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Abstract. Cluster ensembles organically integrate individual component methods which may utilise different parameter settings
and features, and which may themselves be generated on the basis of different representations and learning mechanisms. Such a
technique offers an effective means for aggregating multiple clustering results in order to improve the overall clustering accuracy
and robustness. Many topics regarding cluster ensembles have been proposed and promising results are gained in the literature. To
reinforce such development, this paper presents another cluster ensemble approach for fuzzy clustering, with an aim to be applied
for clustering of big data. The proposed algorithm first generates fuzzy base clusters with respect to each data feature and then,
employs a fuzzy hierarchical graph to represent the relationships between the resulting base clusters. Whilst the work employs
fuzzy c-means and hierarchical clustering in generating base cluster and implementing consensus function respectively, when
applied to large datasets it has lower time complexity than the original fuzzy c-means and hierarchical clustering. The resultant
ensemble clustering mechanism is tested against traditional clustering methods on various benchmark datasets. Experimental
results demonstrate that it generally outperforms crisp cluster ensembles and single linkage agglomerative clustering, in terms of
accuracy in conjunction with time efficiency, thereby showing that it has the potential for application in clustering big data.

Keywords: Fuzzy cluster ensemble, big data clustering, fuzzy c-means, hierarchical clustering, data mining

1. Introduction

Dealing with big data has become inevitable in
many real-world problems. Recently, a new trend of
and indeed challenge for data mining has arisen with
the exponential growth and also availability of large
amount of complex data. Applying conventional data
mining techniques directly to big data is difficult or
even impossible due to its intolerable computational
time. Besides, the high dimensional and multi-model
features may degrade the performance of conventional
learning algorithms [35]. A number of research di-
rections have been proposed in the literature to over-
come such difficulties, including re-sampling data and
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distributing or parallelising conventional algorithms
[1,23].

Clustering is one of the important approaches within
the framework of unsupervised learning which is help-
ful for finding hidden structures in unlabelled datasets.
In general, the task of clustering is to assign objects to
groups (namely clusters) such that data points in the
same group are similar to each other, and dissimilar
to those in the other clusters [15]. A good number of
clustering algorithms have been proposed in the liter-
ature, and successfully applied to a range of problems
[37,39]. However, clustering big data is more chal-
lenging than dealing with traditional data modelling
and analysis problems. Many of the existing clustering
methods such as the k-means and fuzzy c-means are
NP-hard, and hence they are very time consuming for
handling big data.
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To tackle the aforementioned problem feasible tech-
niques have been proposed. Most of which work by
extending the existing approaches (that have been de-
veloped for non big data) through analysing a selected,
manageable amount of samples of the original data and
then, exploiting the sample-based modelling results to
derive a partition for the overall data. These methods
differ usually only in terms of how the sample-based
analysis is carried out, including the CLARA algo-
rithm [19] and the CLARANS algorithm [24]. Clus-
tering big data has also led to distributed and paral-
lel implementations [26]. One such approach is to di-
rectly extend existing clustering methods by taking ad-
vantage of distributed network environments in which
the overall computation effort is shared by collabora-
tive computing facilities [45]. Whilst these promising
results have been reported, much remains to be done in
order to have a more efficient and effective fuzzy clus-
tering approach that is suitable for big data. Inspired by
this observation, a hierarchical fuzzy cluster ensemble
(HFCE) method (which is applicable for distributed
and parallel application) is proposed in this paper.

Cluster ensembles are a type of ensemble-based un-
supervised learning technique which combine multiple
individual clustering results into a single consolidated
partition. They have been proposed to achieve accu-
racy and robustness superior to those of the individual
clustering methods [31]. However, the performance of
cluster ensembles generally depends on both the qual-
ity and the diversity of ensemble components [12,21].

Two essential steps are particularly identified that
are commonly involved in the development of cluster
ensembles: 1) the generation of ensemble components
(i.e., base clustering methods), and 2) the consensus
of them. To ensure diversity of component clustering
results typical ensemble generation strategies include:
different parameter configurations of a given cluster-
ing algorithm (such as different numbers of clusters
and different cluster centre initialisations) [10], and
random feature-space or sampling techniques [6,7,40].
Regarding the issue of consensus, most of the existing
methods employ a form of instance-cluster matrix that
summarises the results of base ensembles to achieve
the final partition [25,34]. An interesting direction to
further strengthen the performance of cluster ensem-
bles is to embed the information contained within base
clusters into a graph or a hypergraph such that con-
sensus can be applied in a link-based manner [9,31].
Following this idea, recently, the link-based refinement
methods have been proposed [14], where the links be-

tween base clusters are employed to refine the results
of component clusters.

Apart from conventional clustering algorithms whose
outputs are hard partitions of data, there are alterna-
tive approaches such as EM [5] and fuzzy c-means [4],
which generate soft or fuzzy partitions of data with a
natural appeal. In order to take advantage of the afore-
mentioned ensemble techniques over fuzzy clustering,
an additional “hardening” process would be required
for the fuzzy cluster assignments. This process may re-
sult in loss of information that is conveyed by the un-
certainty measures of the relevant cluster assignments.
This is particularly true for application settings where
the underlying clustering algorithms access only a par-
tial view of the data, such as in distributed data min-
ing [27]. Yet, most of the existing cluster ensemble
methods are based on crisp clusters. However, interest-
ing departures from such work have recently been re-
ported, including sCSPA, sMCLA and sHBGF (which
are the fuzzy versions of the graph/hypergraph-based
algorithms CSPA, MCLA and HBGF, respectively)
[27].

