
Aberystwyth University

Analysis of Randomised Search Heuristics for Dynamic Optimisation
Jansen, Thomas; Zarges, Christine

Published in:
Evolutionary Computation

DOI:
10.1162/EVCO_a_00164

Publication date:
2015

Citation for published version (APA):
Jansen, T., & Zarges, C. (2015). Analysis of Randomised Search Heuristics for Dynamic Optimisation.
Evolutionary Computation, 23(4), 513-541. https://doi.org/10.1162/EVCO_a_00164

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Jun. 2022

https://doi.org/10.1162/EVCO_a_00164
https://pure.aber.ac.uk/portal/en/persons/thomas-jansen(56fd5946-bf48-4241-8410-1f5be209c6f1).html
https://pure.aber.ac.uk/portal/en/persons/christine-zarges(140b65a7-99a9-4c4d-bc4e-76c894591b75).html
https://pure.aber.ac.uk/portal/en/publications/analysis-of-randomised-search-heuristics-for-dynamic-optimisation(8071d0ff-ff67-4834-9f78-632ad21c3491).html
https://doi.org/10.1162/EVCO_a_00164

Analysis of Randomised Search Heuristics
for Dynamic Optimisation∗

Thomas Jansen t.jansen@aber.ac.uk
Dep. of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK

Christine Zarges c.zarges@cs.bham.ac.uk
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

Abstract
Dynamic optimisation is an area of application where randomised search heuristics
like evolutionary algorithms and artificial immune systems are often successful. The
theoretical foundation of this important topic suffers from a lack of a generally ac-
cepted analytical framework as well as a lack of widely accepted example problems.
This article tackles both problems by discussing necessary conditions for useful and
practically relevant theoretical analysis as well as introducing a concrete family of dy-
namic example problems that draws inspiration from a well-known static example
problem and exhibits a bi-stable dynamic. After setting the stage this way the frame-
work is made concrete by presenting the results of thorough theoretical and statistical
analysis for mutation-based evolutionary algorithms and artificial immune systems.

Keywords
Dynamic optimisation problems, evolutionary algorithms, artificial immune systems,
theory, fixed budget computations

1 Introduction

Optimisation problems are ubiquitous and not all optimisation problems have the
property that they stay fixed while they are solved by some optimisation algorithm.
Some change over time and if the change is sufficiently fast in comparison to the opti-
misation process the changing nature of the problem has to be taken into account. In
these cases we speak of dynamic optimisation problems and are often confronted with
the situation that no good problem-specific algorithms are available for solving them.
In practice, in such situations often heuristic optimisers are used. There are many dif-
ferent randomised search heuristics that can be applied in this context, among them
evolutionary algorithms and artificial immune systems.

Evolutionary algorithms have been successfully applied in dynamic optimisation
as witnessed by books that are devoted to precisely this topic (Branke, 2002; Weicker,
2003; Morrison, 2004; Yang and Yao, 2013). The theoretical analysis, however, is lag-
ging far behind. While it is common that the theoretical analysis of randomised search
heuristics follows after their successful application, the last two decades have wit-
nessed an immense development in the theory of randomised search heuristics for
static optimisation (Neumann and Witt, 2010; Auger and Doerr, 2011; Jansen, 2013).
This article contributes to the endeavour to carry over this success in the analysis of
static optimisation to dynamic optimisation.

∗ A preliminary version of this work has been presented at the Genetic and Evolutionary Computation
Conference (GECCO) in 2014 (Jansen and Zarges, 2014a).

