate mAk
that is calculated as follows:

⎧

⎪⎪⎨

⎪⎪⎩

mAk
=

3(a0 − a′′
0)

a′′
1 − a′′

0
, a0 ≥ a′′

0

mAk
=

3(a0 − a′′
0)

a′′
3 − a′′

2
, otherwise.

(14)

Similar to the scale transformation, the move rate mB for the
consequent dimension can be calculated by obtaining the arith-
metic average of those of the antecedent variables, such that

mB =
1
M

M∑

k=1

mAk
. (15)

The final interpolated result B∗ can now be computed by apply-
ing the scale and move transformation to B′, using the resulting
parameters sB , sB , and mB . Note that for triangular fuzzy sets,
obviously, the right and center points a′′

2 and a′′
1 are used (instead

of a′′
3 and a′′

2), when computing the move ratio according to (14),
in the case of a0 ≤ a′′

0 .

III. BACKWARD FUZZY RULE INTERPOLATION AND

EXTRAPOLATION WITH SINGLE MISSING ANTECEDENT VALUE

BFRIE with single missing antecedent value (S-BFRIE) is
proposed for interpolation involving situations where the con-
sequent value is known and the values of all but one antecedent
variable are also given. The task is to estimate the value of that
single unknown antecedent. Without losing generality, suppose
that a conventional FRI is represented as follows:

B∗ = fFRIE((A∗
1 , . . . , A

∗
l , . . . , A

∗
M ), (Ri, i = 1, . . . , N))

(16)
where fFRIE denotes the interpolation/extrapolation process
from M observed values, using a set of selected rules Ri, i =
1, . . . , N , that are closest to {A∗

l |l = 1, 2, . . . ,M}, and B∗ is
the interpolated conclusion. S-BFRIE can then be defined in the

following form:

A∗
l = fS-BFRIE((B∗, A∗

1 , . . . , A
∗
l−1 , A

∗
l+1 , . . . , A

∗
M )

(Ri, i = 1, . . . , N)) (17)

where fS-BFRIE denotes the entire process of obtaining A∗
l , the

unknown (or required) observation, which is to be backward
interpolated. It uses the N closest rules, with regard to the
observed (or predicted) values from the (M − 1) antecedents
and the conclusion B∗.

A. Proposed Approach

A close examination of the T-FIR algorithm reveals that, in
order to successfully backward interpolate the missing value,
a number of closest rules need to be identified first. All of the
parameters that are involved in T-FIR (for trapezoidal fuzzy sets)
ω, δ, s, s, S, and m also need to be computed for the known
antecedent variables, and now observed consequent variable.
The acquisition of these essential parameters allows a possible
transformation process to be derived, which then helps to restore
the missing antecedent value. The proposed S-BFRIE algorithm
that reflects this intuition is summarized below.

1) Determination of the Closest Rules: In reference to
the earlier definition of the S-BFRIE process in (17), when
B∗, (A∗

1 , . . . , A
∗
l−1 , A

∗
l+1 , . . . , A

∗
M ) are given, in order to inter-

polate/extrapolate the unknown antecedent A∗
l , the discovery

of the closest rules Ri, i = 1, . . . , N , are required. Instead of
using the distance measure that is introduced in (3), a modified
scheme is proposed in order to reflect the biased consideration
toward the consequent variable (as per the intuition indicated
previously)

d =

√
√
√
√wB dB

2 +
M∑

k=1,k �= l

(wAk
dAk

2). (18)

In implementing S-BFRIE, without sufficient expert knowledge
on the relative level of significance of different antecedents, all
antecedents are treated equally

wB =
M∑

k=1

wAk
= 1, wA 1 = wAk

= wAM
=

1
M

. (19)

Note that in choosing the closest rules, the square root used in
the original distance measure becomes unnecessary, as only the
ordering information is needed. Therefore, the distance calcu-
lation can be simplified to

d̂ = dB
2 +

1
M

M∑

k=1,k �= l

dAk

2 . (20)

2) Construction of the Intermediate Fuzzy Terms: To
help explain, assume a certain set of closest rules Ri, i =
1, . . . , N,Ri ∈ U that are returned by the previous distance
calculation. Following the original T-FIR algorithm, in order
to create the intermediate (shifted) fuzzy terms for the known
antecedent variables: A′

k , k = 1, . . . ,M, k �= l, the following
parameters wAi

k
, i = 1, . . . , N , and δAk

need to be computed
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first according to (4)–(6). The parameter values for the interme-
diate (shifted) consequent fuzzy term B′: wB i , i = 1, . . . , N ,
and δB can be computed using exactly the same formulae as
those of Ak , since its value B∗ is also directly observed.

The formulae given in (7), although no longer needed in this
scenario, reveal that both wB i and δB are algebraic averages
of the parameter values from individual antecedent terms. For
instance, if Al were not missing, ωAi

l
would become part of

the sum: ωB i = 1
M

∑M
k=1 ωAi

k
in (4). Thus, it has an intuitive

appeal to assume that, when backward interpolating a certain
parameter value for Al , say ωAi

l
, the parameter value that is

associated with the consequent variable ωB i should be treated
with a biased weight, which is the sum of all antecedent weights.
The parameter values for the missing antecedent such as ωAi

l
are

then calculated by subtracting those of the known antecedents
from that of the consequent as follows:

ωAi
l
= MωB i −

M∑

k=1,k �= l

ωAi
k
. (21)

Following the same logic, ωAl
can be obtained

δAl
= MδB −

M∑

k=1,k �= l

δAk
. (22)