Following such recent development, this paper
presents a link-based hierarchical consensus-based
approach for building ensembles of fuzzy c-means.
The resulting algorithm is intended to be applied for
clustering of big data. Different from ensembles of
crisp clusters, the proposed approach allows direct
handling of fuzzy clustering components, and gen-
erates a fuzzy partition as the final clustering out-
come. In particular, the algorithm creates a fuzzy
graph < {C̃1, ..., C̃n}, L̃ > that L̃ represents the
fuzzy links between each pair of base fuzzy clusters
(C̃i, C̃j), i, j = 1, · · · , n, leading to a hierarchical
structure of base clusters through the use of single-
linkage agglomerative clustering. From this, the mem-
bership of each data point belonging to any final fuzzy
cluster is calculated by simply aggregating its mem-
berships to the respective base clusters.

In addition to the theoretical development of this
fuzzy cluster ensemble approach, its potential applica-
tion to clustering big data is also introduced in this pa-
per. For this, an original multi-feature dataset is first di-
vided into multiple one-dimensional subsets and indi-
vidual clustering members are generated with respect
to these subsets. Then, a set of fuzzy links between
the resulting fuzzy base clusters are created, reflecting
the similarities between fuzzy base clusters. Finally,
the single-linkage agglomerative clustering method is
implemented at the base cluster level (as opposite to
the conventional use of this technique that is at the
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data point level). Note that the computation of fuzzy c-
means on one-dimensional datasets is much faster than
that on multi-dimensional datasets whilst the cluster-
ing procedures on different subsets can be parallelised.
Importantly, the number of base clusters is normally
much less than the number of data points, which helps
further reduce the overall computational complexity
thanks to single-linkage clustering. Experimental re-
sults show that the hierarchical fuzzy cluster ensemble
outperforms conventional clustering methods in terms
of accuracy without sacrificing efficiency.

The rest of this paper is organised as follows. Sec-
tion II introduces the basic concepts of the cluster en-
semble framework upon which HFCE is based. Sec-
tion III presents the HFCE approach in detail, includ-
ing a discussion of its advantages over the existing
cluster ensemble methods. Section IV describes the
potential to exploit this method as a clustering tool for
big data, through parallel implementation. Section V
reports on the experimental set up and analyses the re-
sults. The paper is concluded in Section VI, with a dis-
cussion of interesting future research.

2. Cluster Ensemble and Fuzzy Cluster Ensemble

This section provides background context for the
subsequent development, including the main concepts
for conventional approach to crisp cluster ensembles
and their fuzzy counterparts.

2.1. Cluster Ensemble

Formally, cluster ensemble can be described as
follows. Let X = {x1, · · · , xN} be a set of N
data points and Π = {π1, · · · , πm, · · · , πM} be M
ensemble members. Applied to X , each ensemble
member returns a set of clusters πm = {Cm

1 , · · · ,
Cm

k , · · · , Cm
Km
} such that

⋃Km

k=1 C
m
k = X , where

Km is the number of clusters constructed by πm.
The clusters generated by all ensemble members to-
gether form a set of base clusters for the ensemble:
{C1, · · · , Cn} =

⋃M
m=1 πm, where n =

∑M
m=1Km.

The task of cluster ensemble is to find a new cluster-
ing result π∗ given a data set X which summarises the
information embedded in Π.

As indicated previously, two key procedures are in-
volved in the development of a cluster ensemble. First,
ensemble members are generated, typically by artifi-
cially diversifying methods for parameter settings and
data re-sampling. Second, a consensus function is then

Fig. 1. Examples of Cluster Ensemble Representation

applied on those ensemble members to generate the
final clustering result. A consensus function can be
generally viewed as a map from a set of ensemble
members to one final partition of the original data
f : Π → π. A variety of consensus functions that are
readily available may be applied to derive the required
final data partition.

Most of the consensus functions utilise an interme-
diate data structure which aggregates the information
contained by ensemble members. Given an ensemble
as shown in Fig. 1(a), two common types of such a
data structure: the instance-cluster matrix-based and
the meta-graph-based are illustrated in Fig. 1(b) and
Fig. 1(c), respectively. Normally, a feature-based con-
sensus function is directly applied to implement the
former to achieve the final partition of the original data,
with ensemble members working as a set of features
[2,14]. The latter takes the view that an ensemble may
be represented as a graph, where the nodes are base
clusters or data points and links between them define
the relationships holding amongst the clusters and/or
points [9,31]. In this approach, additional computation
is usually needed to calculate the extra information
contained within the graph, such as the weights on the
links between the base clusters.

In implementing the meta-graph-based approach,
once a graph is generated, graph partition methods
such as METIS [18] can be utilised to obtain the fi-
nal data partition effectively. For example, the weight
on the link between two base clusters Ci and Cj in a
given meta-graph can be calculated as the binary Jac-
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card similarity coefficient:

w(Ci, Cj) =
|Ci ∩ Cj |
|Ci ∪ Cj |

. (1)

Another advantage of using meta-graph is that similar-
ities (or indeed dissimilarities) between base clusters
can be readily computed. Exploiting the similarity re-
lations between base clusters, both within and across
ensemble members, offers useful insight for producing
quality final data partition [14].