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

T. Jansen, C. Zarges

1.1 Our Contribution

There are five main contributions of this article, three of them rather general and the
other two rather concrete. The first general contribution is pointing out that the per-
spective of theoretical analysis of dynamic optimisation should change to adopt the
fixed budget computations perspective, a paradigm shift that recently occurred in the
analysis of static optimisation (Jansen and Zarges, 2012; Doerr et al., 2013; Jansen and
Zarges, 2014b,c; Nallaperuma et al., 2014; Lengler and Spooner, 2015). The second gen-
eral contribution is clearly pointing out that the rate of change of the dynamic optimi-
sation problem and the speed of the execution platform that runs the (heuristic) opti-
miser are two different things that should not be confused. We discuss in Subsection 1.2
why this is important. The third general contribution is the presentation of an example
function that, we hope, is sufficiently simple to attract attention in the further analytical
study of randomised search heuristics but is sufficiently interesting to capture impor-
tant properties of real dynamic optimisation problems. It is a bi-stable function that
exhibits phases of stability and rapid change. Its definition is motivated by character-
istics of practical problems in, e. g., pharmaceutical design (see (Tifenbach, 2013, page
126) for a discussion of this aspect). The first concrete contribution is the analysis of a
class of mutation-based evolutionary algorithms and artificial immune systems on this
bi-stable dynamic optimisation problem. This demonstrates that the analytical perspec-
tive of fixed budget computations and our new example problem both provide feasible
settings for theoretical analysis. We choose to study not only evolutionary algorithms
but also artificial immune systems because there is reason to believe that in situations
of rapid change artificial immune systems may have an advantage over evolutionary
algorithms (Jansen and Zarges, 2014c). The second contribution is the first in-depth
analysis of a variant of a well-known artificial immune system that was suggested by
earlier theoretical analysis of artificial immune systems in static optimisation (Jansen
et al., 2011).

1.2 State of the Art in the Theoretical Analysis of Dynamic Optimisation

While dynamic optimisation is an important area of application for many randomised
search heuristics the theoretical analysis lags behind even more than it does for static
optimisation. Bu and Zheng (2010) and Nguyen et al. (2012) both point this out when
discussing the state of the art. Both articles provide an overview of performance
measures for dynamic optimisation, Nguyen et al. (2012) also provide an extensive
overview of benchmark problems. While these benchmarks have value for empiri-
cal studies, they have not proven particularly useful and popular in theoretical stud-
ies. The same holds for the different performance measures that are discussed in both
overview articles. Complex performance measures tend to elude theoretical analysis
and, as a consequence, quite simplistic performance measures dominate in theoretical
analyses of randomised search heuristics in dynamic optimisation. Alternatively, only
very limited aspects of the algorithm are analysed theoretically and the major parts of
the analysis are based on experiments (Stanhope and Daida, 1999).

When considering theoretical analyses we see that they are either based on very
simple example functions, which are based on the most popular static example func-
tions, or they consider very specific (and sometimes complicated) functions that are
designed with a very specific purpose in mind. Typical instances of theoretical anal-
ysis that are based on extremely simple static benchmark functions include work by
Droste (2002, 2003) who analysis a dynamic variant of ONEMAX, where the fitness of a
search point equals the number of bits this string has in common with a target string.

2 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

He concentrates on the first hitting time of the optimum and the (1+1) evolutionary
algorithm (EA), a very simple mutation-based evolutionary algorithm that has a popu-
lation of size 1 and creates only one offspring in each generation. For such algorithms
that perform only a very small number of function evaluations per generation (2 in
this case) it is reasonable to assume that the fitness function does not change during a
generation. Other examples of this kind of research include work by Rohlfshagen et al.
(2009) and Kötzing and Molter (2012). In both articles very specific example functions
are designed in order to prove a specific point. In the case of Kötzing and Molter (2012)
the example function is derived from ONEMAX and the very specific change that is
defined is used to make the difference in dealing with the speed of change between
ant colony optimisers and evolutionary algorithms explicit. In the case of Rohlfshagen
et al. (2009) the custom-design dynamic fitness function is designed to prove the point
that sometimes dynamic functions can be easier to optimise than static variants, con-
trary to common belief and intuition. Another research direction aims at performing
an analysis of the random process as Markov chain in the same way Vose and others
established this for static functions (Vose, 1998). This has been done by Tinos and Yang
(2010, 2013) but with very limited tangible theoretical results. Tinos and Yang (2014)
follow a similar approach, consider a wide range of classes of dynamic optimisation
problems and present a benchmark problem generator. In all three papers the most
significant results are empirical, gained from experiments with example functions.

When the number of function evaluations per generation is larger than just 2 it
becomes dubious if one can simply assume that the dynamic fitness function does not
change during a generation. To the best of our knowledge Branke and Wang (2003) are
the only ones to consider the scenario of change during a generation and provide a de-
tailed analysis of a simple (1, 2) evolution strategy, an algorithm that also performs only
2 function evaluations per generation, for this case. Other articles, among them work
by Jansen and Schellbach (2005), Kötzing et al. (2015), Lissovoi and Witt (2013), Lissovoi
and Witt (2014), Oliveto and Zarges (2013), and Oliveto and Zarges (2014), larger pop-
ulation size or offspring population size are taken into account but it is (sometimes
implicitly) assumed that the fitness function does not change within a generation. This
assumption becomes critical when the effects of the choice of the population size and
of the offspring population size are studied. Increasing the size and consequently the
number of function evaluations in a generation effectively means slowing down the
rate of change in the dynamic objective function. It then becomes unclear if improved
performance is actually due to the increased (offspring) population size or the slower
rate of change.