The acquisition of these parameter values allow the construc-
tion of the intermediate (shifted) fuzzy term A′

l for the missing
antecedent dimension, similar to (5) and (7)

A′
l = A†

l + δAl
rangeAl

, A†
l =

N∑

i=1

ωAi
l
Ai

l . (23)

Note that according to the characteristics of the T-FIR algo-
rithm, this shifted fuzzy term A′

l also determines the represen-
tative value of the final interpolation output A∗

l , since the later
transformations will not alter Rep(A′

l).
3) Scale and Move Transformation: Having obtained the

intermediate (shifted) fuzzy terms, the essential parameters
sAl

, sAl
(or a single scale rate sAk

for triangular representa-
tion), and mAl

that are involved in the transformation process
can be derived. Following the same intuition and computational
steps as those for wAi

k
, i = 1, . . . , N , and δAl

, by reversing the
forward transformation procedure that is introduced in (10) and
(15), the required values can be found as follows:

sAl
= MsB −

M∑

k=1,k �= l

sAk
(24)

sAl
= MsB −

M∑

k=1,k �= l

sAk
(25)

mAl
= MmB −

M∑

k=1,k �= l

mAk
(26)

where sB , sB , and mB are immediately obtainable by resolving
(8), (9), and (14). Note that to guarantee the transformed fuzzy
sets to be convex, sAl

should be fixed in terms of the scale ratio

SAl
:

SAl
= MSB −

M∑

k=1,k �= l

SAk
(27)

where SAl
is the fixed scale ratio of Al, SB is the scale ratio of

consequent dimension B, and SAk
is the scale ratio of Ak , k =

1, 2, . . . ,M, k �= l

sAl
=

⎧

⎨

⎩

sAl
SAl

sAl

− sAl
SAl

+ sAl
, if sAl

≥ sAl
≥ 0

sAl
SAl

, if sAl
≥ sAl

≥ 0.
(28)

Finally with all parameters acquired, the transformation on
A′

l can be performed, resulting in the (backward) interpolated
value A∗

l

T (A′
l , A

∗
l ) = {sAl

, sAl
,SAl

,mAl
}. (29)

B. Worked Examples

This section provides three worked examples of the proposed
BFRIE approach. For each of these, the value of the consequent
variable is obtained by utilizing the T-FIR method (following the
forward FRI procedure of [21]), using randomly chosen values
for the antecedent variables. The “missing” value is then (pur-
posefully) removed from the observation, allowing the applica-
tion of BFRIE. The aim of running these examples is twofolded:
1) to demonstrate the correctness of the BFRIE method, i.e., the
proposed procedure can indeed restore the originally observed
value (with an acceptable degree of error), and 2) to show that
the proposed distance measure is effective in identifying rele-
vant rules in order to perform interpolation (noting that the rules
that are involved in the initial generation process may, or may
not be selected).

Example 3.1: S-BFRIE With Trapezoidal Fuzzy Sets
This example illustrates S-BFRIE involving multiple multi-

antecedent rules, where the variable values are represented by
trapezoidal membership functions. The observation and the four
closest rules are given in Table I and Fig. 4 (while the subprocess
of selecting the closet rules is omitted because it is a straight-
forward application of (18) to the sparse rule base). Here, A∗

3 is
the missing antecedent, which is to be inferred.

1) Construction of the Intermediate Fuzzy Terms: As ex-
plained in Section III-A2, the normalized weights of the
antecedents and observed conclusion are derived accord-
ing to (4), their values are shown in Table II. The pa-
rameters for the missing observation ωAi

3
, i = 1, 2, 3, 4,

can then be calculated using (21), resulting in: ωA 1
3

=
0.04, ωA 2

3
= 0.70, ωA 3

3
= 0.06, ωA 4

3
= 0.19. From this,

the intermediate fuzzy set A†
3 = (3.39, 4.43, 5.14, 5.60)

can be obtained according to (22). Then, the bias δA 3 be-
tween A∗

3 and A†
3 is calculated using (22), which has a

value very close to 0 for this particular case, indicating
that no further shifting is necessary. Therefore, the value
of the shifted fuzzy term A′

3 = (4.19, 5.21, 5.90, 6.49) can
be obtained from (5), which has the same representative
value as A∗

3 .
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TABLE I
FOUR CLOSEST RULES FOR OBSERVATION

Fig. 4. Example of B-FRI with multiple antecedents.

TABLE II
NORMALIZED WEIGHTS OF GIVEN ANTECEDENTS

2) Scale and Move Transformation from A′
3 to A∗

3: The indi-
vidual scale and move parameters are calculated according
to (8)–(15), resulting in sB = 1.34, sB = 0.71, mB =
0.32. The scale ratio SB ∗ = 0.47 is obtained using a
formula similar to (27). Similarly, the relevant parame-
ters sAk

, sAk
,mAk

of antecedents A∗
1 , A

∗
2 , A

∗
4 can be ob-

tained. Following this and using (24)–(27), it can be cal-
culated that sA 3

= 1.08, sA 3 = 0.76, mA 3 = −0.28, and
SA 3 = 0.70. The scaled fuzzy term A′′

3 is then computed
to be (4.07, 5.32, 5.84, 6.57). Finally, the transformed
A∗

3 = (4.01, 5.46, 5.98, 6.50) can be obtained, which is
the estimated missing value for x3 .

TABLE III
TWO CLOSEST RULES FOR OBSERVATION

Fig. 5. Example of S-BFRIE with triangular and singleton fuzzy sets.