2.2. Fuzzy Cluster Ensemble

If a crisp clustering algorithm such as k-means is
used in the generation of base clusters, the association
degree of a data point belonging to a specific cluster is
either 1 or 0. However, there are other popular cluster-
ing algorithms such as EM and fuzzy c-means that nat-
urally produce clusters of data with uncertain bound-
aries. Without loss of generality, fuzzy c-means is se-
lected herein to generate the fuzzy base clusters due
to its effectiveness in generating fuzzy partitions and
also its availability. Each cluster in a fuzzy partition π̃
is a fuzzy set C̃k, k = 1, · · · ,K where C̃k(xt) ∈ [0, 1]
represents the degree of a data point xt ∈ X belonging
to the corresponding fuzzy cluster. Usually, this degree
is normalised with all the clusters in a partition to sat-
isfy that

∑K
k=1 C̃k(xt) = 1.

Formally, a fuzzy (or soft) cluster ensemble can be
described as follows [27]. LetX = {x1, · · · , xN} be a
set of N data points and Π = {π̃1, · · · , π̃m, · · · , π̃M}
be M fuzzy ensemble members. Each ensemble mem-
ber returns a set of fuzzy clusters π̃m = {C̃m

1 , · · · ,
C̃m

k , · · · , C̃m
Km
} such that

∑Km

k=1 C̃
m
k (xi) = 1, where

Km is the number of fuzzy clusters constructed by that
member. The fuzzy clusters generated by all ensem-
ble members together form a set of fuzzy base clusters
for the ensemble: {C̃1, · · · , C̃n} =

⋃M
m=1 π̃m, where

n =
∑M

m=1Km. For each xt ∈ X and each ensemble
member π̃m ∈ Π, C̃m

k (xt) ∈ [0, 1] denotes the degree
of which the data point xt belongs to the fuzzy clus-
ter C̃m

k . An example of the so-called instance-cluster
matrix of a fuzzy cluster ensemble is shown in Table.
1. The task of a fuzzy cluster ensemble is: for a given
dataset X , find a new partition π∗ which summarises
the information embedded in the whole cluster ensem-
ble Π. Such a cluster ensemble technique does not
specify whether the final clusterings should be crisp or
fuzzy. As to be shown later, given a dataset the pro-

posed HFCE will produce a fuzzy partition π̃∗ of it as
the ensemble outcome.

Note that a key difference between crisp cluster en-
semble and fuzzy cluster ensemble is that the latter
works on fuzzy clusters. If the fuzzy base clusters are
defuzzified into crisp clusters, many of the consensus
functions designed for crisp cluster ensemble can be
borrowed for use in building fuzzy cluster ensembles.
However, valuable information may be lost in defuzzi-
fication and hence, the quality of the ensemble may
be adversely affected [27]. For example, in crisp clus-
ter ensemble, the instance-cluster matrix is sparse (see
Fig. 1) and its contained information for a cluster en-
semble is incomplete [14]. This problem is reflected in
the meta-graph-based approach such that there will be
no links between those base clusters generated by the
same ensemble member (since there are absolutely no
shared points between different crisp clusters). Thus,
although fuzzy base clusters contain more information,
conventional consensus functions for crisp cluster en-
semble cannot directly make use of such information.
It is due to this observation that fuzzy or soft clus-
ter ensembles have been introduced in the literature
[7,27,38] and followed on herein.

Table 1
Example of Non-binary Instance-cluster Matrix

C1
1 C1

2 C2
1 C2

2 C3
1 C3

2

x1 0.6 0.4 0.6 0.4 0.6 0.4

x2 0.8 0.2 0.8 0.2 0.8 0.2

x3 0.5 0.5 0.9 0.1 0.8 0.2

x4 0.7 0.3 0.2 0.8 0.8 0.2

x5 0.2 0.8 0.4 0.6 0.6 0.4

x6 0.4 0.6 0.6 0.4 0.1 0.9

x7 0.0 1.0 0.7 0.3 0.1 0.9

3. Hierarchical Fuzzy Cluster Ensemble

The proposed hierarchical cluster ensemble algo-
rithm starts by creating ensemble members using fuzzy
c-means on each feature in dataset. The resulting fuzzy
base clusters and the links between them are repre-
sented in a fuzzy graph. The idea of hierarchical clus-
tering is then employed to iteratively group the nodes
based on the fuzzy links, in order to create the hierar-
chical structure that leads to the final clusters. It also
yields instance-wise fuzzy cluster membership estima-
tion, which may be defuzzified such that each data
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point belongs to just one final cluster if required. The
following details the key operations of this algorithm.

3.1. Feature-based Generation of Ensemble Members

In general, no constraints are necessarily imposed
over the generation procedure through which the clus-
tering partitions are obtained. In fact, different (com-
ponent) clustering algorithms or the same algorithm
with different parameter settings can be applied. If so
desired, even different representations for data points,
different subsets of data points or their projections on
different subspaces may be used [8,40]. To perform a
conventional cluster ensemble task, a moderate-sized
dataset can be clustered several times in order to obtain
ensemble members.