What most articles also have in common is that they concentrate on the expected
first hitting time of the global optimum (or similar measures). This is motivated by
the fact that the analysis of the expected optimisation time for static optimisation is
the most used and successful performance measure. The step from the analysis of the
expected optimisation time to the analysis of the expected solution quality that is per-
formed when using the fixed budget perspective has not yet been made in theoretical
analyses of dynamic optimisation. It is worth noting that in empirical studies it is
much more common to concentrate on the average solution quality (Bu and Zheng,
2010; Nguyen et al., 2012).

1.3 Organisation of the Article

Using the perspective of fixed budget computations alone is not sufficient to guarantee
that the results of theoretical analyses are meaningful. It is also required that the con-

Evolutionary Computation Volume x, Number x 3

T. Jansen, C. Zarges

sidered algorithms are practically relevant, the range of parameters considered makes
sense in practical settings, and that the considered dynamic problem is either relevant
itself or exhibits properties that are believed to be relevant. We consider the aspect of
the interplay between properties of the problem, parameter settings, and algorithmic
properties in the next section and point out how this can be taken into account in anal-
ysis so that it is no longer overlooked as has happened in the past. In Section 3 we
introduce and carefully motivate the bi-stable dynamic example problem. Section 4
introduces the classes of evolutionary algorithms and artificial immune systems we
consider. For the artificial immune systems we consider a relatively new variant that
in some sense hybridises artificial immune systems and evolutionary algorithms and
exhibits improved performance in a number of circumstances. Section 5 contains our
analysis where we present results for evolutionary algorithms and artificial immune
systems for our benchmark problem in a wide variety of settings. We present theoret-
ical results as well as thorough statistical studies of the results of experiments. This
helps us to gain a deeper understanding and identify open problems. We summarise
and show directions for future research in Section 6.

2 Analysing Randomised Search Heuristics on Dynamic Problems

A dynamic optimisation problem is one that changes over time. Formally, we model
this by saying that the quality of a point in the search space, x ∈ S, is given by the
function value f(x, t) at time step t ∈ N0. Thus, a static optimisation problem can be
described as a degenerated dynamic one where f(x, t) = f(x, t′) holds for all t, t′ ∈ N0.
It is important to note that the time steps are an important property of the problem and
are as such independent of the means to solve this problem, in particular independent
of the heuristic optimisation method we plan to use.

This independence has important consequences. It implies that the speed of
change of the dynamic optimisation problem (expressed as discrete time steps t ∈ N0) is
not related to the speed at which ‘our’ heuristic optimisation method is executed. E. g.,
if we employ a larger population in an evolutionary algorithm we should assume that
the speed of change of the optimisation problem appears to be faster when measured
in the number of generations. The reason is that the speed of change of the optimisa-
tion problem is unchanged but that each generation of the evolutionary algorithm now
takes longer due to the larger population size. As we have pointed out in Section 1.2
this has often been overlooked in the past.

In the analysis of randomised search heuristics one usually considers one evalu-
ation of the objective function f to be an atomic event. Usually, the performance of a
randomised search heuristic is measured in the number of such function evaluations.
This is true for the perspective of run time or optimisation time analysis (Jansen, 2013)
as well as for the perspective of fixed budget computations where the computational
budget is measured as the number of function evaluations (Jansen and Zarges, 2012).

We adopt this point of view and assume that evaluating the objective function
once, i. e., computing f(x, t) for any x ∈ S and any t ∈ N0 can be carried out in one
time step of the dynamic objective function f . We argue that this makes sense because
the computation of the function value f(x, t) is obviously connected to properties of
the function. If one allowed the objective function to change faster it becomes difficult
to see how a function is supposed to be optimisable because in the extreme case it can
change arbitrarily during the time it takes to evaluate a single function value.