3) Verification: The result of BFRIE can be verified by per-
forming the conventional T-FIR, using the reconstructed
observation involving A∗

3 . Applying forward interpolation
results in the conclusion, B∗ = (5.46, 6.51, 6.85, 8.71),
Rep(B∗) = 6.95. This is consistent with the given ob-
served conclusion (5.50, 6.50, 7.00, 8.70), which has a
representative value of 6.98.

Example 3.2: S-BFRIE With Triangular Fuzzy Sets and Sin-
gleton values

To further demonstrate the generality of the proposed ap-
proach, this example illustrates S-BFRIE that involves multiple
antecedent variables with triangular membership functions and
singleton values. The two adjacent rules, which involve single-
ton fuzzy sets, are given in Table III and Fig. 5, with the obser-
vation being A∗

1 = (4, 5, 6), A∗
2 = (5, 6, 7), B∗ = (10, 11, 13).



1688 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 22, NO. 6, DECEMBER 2014

TABLE IV
THREE CLOSEST RULES FOR OBSERVATION

1) Construction of the Intermediate Fuzzy Terms: The pa-
rameters for the consequent dimension ωB i are calculated
according to (4); ωB 1 = 0.57, ωB 2 = 0.43. The param-
eters for the missing observation can then be calculated
using (21); ωA 1

3
= 0.65, ωA 2

3
= 0.35, and the intermedi-

ate fuzzy set A†
3 = (5.75, 6.10, 6.45) can be obtained with

respect to (22). From this, using (5) and (22), the follow-
ing can be obtained: δA 3 = 0.0, and the shifted fuzzy set
A′

3 = (5.75, 6.10, 6.45).
2) Scale and Move Transformation From A′

3 to A∗
3: The in-

dividual scale and move parameters can be calculated ac-
cording to (13) and (14), resulting in sB = 1.73, mB =
0.33. From (24) and (26), it is computed that sA 3 = 1.71
and mA 3 = 0.75. The scaled fuzzy term A′′

3 is therefore
(5.50, 6.10, 6.70). Finally, according to (29), the trans-
formed A∗

3 = (5.65, 5.80, 6.85) can be obtained.
Again, the result can be validated by performing the conven-

tional T-FIR using the obtained A∗
3 , resulting in the conclusion

being (9.99, 11.00, 12.99), which is consistent with the given
observed conclusion (10, 11, 13).

Example 3.3: Backward Fuzzy Rule Extrapolation
Extrapolation is a special case of interpolation, when all of the

closest rules chosen lie on one side of the hyperplane in which
the given observation is a certain point. Determining the closest
rules and constructing the intermediate rule are carried out in
the same way as those for interpolation. The example below
outlines the key steps in the process of backward fuzzy rule
extrapolation. Suppose that the observation and the three closest
rules as given in Table IV and Fig. 6 are used for extrapolation,
where all rules lie on the right side of the observation. In this
example, A∗

2 is the missing antecedent that is to be extrapolated.
1) Construction of the Intermediate Fuzzy Terms: The nor-

malized weights associated with the observed antecedents
and conclusion are listed in Table V. The parameters
for the missing observation ωAi

2
, i = 1, 2, 3 can then

be calculated using (21) such that ωA 1
2

= 0.56, ωA 2
2

=
0.27, ωA 3

2
= 0.17, and the intermediate fuzzy set A†

2 =
(5.82, 6.82, 7.82, 8.82) can be obtained according to (22).
Then, the bias δA 2 between A∗

2 and A†
2 is calculated by

(22), δA 2 = −0.21. The shifted fuzzy term A′
2 which has

the same representative value as A∗
2 , can be obtained from

(5): A′
2 = (2.73, 3.73, 4.73, 5.73).

2) Scale and Move Transformation From A′
3 to A∗

3: The
individual scale and move parameters are calculated
with respect to (8)–(15), resulting in sB = 0.64, sB =
0.59, mB = −0.61. The scale ratio SB ∗ = 0.09 is ob-
tained according to (27). Similarly, the relevant param-
eters sAk

, sAk
,mAk

of antecedents A∗
1 , A

∗
3 can be ob-

Fig. 6. Example of backward fuzzy rule extrapolation with multiple multi-
antecedent rules.

TABLE V
NORMALIZED WEIGHTS OF THE KNOWN ANTECEDENTS

tained. In particular, using equations similar to (24)–(27),
it follows that sA 2

= 0.40, sA 2 = 0.50, mA 2 = −0.91,
and SA 2 = −0.04. The scaled fuzzy term A′′

2 can then be
computed: (3.27, 3.94, 4.52, 5.19). Finally, the required
A∗

2 = (3.14, 4.21, 4.79, 5.05) is obtained by performing
the transformation.

Note that as with the previous illustrative cases for interpola-
tion, the above-extrapolated result can be verified to match well
with the observation.

IV. BACKWARD FUZZY RULE INTERPOLATION AND

EXTRAPOLATION WITH MULTIPLE MISSING ANTECEDENTS

For practical applications, there are often more than one an-
tecedent with missing values. Therefore, the question about how
to perform BFRIE with multiple missing values is raised. This
section presents two approaches that attempt to address this
issue: 1) the parametric approach (see Section IV-A), which
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directly extends the S-BFRIE method but involves a higher
computational complexity, and 2) the feedback approach (see
Section IV-B), which is a more generalized method that works
more closely with conventional FRI procedures.