In dealing with big data, however, the computational
overheads of running a single clustering procedure on
a complete dataset may already be intolerable, multiple
executions of clustering on the whole dataset are im-
practical. Reducing the complexity of dataset for each
clustering member offers a reasonable way of solving
this problem. In this work, an M -dimensional dataset
is divided into M one-dimensional subsets, and M
times of fuzzy c-means are carried out on those one-
dimensional subsets.

In practice, projecting data onto different subspaces
or choosing different subsets of features may lose in-
formation (e.g., correlations between features) which
can be important to detect the underlying patterns of
the data [16]. Unfortunately, this is also true in the pro-
posed method where the qualities of the resulting indi-
vidual ensemble members are generally not so good as
those created from the direct use of all accessible fea-
tures. Despite of this observation, as demonstrated in
the existing ensemble leaning frameworks [29,36,42],
relatively weak component results are still commonly
used. Whilst individual ensemble members may be
simple, if jointly utilised in conjunction with an appro-
priate consensus function, weak base clusters are ca-
pable of producing high quality ensemble results.

Such an individual feature-based partition strat-
egy however, has further limitations in dealing with
datasets that have redundant or interactive features. If
the features are redundant, HFCE may produce redun-
dant base clusters accordingly. Also, if certain individ-
ual features are interactive with each other, the useful
information embedded in the interactions will be lost.
A possible approach to solving these problems is to
use feature selection or grouping techniques [43,44] in
guiding the partition of the original data. However, the

assessment of any redundancy and interaction amongst
features incurs additional computational cost in the
generation of base clusters and therefore, improvement
over these issues can be rather time-consuming when
dealing with datasets with a high dimensionality. Thus,
in the current design and implementation of HFCE,
advanced feature partition strategies are sacrificed to
compensate for its executive speed. Finding a rapid
feature partition algorithm to support HFCE remains
active as further research.

It may be difficult to know a-priori which base
clustering algorithm(s) will be appropriate for a given
clustering problem. It is generally advisable and also,
a common practice to employ those clustering algo-
rithms that are known to be able to reflect and make
use of most information embedded in the data. This is
obvious as the more information each clustering mem-
ber holds, the more information there is for the con-
sensus function to work on. Based on this understand-
ing, fuzzy c-means, which is able to retain the non-
binary memberships of each data point to all clusters
is adopted as the base algorithm for the generation of
ensemble members in this work.

3.2. Similarity between Fuzzy Base Clusters

In the above proposed strategy for ensemble mem-
ber generation the base clusters are created by parti-
tioning the dataset with respect to different individ-
ual features. However, all data points used come from
the same original dataset. As such, the resulting base
clusters may share certain points. These shared data
points naturally create linkages amongst base clusters
and therefore, it is possible to estimate the similarity of
any base cluster pair by exploring the underlying link
information [32].

Note that the concept of a graph formulated from
a set of base clusters and a set of weighted links be-
tween them has been introduced previously, as of [14].
Given a cluster ensemble as defined in Section 2.1,
a graph < V,L > can be constructed where V =⋃M

m=1 πm = {C1, · · · , Cn}, n =
∑M

m=1Km is the
set of vertices each representing a base cluster, and L
is a set of weighted links between the clusters. In par-
ticular, the weight on the link between two base clus-
ters Ci and Cj(i, j = 1, · · · , n), can be defined as
given in Eqn (1). In order to retain more information
from fuzzy clustering components and reflect the inter-
actions between different features which are embedded
in the original dataset, a fuzzy graph of fuzzy c-means
ensemble is employed here.
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Formally, given a set of fuzzy base clusters V =
{C̃1, · · · , C̃n} on a dataset {x1, · · · , xN}, a fuzzy
graph < V, L̃ > is defined on V with L̃ being a fuzzy
set of links defined on V × V . The membership of a
link (C̃i, C̃j), i, j = 1, · · · , n to the fuzzy set that rep-
resents the fuzzy relation L̃ is computed by

µL̃(C̃i, C̃j) =

∑N
t=1 min(C̃i(xt), C̃j(xt))∑N
t=1 max(C̃i(xt), C̃j(xt))

(2)

where C̃i(xt) indicates the degree of a data point xt
belonging to a fuzzy base cluster C̃i. If maxN

t=1(C̃i(xt),

C̃j(xt)) = 0, then µL̃(C̃i, C̃j) = 1. The resultant
fuzzy graph can also be represented as a meta-graph.
Similar to Fig. 1(c), each fuzzy base-cluster can be
represented as a node and the membership of a link to
L̃ can be represented as the strength or weight of that
link. Obviously, µL̃(C̃i, C̃j) ∈ [0, 1], µL̃(C̃i, C̃i) = 1

and µL̃(C̃i, C̃j) = µL̃(C̃j , C̃i). The degree assigned to
the link connecting fuzzy clusters C̃i and C̃j is thus de-
fined in accordance with the proportion of their over-
lapping degree on all data points in X . In so doing,
for two fuzzy base clusters within the same ensemble
member, the weight on the link between them is pos-
sible to be of a non-zero value. As such, in general,
each fuzzy base cluster may have a link to all the other
fuzzy base clusters.