Clearly it may be possible to compute f(x, t) in a time that is much faster than that
required by a complete time step of the dynamic objective function. We characterise the

4 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

speed of the computation platform that executes the heuristic optimiser and computes
function values by the number of function evaluations it can make in one time step of
the dynamic objective function.

Definition 1. Let σ ∈ N be the number of function evaluations that can be be carried out
between time steps t and t+ 1. This number is independent of t and characterises the speed of
the execution platform.

Having defined the speed of an execution platform σ we can now investigate two
different kinds of questions. On the one hand, we can investigate how the speed of the
execution platform influences the performance of a fixed optimiser. We expect the per-
formance to increase with increasing speed of the execution platform. Finding out how
this happens can help to understand when it makes sense to invest in better hardware
when being confronted with a dynamic optimisation problem. On the other hand, we
can investigate how different optimisers or the same optimiser with different parameter
settings perform on the same dynamic problem when executed on the same execution
platform, i. e., on an execution platform with a fixed speed σ.

When considering optimisers that work in rounds (or generations), like evolution-
ary algorithms and artificial immune systems do, it is important to see if the dynamic
optimisation problem can change within one such round. As we have pointed out in
Section 1.2 almost all previous work assumes that this does not happen (with the ex-
ception of the analysis by Branke and Wang (2003)). In this article we also work under
the assumption that no change happens within one round. This means that σ needs to
be sufficiently large so that one round can be executed completely (or, the other way
around, that the optimiser needs to be parameterised so that it performs at most σ func-
tion evaluations per round). We make the assumption that optimisers are unaware of
the time steps and do not know when the dynamic optimisation problem may change.
The execution platform makes sure that one round of an optimiser is carried out in one
time step of the dynamic optimisation problem so that the values of search points do
not change during one round. If the optimiser makes ρ function evaluations in each
round, then the execution platform performs bσ/ρc rounds in one time step of the dy-
namic optimisation problem.

As mentioned in Section 1 we adopt the fixed budget perspective for our analysis.
We believe it makes more sense to have a statement about the performance of an opti-
miser tackling a dynamic optimisation problem at any point of time instead of concen-
trating on one specific aspect like the first hitting time of a (potentially moving) global
optimum. Instead of considering the function values, as it is common in fixed budget
analyses (Jansen and Zarges, 2012), we consider the difference in function value to the
optimal function value. This slight change of perspective allows for a somewhat more
natural formulation of performance. Note that the following definition formalises the
notion of efficiency roughly and only makes sense for objective functions with certain
properties. It makes the implicit assumption that it is very easy to find search points
with a distance of Θ(n) in function value to the optimal value and becomes increasingly
difficult to improve over that.

Definition 2. For g, t ∈ N0 let f(x, t) denote the function value in time step t of the dy-
namic optimisation problem and let g denote the round (or generation) of an optimiser for
f . Let ρ(g) ∈ N denote the number of function evaluations that the optimiser makes in
round g, let x(g)

1 , x(g)
2 , . . . , x(g)

ρ denote the search points that it evaluates in this round.
Let OPT(t) = max {f(x, t) | x ∈ S} denote the optimal function value in time step t.
We define the distance in function value to the optimal value in round g as M(g) :=

Evolutionary Computation Volume x, Number x 5

T. Jansen, C. Zarges

min
{

OPT(t)− f
(
x

(g)
i

)
| i ∈ {1, 2, . . . , ρ}

}
.

We say that the optimiser has perfect performance in generation g if M(g) = 0 holds.
We say that its performance is good in generation g if it does not perform perfectly but if
M(g) = O(1) holds. We say that its performance is mediocre in generation g if its performance
is neither perfect nor good but if M(g) = o(n) holds. We say that its performance is bad in
generation g if E(M(g)) = Θ(n) holds.

Note that Definition 2 makes use of the distance M(g) in most cases but considers
E(M(g)) in the case of bad performance. Since we consider randomised search heuris-
tics (namely, evolutionary algorithms and artificial immune systems)M(g) is a random
variable. Therefore, we will make statements about performance that is better than bad
by giving bounds on the probability for such a performance.

3 A Dynamic Example Problem

The example problem we introduce is inspired by the example problem ONEMAX, the
most commonly studied example problem when analysing the performance of ran-
domised search heuristics in static optimisation. Like ONEMAX, it has a very simple
structure that facilitates analysis and understanding while having properties that are
natural in some sense. It is a bi-stable function, i. e., it oscillates between two different
global optima where it is stable for some time. In phases of change the change is rapid.