A. Parametric Approach

1) Problem Analysis: The key to solving general BFRIE
problems, following the principles of the S-BFRIE method, lies
with the calculation of the best T-FIR parameter combination,
which leads to the closest resemblance of the original (missing)
values. In particular, to create the intermediate fuzzy terms that
are based on the N closest rules, the following set of parameters:

{(ωAi
l
, i = 1, 2 . . . , N), δAl

, sAl
, sAl

,mAl
} (30)

of cardinality N + 4 is required to backward interpolate each
missing antecedent A∗

l , given trapezoidal representation. Here,
l ∈ L, L ⊆ {1, . . . , M}, denote the indices of the missing an-
tecedents A∗

l . Taking parameter for bias, δAl
as an example, the

following constraint needs to be satisfied:

∑

l∈L

δAl
= MδB −

M∑

k=1,k /∈L

δAk
(31)

which is an extended form of (22) that is used in S-BFRIE.
Similar formulae for the remaining parameters may also be
derived in the exact same fashion, altogether forming multiple
simultaneous equations to be resolved.

Note that apart from those determined by the aforemen-
tioned equations, by definition, these parameters also take val-
ues from their underlying ranges: ω ∈ [0, 1], δ ∈ [−1, 1], sAl

∈
[0,∞), sAl

∈ [0,∞), and m ∈ [−1, 1]. Thus, these ranges need
to be discretized in order to generate the required parameter
combinations. In assessing the performance of the estimation,
the conventional T-FIR procedure can then be invoked to ver-
ify the correctness and accuracy. This is done by comparing
the output (using the estimated parameters) with the actual ob-
served consequent value so that the most suitable setting may
be identified.

After all of the parameters are acquired, in theory, the missing
antecedents may be expected to be individually derived using
the previously described S-BFRIE steps. Unfortunately, the set
of simultaneous equations cannot be resolved in a straightfor-
ward manner, due to the lack of sufficient given values. This is
because different observations may potentially lead to the same
(or very similar) consequent, for any system of a fair complexity.
As the number of missing antecedent values increases, the pos-
sible scenarios may become extremely wide-reaching or even
countless.

From a theoretical point of view, the complexity of this ap-
proach mainly comes from the high number of possible pa-
rameter combinations (ω, δ, s, s, and m), all nonindependent.
The weight ω, in particular, is calculated with regard to all
|L| missing antecedents and all N closest rules, thus having a
considerably high complexity O(υN |L |). Here, υ ∈ N+ , υ > 1,
signifies the number of discretized intervals that are used to
generate the possible parameter combinations. Higher υ pro-
duces finer intervals and allows closer estimations to the actual

Fig. 7. Flowchart of the parametric approach.

values. The discretizations of the other four parameters: δ, s, s,
and m all have the same computational complexity of O(υ|L |).
Therefore, the overall computational complexity of generating
these combinations is O(υ(N +4)|L |), which is prohibitive for
large υ, N , and |L|. The situation worsens if the verification
of every possible parameter combination is required in order
to validate that the estimated transformations indeed produce
reasonable results, and to enable the selection of better (closer)
outputs. The resultant P-BFRIE process will have an overall
cost of O(υ(N +4)|L |) · O(FRI), where O(FRI) stands for the
complexity of the FRIprocess itself.

2) Simplified P-BFRIE for Two Missing Antecedent Values:
Having undertaken the aforementioned analysis of the compu-
tational complexity that theoretical T-FIR involves, practically
simpler methods are necessary. For this, a simplified process
that supports the interpolation of two missing antecedent values
is proposed here, as outlined in Fig. 7. The cost of discretiz-
ing ω is reduced to O(υN ), with an overall time complexity
of O(υN +4) · O(FRI). This simplification takes advantage of
the codependence of the two weights ωAi

l 1
and ωAi

l 2
, associated

with each rule Ri

ωAi
l 1

+ ωAi
l 2

= MωB i −
M∑

k=1,k /∈L

ωAi
k

(32)
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TABLE VI
TWO CLOSEST RULES FOR OBSERVATION

TABLE VII
PARAMETERS FOR ESTIMATING THE MISSING ANTECEDENTS

where one value uniquely determines the other during the dis-
cretization process.

The outcomes of the now more manageable υN +4 parameter
combinations can then be verified through FRI, where a simple
measurement of percentage error εj

% may be used

εj
% = 100 × d(Bj∗, B∗). (33)

Here, the two estimated missing antecedent values Aj∗
l1

and

Aj∗
l2

, backward interpolated through the use of the jth parameter
combination, are employed to obtain a certain Bj∗. The distance
between this estimated consequent and the actual observed con-
sequent B∗ determines the accuracy of the transformations that
have taken place. Finally, the set of Aj∗

l , which corresponds
to the minimal resulting error, is chosen as the desired output,
since it is the best approximation possible given the limited
information, and the amount of discretized intervals employed.

Example 4.1: Table VI lists the observation and the closest
rules chosen according to (20), where x3 and x5 are assumed to
have two missing antecedent values. For this particular example,
if υ = 12 is used to discretize each parameter, the total num-
ber of parameter combinations ω, δ, s, and m is 12(2+4) (with
N = 2), resulting in the same number of pairs of possible Aj∗

3
and Aj∗

5 . The parameters corresponding to the validated conse-
quent with the smallest error εj

% = 0.22% [according to (33)] are
listed in Table VII, where Bj∗ = (12.70, 13.03, 13.63, 14.66).
The final backward interpolative values for the two miss-
ing antecedents are A∗

3 = (2.02, 2.18, 2.40, 2.77) and A∗
5 =

(0.52, 2.17, 3.03, 3.55).