By definition of the link weights, the fuzzy degree of
any given link intuitively captures the underlying sim-
ilarity between the corresponding two fuzzy base clus-
ters. These fuzzy links are of particular significance
in this work. Since the ensemble members are gener-
ated from one-dimensional subsets, information on the
interactions or correlations between features is lost in
compromise with the gain of computing time. How-
ever, by employing a link-based consensus function
that makes use of similarities between base clusters,
such information can be (re-)captured.

The similarities between base clusters carry the in-
formation of how close they are to one another, and this
information is useful to merge redundant base clus-
ters. In crisp cluster ensembles, base clusters within
the same base clustering member do not have com-
mon data points with each other, that is, ∀Cm

k , C
m
l

∈ πm, if k 6= l then Cm
k ∩ Cm

l = ∅. The weights
on those links between the clusters within the same
base clustering member are of a value of zero. In this
case, further refinement will have to be carried out
in an effort to estimate the similarities between base

clusters within the same ensemble member. For ex-
ample, connected-triple links cross ensemble members
are computed and then exploited for this purpose in
the work of [14]. Fortunately, in fuzzy c-means en-
semble, non-zero weighted links exist not only be-
tween those base clusters within a single base clus-
tering member, e.g., ∃µL̃(C̃m

k , C̃
m
l ) > 0, but also

between base clusters cross different base-clustering
members, e.g., ∃µL̃(C̃m

k , C̃
n
l ) > 0,m 6= n. Since no

additional refinement is needed (as otherwise needed
for the crisp case), the similarity measures can be read-
ily computed, making significant savings in time and
memory space.

3.3. Base Cluster Grouping via Hierarchical
Clustering

In this step, fuzzy base clusters are grouped into a
certain number of final clusters to become the output of
the ensemble. In order to group the fuzzy base clusters
they are artificially treated as data instances and those
original data points given in the dataset that belong to
a base cluster are regarded as a feature for the artifi-
cial data instance. In other words, the “instance-cluster
matrix” in Table 1 is transposed to a “cluster-instance
matrix”, which generally speaking, has a large number
of features but a relatively smaller number of instances
involved than the real instance-cluster matrix.

In the existing work on fuzzy cluster ensembles,
each base cluster maintains the non-binary member-
ship values of all those data points belonging to it.
This makes fuzzy base clusters more informative but
more storage-consuming than their crisp counterparts.
Fortunately, link-based clustering approaches such as
single-linkage clustering [30] do not need to re-access
the original memberships of the data points once the
similarity matrix is obtained, making them less sensi-
tive to high-dimensional data. This is important in an
effort to deal with the grouping of base clusters, since
otherwise iteratively visiting fuzzy base clusters di-
rectly can be very time-consuming, if not prohibitive.

By using single-linkage hierarchical clustering al-
gorithm, grouping fuzzy base clusters can be achieved
without the need of updating the cluster centroids. A
matrix L = [l(i, j)]n×n can be constructed with the
indices of its rows and columns representing the in-
dices of base clusters, and each entry l(i, j), i, j =
1, · · · , n, of the matrix representing the similarity
value of the corresponding base clusters, i.e., the mem-
bership value of the fuzzy link between C̃i and C̃j

as defined in Eqn. (2). From this, the grouping of the
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base clusters depends upon L only, rather than upon
the memberships of the original data points belonging
to these base clusters. The subsequent steps of single-
linkage clustering are quite simple after the similari-
ties amongst base clusters are known: Applying a sim-
ple sorting procedure over those similarity values and
then using a threshold or a given number of total clus-
ters required to merge the clusters. Therefore, both the
time and memory resources required for iteratively vis-
iting instance-cluster matrix or the pair-wised similar-
ity matrix are saved. Note that single-linkage cluster-
ing obtains exactly the same results by agglomerating
small clusters into larger ones (bottom up) as by divid-
ing larger clusters into smaller ones (top down) [11].
In the following, this method is referred to as single-
linkage agglomerative clustering (SLAC).

Apart from SLAC, a multilevel scheme for parti-
tioning irregular graphs, METIS [18] has been used
to group base clusters in sMCLA. However, METIS
can only produce a given number of balanced groups
of clusters. Since each group is required to contain
the same number of base clusters, this method is not
suitable for use in the present approach where one-
dimensional individual feature-based partition of the
dataset is assumed. For example, in the situation where
the dataset contains certain outlier values in one fea-
ture, a base cluster consists of only the outliers can be
generated. Such a cluster should be grouped with itself
rather than with any other normal ones. Therefore, al-
gorithms which return absolutely balanced groups of
clusters may damage the overall quality of the resul-
tant cluster groups. In light of this observation and con-
sidering both the time complexity and the quality of
clustering, SLAC is selected to group base clusters in
HFCE.

Recall the basic idea of hierarchical clustering, that
is to build a tree of data clusters that are successively
merged into similar groups, with each level of the re-
sulting tree being a segmentation of the original data
[17]. By applying SLAC to group fuzzy base clusters
rather than data points or crisp clusters, each level of
the resulting tree comprises groups of base fuzzy clus-
ters. In order to obtain the overall data partition by
the ensemble, an additional step which transforms the
groups of fuzzy base clusters into the final fuzzy clus-
ters of the original data points is needed.