B. Feedback Approach

This section describes an alternative and more intuitive ap-
proach to BFRIE, termed the feedback approach (F-BFRIE). It
significantly reduces the time-complexity for parameter estima-
tion. This is shown in the flowchart of Fig. 8 and illustrated in
Algorithm 1. It works by directly estimating the possible initial
values of the missing antecedents, then validating the resultant
consequent through conventional FRI, in order to identify the
most suitable value combination(s) that lead to the observed
consequent value. For consistency and ease of explanation, as

Fig. 8. Flowchart of the feedback approach.

with P-BFRIE, mechanisms such as T-FIR, discretization of
variable ranges, and the percentage error-based validation are
again used in the implementation.

In order to obtain the initial estimation, the domain ranges
of the missing antecedents themselves (rather than those of the
parameters previously used for P-BFRIE) are discretized into
υ intervals. The resulting crisp points are then used to approx-
imate a total of υ|L | possible value combinations for the miss-
ing antecedent variables {Aj∗

l }, l ∈ L, j = 1, . . . , υ|L |. Assume
a given crisp point cj

l for the lth antecedent variable, (34)–
(36) detail this approximation procedure, which is denoted by
approx(cj

l ) in Algorithm 1
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TABLE VIII
CLOSEST RULES FOR TWO EXAMPLE RECONSTRUCTED OBSERVATIONS Op∗ AND Oq ∗, p, q ∈ 1, . . . , υ |L |

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0
A

j ∗
l

= cj
l −

∑N
i=1(Rep(Ai

l ) − a0Ai
l
)

N
· Δ

a1
A

j ∗
l

= cj
l −

∑N
i=1(Rep(Ai

l ) − a1Ai
l
)

N
· Δ

a2
A

j ∗
l

= cj
l +

∑N
i=1(a2Ai

l
− Rep(Ai

l ))

N
· Δ

a3
A

j ∗
l

= cj
l +

∑N
i=1(a3Ai

l
− Rep(Ai

l ))

N
· Δ

(34)

where

Δ =

N

(
∑M

k=1,k /∈L

a3 A ∗
k
−a0 A ∗

k
∑ N

i = 1

(

a3 A i
k
−a0 A i

k

) + a3 B ∗−a0 B ∗
∑ N

i = 1 (a3 B i −a0 B i )

)

M − |L| + 1

(35)

Δ =

N

(
∑M

k=1,k /∈L

a2 A ∗
k
−a1 A ∗

k
∑ N

i = 1

(

a2 A i
k
−a1 A i

k

) + a2 B ∗−a1 B ∗
∑ N

i = 1 (a2 B i −a1 B i )

)

M − |L| + 1

(36)

where M is the total number of antecedent variables and N is
the number of the closest rules.

To obtain close approximations of the missing values, it is
useful to remember that the estimated fuzzy sets Aj∗

l are in-
fluenced by both the selected rules: Ri, i = 1, . . . , N , and the
observed values A∗

k , k /∈ L and B∗. In particular, for a trape-
zoidal fuzzy set Aj∗

l that may be returned as the estimated out-
come, the positions of its four points are defined relative to
the averaged (over the N closest rules) displacements between
their corresponding points and the representative values of the
fuzzy antecedents Ai

l , i = 1, . . . , N . The points a0Aj ∗
l

and a3Aj ∗
l

are then scaled with respect to the ratio Δ, which is calculated
from the averaged (over the N closest rules and all known an-
tecedent/consequent dimensions) ratios between the supports of

TABLE IX
ERRORS ε% BETWEEN Bp∗, Bq ∗, AND B∗

the observed values, and those of the existing rules. Similarly,
a1Aj ∗

l
and a3Aj ∗

l
are adjusted with respect to Δ.

The υ|L | possible combinations of the fuzzy sets being es-
timated are used to obtain their respective consequent values
Bj∗, j = 1, . . . , υ|L |, through the conventional T-FIR proce-
dure. Note that the closest rules chosen for each of the combina-
tions may be different, since the distance calculation is purely
based on the values of the currently estimated observations. The
percentage error εj

% is then calculated using (33), and the esti-
mated missing antecedent values corresponding to the smallest
εj
% are returned as the final result.

The computational complexity of this approach is princi-
pally due to the generation process of the initial fuzzy sets
O(υ|L |), which is much more scalable than that of P-BFRIE:
O(υ(N +4)|L |). The run-time cost of F-BFRIE is also indepen-
dent of the number of closest rules N , and of course, the over-
head incurred by estimating the T-FIR parameters as required
in P-BFRIE is also eliminated.

Example 4.2: Consider the observation givens in Table VIII,
where the values of x1 , x3 , x5 , and x7 are assumed to be miss-
ing. According to (34), a total of 204 (υ = 20, |L| = 4) possi-
ble value combinations are used to generate the same number
of potential consequent values. Op∗ and Oq∗, which are two
of such combinations obtained in the process and the differ-
ent closest rules chosen using (20) are shown in Table VIII.
After forward interpolation with these approximated fuzzy
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Fig. 9. Causal network model.

sets, the εj
% obtained during this example evaluation is given

in Table IX. The smallest ε% is 0.74%, and the correspond-
ing consequent Bq∗ = (9.74, 10.16, 10.93, 11.08). The resul-
tant estimated outcome of the four missing antecedents A∗

1 =
(1.73, 2.70, 3.57, 3.97), A∗

3 = (2.33, 3.53, 4.51, 5.58), A∗
5 =

(4.73, 5.71, 6.61, 7.44), and A∗
7 = (3.87, 4.65, 5.23, 5.79) is

therefore the final BFRIE result.

V. EXPERIMENTATION AND DISCUSSION

In this section, a practical problem concerning the prediction
of terrorist bombing threats is employed to demonstrate the po-
tential of the proposed study. It shows how the implemented
techniques help to interpolate the final conclusion, when the
system is presented with partial observations, including the re-
flection of interesting characteristics of the proposed study. In
addition, a comparative study of the parametric and feedback
methods is also included, which is systematically conducted
using a randomized numerical problem, in terms of their ap-
proximation accuracy and run-time efficiency.

A. Prediction of Terrorist Bombing Threats

1) Problem Specification and Model Construction: To solve
the puzzle of a serious crime including terrorist attacks from a
set of given evidence, investigators aim to reconstruct the pos-
sible scenarios that may have taken place. The bottleneck of
accomplishing this task is the fact that humans are relatively in-
efficient at hypothetical reasoning, especially when a hierarchi-
cally structured procedure is involved. A fuzzy decision-support
system may assist investigators in generating plausible scenar-
ios and analyzing them objectively [15], [41]. In this paper,
a real-world scenario that involves the prediction of a terror-
ist threat is considered, which is based on a recent study on
suicide bombings [40]. The causal network model used in this
experiment is illustrated in Fig. 9. There are 11 variables in
this problem, denoted as xp, p = 1, 2, . . . , 11, involved in four
subsets of rules.

1) The first subset concerns the Popularity of a place. Main
shopping (x1) and Iconic (x2) indicate whether the loca-
tion is a principal shopping area, or a site of symbolic
value, respectively. Main street (x3) describes how busy
the area may become. The variable Easy access (x4) refers
to the convenience of transportation. These factors jointly
determine the Popularity (x8) of a given location.

Fig. 10. Definition of the linguistic terms for domain variables.

2) The second subset of rules deals with the Warning level
(x9), or the amount of risk to the attackers, which is related
to the number of security Guards (x5) in the area, the
Alertness (x6) of people, and the numbers of Repetitive
attacks (x7) in the past.

3) The third focuses on the prediction of Crowdedness (x10).
The number of people in an area is directly related to the
Popularity of the place, and can also be affected by the
level of Easy access. In addition, the Crowdedness may
change in relation to the Warning level, since cautious
individuals may shy away from places that are considered
dangerous.

4) The fourth and final rule subset is about the Explosion
likelihood (x11), which is in indirect relation to the num-
ber of people in the area. In addition, the amount of public
warning signs displayed in the area may discourage poten-
tial attacks, as people are more alert to the surroundings,
and suspicious individuals or items may be promptly re-
ported. Moreover, terrorists typically target certain places
that repetitively draw their attention, instead of any loca-
tions at random.

A selection of the original rules contained in the rule base
are given in Table X. In this model, fuzziness is naturally ob-
tained from the presence of the linguistic terms that describe the
real-valued domain variables. For simplicity, triangular fuzzy
membership functions are applied in this scenario. Note that
different variables are defined on their own underlying domains.
To simplify knowledge representation, these domains are nor-
malized in this experiment with a range of 0 to 1. The fuzzy
sets that represent the normalized linguistic terms are given in
Fig. 10. It is important to note that the original rule base consists
of substantial gaps, which makes interpolation essential.

2) Work Flow of BFRIE in Action: The set of observations
used in this experiment is given in Table XI, where the values
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TABLE X
EXAMPLE RULES

VL: Very Low, L: Low, ML: Moderate Low, M: Moderate, MH: Moderate High, H: High, VH: Very High.

TABLE XI
OBSERVATIONS

of the antecedent variables Easy access (x4), Guards (x5), and
Warning level (x9 ) are all missing, as well as that of the final con-
sequent x11 to be interpolated. The antecedent variable Warning
level (x9) is of particular importance, since it is involved in two
subsets of rules (for Crowdedness and Explosion likelihood).
Without x9 , no matter what other information is available, even
with the Repetitive attack (x7) and Crowdedness (x10) known,
forward interpolation will still fail.

It is not uncommon for a hierarchical reasoning framework
to have more than one path of inference/interpolation [17], [36].
For this particular set of observations, it is possible to obtain the
value of x9 through two different paths, as shown in Fig. 11.

1) Dotted Path via S-BFRIE:
a) Calculate the value of Easy access (x4) accord-

ing to the given consequence value x8 and the an-
tecedent values x1 , x2 , and x3 , using the subrule

Fig. 11. Example structure for bombing attack prediction.

base Popularity via S-BFRIE. Following the steps
detailed previously, the backward interpolated value
is x4 = (0.42, 0.52, 0.62) (M).

b) Interpolate the value of x9 using the subrule base
Crowdedness. The values of x8 and x10 are directly
observed, and that of x4 is obtained from the pre-
vious step. The three closest rules are then selected
using the consequence-biased distance measure as
per (20). The resulting closest rules with respect to
the observation, and the backward interpolated value
x9 = (0.52, 0.62, 0.72) (MH), are shown in Fig. 12.

c) Use the interpolated value of x9 , and the other
given values for x7 and x10 to forward interpolate
the final consequent variable Explosion likelihood
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Fig. 12. Calculate the Warning level using S-BFRIE.

(x11). This leads to the required final result x11 =
(0.61, 0.71, 0.81) (MH).