3.4. Final Assignment of Data Points

At each level of the resultant hierarchical tree, all
those base clusters contained within a certain cluster-

group are collapsed to form one single fuzzy cluster.
At the leaf level of the tree each fuzzy base cluster
contains a membership value for every data point that
is deemed to belong to the cluster. Such a member-
ship for a given final fuzzy cluster is computed as the
normalised mean of its memberships to all those base
clusters that are grouped together. To produce a crisp
final partition of the original data, each point is as-
signed to the cluster group to which it has the highest
membership. Note that if so desired, other aggregation
operators [33] rather than the average may also be em-
ployed to implement this of course.

Summarising the above development, the proposed
hierarchical fuzzy cluster ensemble (HFCE) learning
algorithm is given in Algorithm 1.

Algorithm 1 Hierarchical Fuzzy Cluster Ensemble
Inputs: X = {x1, · · · , xt, · · · , xN}, xt =
(at1, · · · , atM ) ∈ <M : a dataset of N instances and M
features;
K1, · · · ,Km, · · · ,KM : number of base clusters in
each ensemble member;
K : final number of clusters.
Outputs: π̃∗ = {C̃∗1 , · · · , C̃∗K}: a fuzzy partition of
X .

1: for m = 1 : M do
2: create sub-dataset Xm = {a1m, · · · , aNm}
3: create ensemble member π̃m =

{C̃m
1 , · · · , C̃m

Km
} using fuzzy c-means on Xm

4: end for
5: merge the ensemble members to create a set of

fuzzy base clusters
V = {C̃1, · · · , C̃i, · · · , C̃n} =

⋃M
m=1 πm,

where n =
∑M

m=1Km

6: for i = 1 : n− 1 do
7: for j = i+ 1 : n do
8: µL̃(C̃i, C̃j) =

∑N
t=1 min(C̃i(xt),C̃j(xt))∑N
t=1 max(C̃i(xt),C̃j(xt))

9: end for
10: end for
11: create a partition πV = {CV

1 , · · · , CV
k , · · ·CV

K}
on V based on L̃ using hierarchical clustering

12: for k = 1 : K do
13: µ′

C̃∗
k

(xt) = average of {C̃i(xt)|C̃i ∈ CV
k }

14: end for
15: normalise µ′

C̃∗
k

(xi) to µC̃∗
k
(xt),

such that
∑K

k=1 µC̃∗
k
(xt) = 1
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4. Application to Big Data

Although much effort has been made in the devel-
opment of cluster ensembles, the application of cluster
ensemble techniques is still at an early stage [13]. Lit-
tle has been successfully done for big data. This sec-
tion proposes an initial idea as to how HFCE may be
potentially utilised to handle big data clustering, based
on an investigation into its time complexity.

For a dataset with N points and M features, the
time complexity of the original fuzzy c-means is
O(MNKm) whereKm is the number of clusters [20].
The hierarchical agglomerative clustering has a time
complexity of O(N2logN) [15]. Since the agglom-
erative clustering is employed only for grouping base
clusters in HFCE, its use leads to a complexity of
O(n2logn), where n =

∑M
m=1Km is the total num-

ber of fuzzy base clusters generated. To calculate the
final fuzzy partition the algorithm also involves an ad-
ditional time complexity of O(nNK).

For big data it may be difficult to expect that Algo-
rithm 1 can be implemented on a single computer of
moderate computational power. However, HFCE can
be implemented in a parallel way. Suppose that there
are P +1 computers within a certain parallel computer
network. One computer acts as the host node, which is
in charge of assigning tasks and collecting results [41],
and the other P computers work as the real computing
nodes. Then, such a parallel computation network can
be applied to implement the three main components of
HFCE, reducing its overall time complexity. The par-
allelisation is outlined below:

1) Generation of ensemble members: Each ensem-
ble member is denoted by πm, where m = 1, · · · ,M
and each πm corresponds to a certain feature of the
dataset. If P < M , then the host node first assigns
π1, · · · , πP to the P computing nodes. Once any of
the P ensemble member is generated, the host node or-
derly assigns the next component of πP+1, πP+2, · · ·
to the free computing nodes. This process iterates until
πM is reached. If P ≥ M , the assignment is straight-
forward. Since fuzzy c-means only takes few iterations
to converge on one-dimensional data, the burden of
each computing nodes is very low.

2) Single-linkage-based grouping of fuzzy base
clusters: A number of parallel versions of SLAC have
been proposed in the literature (e.g., [26,28]). For
simplicity, an intuitive parallel method (not the best
time-saving one) is introduced here. As any pair of
fuzzy base-clusters have in general, a fuzzy link be-
tween them, the membership values of all the links

µL̃(C̃i, C̃j) can be collectively represented as a pair-
wise similarity matrix Ln×n. Since this matrix is sym-
metric and the similarity of one element to itself is
not considered in SLAC, n(n−1)

2 similarity values are
needed to be computed. The host node decomposes the
task of calculating these similarity values into the P
computing nodes. Note that only a limited number of
fuzzy base clusters are generated for each feature, and
that this number is generally much smaller than the
number of data points. Thus, after Ln×n is obtained,
the parallelisation of following steps in SLAC for base
cluster grouping may not be necessary, but optional for
a powerful computing node.