2) Dashed Path via P-BFRIE and F-BFRIE
a) Calculate x4 and x9 simultaneously, according to

the given values x8 and x10 , and the subrule
base Crowdedness. By employing the P-BFRIE
approach, the results obtained are x4 = (0.46,
0.56, 0.66) (M) and x9 = (0.51, 0.61, 0.71) (MH).
Alternatively, the results obtained using F-BFRIE
are x4 = (0.43, 0.53, 0.63) (M) and x9 = (0.59,
0.69, 0.79) (MH). Both agree with the pre-
vious results via the use of S-BFRIE: x4 =
(0.42, 0.52, 0.62) (M) and x9 = (0.52, 0.62, 0.72)
(MH).

b) Derive, in a manner similar to the dotted
path above, the value of the final consequent
variable x11 = (0.58, 0.68, 0.78) (MH) (according
to P-BFRIE: x9 = (0.51, 0.61, 0.71)) and x11 =
(0.56, 0.66, 0.76) (MH) (according to F-BFRIE:
x9 = (0.59, 0.69, 0.79)). The errors ε% between the
result of the dotted path (x11 = (0.61, 0.71, 0.81))
and these are 3.0% and 5.0%, respectively. This
demonstrates that both processing paths are feasi-
ble for dealing with this problem.

3) Note that after the aforementioned interpolation process,
the last remaining missing value for Guards (x5), although
no use in this particular prediction application, can also be
backward interpolated. In particular, by using the observed
values of x6 and x7 , and the interpolated value of x9 , the

TABLE XII
OBSERVATION USED FOR THE INVESTIGATION OF MULTIPLE POSSIBLE

OUTCOMES

result of x5 = (0.28, 0.38, 0.48) (ML) can be obtained via
the use of subrule base Warning level.

3) Practical Significance of BFRIE: In real applications, it
is often difficult to predict and adjust the Warning level until
(suicide) bombing attacks have actually occurred or prevented.
However, with BFRIE, the Warning level may now be estimated
from the other related factors. This may significantly increase
the effectiveness of the predication and prevention of bombing
attacks. However, Easy access and Guards are controllable ele-
ments which may be adjusted in order to minimize the Explosion
likelihood.

In order to reduce the Explosion likelihood (x11) from
(0.61, 0.71, 0.81) (MH) say, to (0.30, 0.40, 0.50) (ML), accord-
ing to the proposed P-BFRIE method, the value of Easy access
(x4) needs to be changed from the current (0.42, 0.52, 0.62) (M)
to (0.23, 0.33, 0.43) (ML), and similarly, Warning level (x9)
from the current (0.52, 0.62, 0.72) (MH) to (0.74, 0.83, 0.94)
(H), and Guards (x5) from the current (0.28, 0.38, 0.48) (ML)
to (0.54, 0.64, 0.74) (MH). Thus, with the use of the proposed
reverse reasoning technique to interpolate the crucial variables,
the risk of a certain area concerned may be significantly reduced
(or future repetitive attacks prevented).

4) Use of Alternative Distance Metrics: If the unbiased
distance measure (3) is used to backward interpolate the
missing value x9 , the same closest rules will no longer
be selected. Instead a different outcome of Warning
level x9 = (0.18, 0.28, 0.38), and Explosion likelihood
x11 = (0.29, 0.39, 0.49) (ML) will be returned. Looking back
at the original observation, given the two antecedent values
such that Easy access (x4) is M and Popularity (x8) is H,
the intuitive deduction of Crowdedness (x10) should be quite
high, as the place is both moderately high in popularity and
reasonably convenient to reach. The only reason why the
observed Crowdedness (x10) has a moderate value may well be
because of a reasonable Warning level. Therefore, the outcome
x9 = (0.52, 0.62, 0.72) from the use of the biased distance
measure is more agreeable than x9 = (0.18, 0.28, 0.38) result-
ing from the use of the plain distance measure. Experiments
show that, if x9 = (0.18, 0.28, 0.38) and the antecedent values
of x4 and x8 are M and H respectively, T-FIR method will result
in an interpolated x10 = (0.14, 0.24, 0.34) (L), which will be
much further than the original observation: Crowdedness (x10)
is M. This clearly demonstrates the significance in utilizing the
biased distance metric proposed in this paper.

5) Multiple Equally Probable Interpolative Outcomes: The
involvement of multiple missing antecedents naturally implies
that alternative equally probable combinations of observations
may be present, which may all lead to the same consequent
observed. Assume that the observation shown in Table XII is
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Fig. 13. Relationship between the value of υ, approximation error ε% , and execution time.

TABLE XIII
RELATIONSHIP BETWEEN Main Shopping AND Iconic

given, where the values of Main shopping and Iconic are both
missing. The P-BFRIE is adopted to calculate these two missing
antecedent values and the different results found with similar
errors (ε% < 1.50%) are summarized in Table XIII. These results
reveal that the same value of Popularity can be obtained when
either Main shopping or Iconic is High or Very High. This also
agrees with the intuition, since either of these variables may
cause a given location to be attractive, and both may be equally
effective to influence the final outcome. Theoretically speaking,
this particular subset of rules contains redundant variables, and
may be further pruned for higher efficiency. The presence of
such redundancy may prompt the use of dimensionality reducing
techniques such as feature selection [12], [22].

B. Comparative Studies

To systematically compare the two proposed methods:
P-BFRIE and F-BFRIE, a numerical function shown in (37)
is used. The rule base employed in the experimental evalua-
tion is generated using the following steps: 1) a random set of
crisp values are selected for the function variables and the out-
come is calculated according to (37); 2) these crisp values are
then fuzzified into trapezoidal fuzzy sets; and 3) the rule base
is then populated using these randomly generated rules, while
checking (and where appropriate, removing) rules to ensure the
underlying domain is reasonably covered, while there still exist

TABLE XIV
ERRORS OF P-BFRIE AND F-BFRIE OVER 500 TEST SAMPLES

sufficient “gaps” between rules in order to utilize interpolation

y = 3x1 − 3.3x2 + 0.4x3 + 0.5x4 + 0.7x5 . (37)

This experimental setup enables an initial sparse rule base to
be generated that is an approximation of the underlying knowl-
edge, simulating those obtainable by “subject experts.” An ob-
servation is obtained in a similar manner, where the “missing”
values are then purposefully removed to facilitate backward
reasoning. Since the underlying function, i.e., “ground truth,”
is available. The consistency, accuracy, and robustness of the
interpolative procedure can then be verified by comparing the
outcome of the interpolation to the actual value computed using
(37). This test, therefore, reflects an underlying principle similar
to that behind cross validation and statistical evaluation [3], [33].

Altogether, 500 simulated samples are randomly drawn from
the domain U = [0, 10]5 . Without losing generality, the values
of x3 and x5 are assumed to be missing. The errors for the con-
sequent and the missing antecedents over these testing records
are summarized in Table XIV. For the consequent variable B,
the errors are obtained by calculating the distance between the
estimated consequent Bj∗ and the actual value B∗. The errors
of the two antecedent variables with missing values A3 and A5
are derived from the distances between the interpolative out-
comes (i.e., values corresponding to the smallest consequent
error) and the actual values of A∗

3 and A∗
5 (the ground truths). It

can be seen that the parametric approach demonstrates a higher
accuracy than F-BFRIE. This is likely because the parametric
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approach has precise control of the parameter values. In addi-
tion, the shapes of the initial fuzzy sets used in F-BFRIE are
approximated, which may have affected its performance. Nev-
ertheless, both methods seem to have an acceptable level of
errors.

The value of υ (the number of discretized intervals per vari-
able) is an important factor for both approaches. Fig. 13 presents
the relationships between the approximation errors and the ex-
ecution times with respect to various values of intervals υ, for
the two proposed methods. The results show that the paramet-
ric approach produces a higher accuracy when a larger num-
ber of intervals is used. However, it is also less scalable. This
experimentally demonstrates that the run-time complexity and
memory requirement of F-BFRIE are more relaxed, which also
agrees with the theoretical analysis regarding their complexities
in Sections IV-A and IV-B.

VI. CONCLUSION

This paper has presented BFRIE, a novel approach that com-
plements traditional FRI by supporting backward inference, al-
lowing flexible interpolation when certain antecedents are miss-
ing from the observation. This study is based upon the mech-
anisms of T-FIR, in order to handle multiple multiantecedent
rules and to ensure the maintenance of convexity and normality
of interpolated outcomes. Specific algorithms have been devel-
oped to tackle problem scenarios with single and multiple miss-
ing values, with worked examples provided to illustrate their
operations. Its practical significance and potential have been
demonstrated with a real-world problem scenario: the predic-
tion of terrorist bombing attacks. Systematic evaluation results
also show that P-BFRIE is more accurate, despite its limited
scalability for larger problems. The F-BFRIE can successfully
handle more complex scenarios, and significantly reduces the
need of parameter calculation, but its interpolative accuracy is
relatively lower.

The current techniques are implemented using exhaustive
search-based methods, which may be better formulated with ad-
vanced solution techniques (e.g., Waltz algorithm [47]) for flex-
ible constraint satisfaction [37]. It may also be further improved
via the use of heuristic optimization algorithms [12], [35], [48]
that do not require domain discretization. This may help to
obtain even better results, while reducing the search cost (for
P-BFRIE in particular). This study will also benefit from a mech-
anism for automatic identification and selection of better rea-
soning paths in handling hierarchical rule models so that the
interpolation process may dynamically proceed [38] according
to the current states of the system.

The underlying concept that supports the proposed BFRIE
seems to bear close relation to that of fuzzy inversion [2], [45],
[46]. A systematic comparison between these two approaches
is, however, beyond the scope of this paper and remains ac-
tive research. It is also worth extending the BFRIE approach
to support other types of interpolation methods (e.g., GM [1],
FIVE [31], IMUL [49]). While in principle, the idea of BFRIE
(or backward reasoning in general) appears to be applicable to
both Mamdani and TSK fuzzy systems [14], [18], [25], [26],

for the present implementation, the technique described relies
on the scale and move transformation-based procedures and is
therefore, only applicable to Mamdani models. It is of natu-
ral appeal to develop the proposed technique for TSK fuzzy
models. Intuitively, it may also be interesting to apply the tech-
nique to different problem domains, such as network intrusion
detection [42] and oil exploration [49].

As indicated previously, the underlying problem that BFRIE
addresses is that of “many to one,” where a number of differ-
ent value combinations, for the antecedent variables, may lead
to very similar observed values for the consequent variable. Al-
though this issue has been partly analyzed from an experimental
viewpoint, much remains to be done. In particular, problem may
exacerbate if the number of missing values becomes larger. This
makes it very challenging to restore the “true” original observa-
tion. Fortunately, different observations obtained via the BFRIE
process will generate the same or very similar outcomes. Thus,
they may be regarded as “equally possible” given the limited
amount of knowledge with regard to the application problem.
Nevertheless, it is important to be able to improve the pro-
posed approach in an effort to better handle the “many to one”
problem. This will be of practical significance for BFRIE to be
employed by accuracy-critical applications (e.g., medical diag-
nosis [16]). The proposed methods may be further extended and
combined with the adaptive fuzzy interpolation technique which
ensures inference consistency [52]. Furthermore, an intelligent
antecedent and/or rule selection procedure may be developed
by identifying the most relevant information [5], [11], [12], [39]
so that the appropriate terms or rules can be determined to min-
imize the overall system complexity.
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