3) Computation of the memberships of data points
to the final clusters: Similar to the working of step
1), the final clustering result can be represented as a
matrix AN×K (as illustrated in Table 1). Given that
N > P, p = bN/P c, the host node can decompose
AN×K into P disjointed sub-matrices A[1,··· ,p]×K ,
A[p+1,··· ,2p]×K , · · · , A[p×(P−1),··· ,N ]×K . The re-
quired membership calculations regarding the result-
ing P sub-matrices can then be assigned to the P com-
puting nodes, respectively.

5. Experimentation and Evaluation

This section presents an experimental evaluation of
the proposed work. It first outlines the set-up of the
experiments carried out and then discusses the results
obtained. One experimentation is designed to test the
quality of clusters which are generated using HFCE, in
comparison to those produced by the use of alternative
approaches, and another to show the time efficiency of
HFCE in contrast with the original fuzzy c-means and
single-linkage agglomerative clustering.

5.1. Experimental Set-up

To evaluate the performance of the proposed ap-
proach, the algorithm is tested over nine datasets ob-
tained from the UCI benchmark repository [3], where
the underlying true labels of the data points are known
(which are not explicitly used in the cluster ensem-
ble learning process but in the computation of cluster-
ing accuracy). The details of these datasets are sum-
marised in Table 2.

In HFCE, fuzzy c-means is used to implement fuzzy
ensemble members. In each ensemble member, the
number of base clusters Km,m = 1, 2, · · · ,M is set
to the number of given classes of the dataset. The clus-
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Table 2
Summary of Datasets Used

Datasets # Instances # Attributes # Classes

Iris 150 4 3

Sonar 208 60 2

Statlog Heart 270 13 2

Parkinsons 195 22 2

Ionosphere 351 34 2

Pima Indians Diabetes 768 8 2

Yeast 1484 8 10

Statlog Landsat Satellite 4435 36 6

Spambase 4601 57 2

ter centroids are randomly initialised in each run. The
single-linkage clustering technique is selected to im-
plement base cluster grouping. It organises base clus-
ters into a hierarchical tree using the underlying sim-
ilarity matrix given in Eqn. 2. For comparison, an en-
semble of crisp clusters (HCCE) with a similar under-
lying mechanism to that of HFCE is also implemented.
To have a common ground for this comparative study,
the base clusters used in HCCE are those defuzzified
from the base fuzzy c-means used in HFCE and the
number of final clusters on each dataset is again set to
that of its true classes. The output of HFCE is defuzzi-
fied by assigning a data point to the cluster to which it
reaches the maximum membership.

5.2. Clustering Quality

In order to gauge clustering quality, two types of
criterion are usually employed, measuring how well a
clustering partitions the given data into the underly-
ing groupings, namely, the internal and external crite-
ria [13]. In particular, the goodness of a clustering en-
semble is estimated using the averaged Silhoutte in-
dex [22] which measures the compactness of resultant
clusters without referring to the ground truth (internal).
If however, the class labels are available for all the data
involved in the experiments, the final clustering results
can be evaluated using the accuracy which measures
how well the clusters match the given true labels of the
data points (external). In this experiment, the quality
of the final clustering outcomes is also assessed using
these two criteria.

The resultant averaged Silhoutte index and cluster-
ing accuracy rates are shown in Tables 3 and 4 re-
spectively, where the best-two results on each dataset
are highlighted in boldface and each number in the ta-
ble is an averaged value based on 50 runs. To validate

the significance of the experimental results, paired-t
tests are carried out. The baseline for comparison is
the result of running HFCE. In this table, the sign “(-
)” indicates that the corresponding result of HCCE is
significantly worse (p < 0.05), while “(*)” indicates
that the corresponding one is significantly better. In or-
der to compare the ensemble-based clustering methods
with the conventional clustering methods, the results
of fuzzy c-means (FCMC) and single-linkage agglom-
erative clustering (SLAC) are also included.

Experimental results show that HFCE achieves bet-
ter compactness and accuracy than HCCE on most of
the datasets. This indicates that the information em-
bedded in fuzzy base clusters are more effective to gen-
erate final ensemble partitions then that embedded in
crisp base clusters. Also, the final clusters generated
by HFCE lead to better accuracies than SLAC over
seven datasets. However, the performance of HFCE
is not significantly better than FCMC in general. A
likely reason is that the tested datasets are sensitive
to the interaction of features, while the similarities
amongst fuzzy base clusters cannot completely cap-
ture the interaction of features in those datasets. Impor-
tantly, HFCE only employs ensemble members which
generate base clusters each involving just one feature.

5.3. Time Efficiency

This set of experiments is to empirically check the
time efficiency of HFCE, as compared to that of the
original SLAC and FCMC. To ensure that the results
are easy to analyse, the simple iris dataset is used.
However, to vary the scale of each experiment, the
original dataset is artificially enlarged either horizon-
tally (by duplicating features), or vertically instances
(by duplicating data points), or both. In the follow-
ing presentation, the original dataset is denoted as [D],
its horizontally double-sized dataset [D D] is denoted

as [D]×2, and its vertically double-sized dataset
[
D
D

]
is denoted as [D]×2, etc. The experiments are carried
out on a computer with Inter(R) Core(TM)2 Duo 3.00
GHz × 2 CPU, 4 GB RAM, and Windows 7 (64-bit)
operation system. All three methods under comparison
are implemented in series with Matlab 7.11 win64 ver-
sion. Each point in these figures is an averaged value
of 50 runs.

Figures 2, 3 and 4 present the time cost of running
each of the aforementioned three methods (HFCE,
SLAC and FCMC) in response to the increase of the
number of features, the number of data points and the
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Table 3
Comparison of Averaged Silhoutte Index ([−1, 1])

Dataset HFCE HCCE SLAC FCMC

Iris 0.678±0.003 0.267±0.243(-) 0.700±0.000(*) 0.685±0.000(*)
Sonar 0.136±0.020 0.175±0.093(*) 0.446±0.000(*) 0.267±0.009(*)
Statlog Heart 0.184±0.000 0.204±0.093 0.261±0.000(*) 0.342±0.000(*)
Parkinsons 0.349±0.000 0.354±0.223 0.792±0.000(*) 0.417±0.000(*)
Ionosphere 0.230±0.000 0.219±0.086 0.496±0.000(*) 0.331±0.000(*)
Pima Indians Diabetes 0.469±0.000 0.283±0.081(-) 0.648±0.000(*) 0.381±0.012(-)
Yeast 0.032±0.036 -0.089±0.042(-) 0.640±0.000(*) -0.048±0.034(-)
Statlog Landsat Satellite 0.289±0.054 -0.154±0.067(-) -0.015±0.000(-) 0.471±0.000(*)
Spambase 0.644±0.000 0.052±0.028(-) 0.875±0.000(*) 0.140±0.007(-)

Table 4
Comparison of Accuracy (%)

Dataset HFCE HCCE SLAC FCMC

Iris 89.89±0.25 65.24±9.48(-) 66.67±0.00(-) 89.33±0.00(-)
Sonar 54.33±0.00 59.54±6.05(*) 53.37±0.00(-) 55.22±0.48(*)
Statlog Heart 67.41±0.00 60.93±6.33(-) 55.93±0.00(-) 79.26±0.00(*)
Parkinsons 75.38±0.00 75.38±0.00 75.38±0.00 75.38±0.00
Ionosphere 62.61±0.00 55.48±3.14(-) 50.87±0.00(-) 74.78±0.00(*)
Pima Indians Diabetes 65.10±0.00 68.64±3.21(*) 65.23±0.00(*) 66.67±0.00(*)
Yeast 41.96±3.59 33.66±1.28(-) 32.35±0.00(-) 43.01±0.13
Statlog Landsat Satellite 61.98±0.76 40.35±3.95(-) 24.28±0.00(-) 72.51±0.00(*)
Spambase 60.75±0.00 60.60±0.00(-) 60.62±0.00(-) 76.71±0.00(*)

Fig. 2. Time Cost vs. Increase of Features

number of both factors, respectively. It is clear that the
execution time of these methods generally increases
along with the increase of data size. However, HFCE

Fig. 3. Time Cost vs. Increase of Instances

shows a more stable performance than its counterparts
when both the number of features and instances are in-
creased (see Fig. 4). This shows that the use of feature-
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Fig. 4. Time Cost vs. Increase of Both Features and Instances

based partition of dataset and the pairwise similarity
matrices entails more time efficiency in the proposed
hierarchical fuzzy c-means ensemble, which in turn in-
dicates the potential of HFCE in dealing with big data.

Note that the outcome of using HFCE on datasets
with increased features seems to be more stable as
compared with FCMC (Fig. 2). An intuitive explana-
tion is that HFCE only computes the one-dimension
distance between data points, which makes it far less
sensitive to the “curse of dimensionality”. However,
HFCE still suffers from the increase of data points to
a certain extent. Nevertheless, it is not so drastic as the
algorithms which have a time complexity of O(N2)
or above, as reflected in Fig. 3. Thus, the proposed
HFCE takes the advantage of SLAC when dealing with
an increasing number of features and that of fuzzy c-
means when dealing with an increasing number of data
points. The downside is that although reasonable, the
accuracy of HFCE is not so high as that achievable
by the original fuzzy c-means in general. Nevertheless,
HFCE allows for higher time efficiency than fuzzy c-
means without a drastic loss of clustering quality.

6. Conclusion

This paper has presented an approach for feature-
based ensemble member generation and for link-based
hierarchical base clusters grouping, in building hier-
archical fuzzy (c-means) cluster ensembles. The pro-

posed work takes the advantage of fuzzy c-means in
that each data point can have a membership to all clus-
ters. It also takes the advantage of hierarchical clus-
tering in that the iterative access of data points is
replaced by the computation of pair-wised similarity
measures. Experimental results on nine popular bench-
mark datasets indicate that the proposed approach gen-
erally outperforms its crisp counterparts (HCCE and
single-linkage agglomerative clustering). Furthermore,
it also has the potential to process big data as the ap-
proach entails a higher time efficiency compared to the
original fuzzy c-means and hierarchical clustering.

Whilst promising, the present work opens up an av-
enue for further investigation. For instance, many other
ensemble member generating methods such as re-
sampling may also be applied for clustering. It would
be useful to examine the performance of the proposed
fuzzy graph using different similarity measures and
also, the effects of the suggested parallel implementa-
tion. Finally, it will be very interesting to implement
this work in a real problem setting which involves big
data.
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