The function is a pseudo-Boolean function, i. e., it operates on bit strings. At any
point in time t the function value is given as the number of bits where a bit string agrees
with the current global optimum. We see that the function values are always integers
between 0 and n and that n is the global maximum. This is precisely the same as a
generalised ONEMAX where the unique global optimum is some fixed bit string. For
our example function the two stable global optima are o and its bit-wise complement,
o, where the bit string o ∈ {0, 1}n is a parameter of the function.

The length of the stable phases is also a parameter of the function, called τ ∈ N. The
search point o is the unique global optimum for a duration of τ steps. After this stable
phase the global optimum moves gradually in a random but orderly fashion towards
its bit-wise complement, o. Once o is the unique global optimum the function is stable
again for τ time steps. After this stable phase the global optimum moves gradually
back to o, structurally using the same path but avoiding repetition of any intermedi-
ate points. In the non-stable phases where the optimum moves we have it move by
changing exactly one bit in one time step. We see that this implies that the example
function has a period of length Π = 2(τ + n − 1), i. e., f(x, t) = f(x, t + k · Π) for all
k, t ∈ N0 and all x ∈ {0, 1}n. We will use binary masks to define the transition formally
in Definition 3 similarly to the way Yang and Yao (2005) have introduced binary masks
to define dynamic problem generators.

In the transition where the global optimum moves from o to o the bits change
their values in an order so that the bits equal to o always form one contiguous block.
One could also consider a somewhat simpler variant of this function where the next
bit to change its value is selected uniformly at random among the bits that have not
yet changed their value. While for mutation-based evolutionary algorithms such a
change in the dynamic problem is unimportant it can have consequences for other al-
gorithms. Those algorithms potentially affected include evolutionary algorithms with
k-point crossover and some artificial immune systems, notably the B cell algorithm.
Since we consider the latter we consider the variant where unchanged bits form a con-
tiguous block.

6 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

We define the example function that we call BSOo,τ (short for Bi-Stable
Optimisation problem) formally and precisely in the following. For this we make use
of the well-known notation for the concatenation of letters. For a letter b ∈ {0, 1} and a
length i ∈ N0 we define bi as the concatenation of i copies of b, e. g., 14 = 1111. For i = 0
we obtain the empty word, i. e., b0 = ε. As usual, b1 = b holds. We allow the concate-
nation of such expressions, e. g., 1203100114 = 1100001111. For two bits u, v ∈ {0, 1}
let u ⊕ v denote the exclusive OR of u and v, i. e., u ⊕ v = 0 if u = v and u ⊕ v = 1 if
u 6= v. For two bit strings x, y ∈ {0, 1}n of equal length n let x ⊕ y denote the bit-wise
exclusive OR of x and y, e. g., 0110⊕ 1100 = 1010. Finally, let H(x, y) denote the Ham-

ming distance of x and y, i. e., H(x, y) =
n−1∑
i=0

|x[i]− y[i]|. Note that x[i] denotes the bit

at position i in x ∈ {0, 1}n and that the leftmost position is x[0].

Definition 3. For n ∈ N, τ ∈ N and o ∈ {0, 1}n we define the bi-stable optimisation problem
BSOo,τ : {0, 1}n × N0 → N0. We define the cycle length Π := 2(τ + n − 1). For t ∈ N0 let
t′ = t mod Π denote the time index in the current period. Let x∗(t) ∈ {0, 1}n be the unique
global optimum at time step t. We define x∗(t) with the help of transition masks which we will
define later.

x∗(t) :=


o if t′ ∈ [0, τ − 1],
o⊕Mbt/Πct′−τ if t′ ∈ [τ, τ + n− 2],
o if t′ ∈ [τ + n− 1, 2τ + n− 2],
o⊕Mbt/Πct′−(2τ+n−1) if t′ ∈ [2τ + n− 1,Π− 1],

Given x∗(t), we define BSOo,τ (x, t) := n−H(x, x∗(t)).
To define the transition from o to o we use transition masks M c

s ∈ {0, 1}n (for s ∈
{0, 1, . . . , n − 2}) where c ∈ N0 denotes the number of the period (so that the random tran-
sition is potentially different in each period). Note that with c = bt/Πc we have t = c · Π + t′.
When we define M c

s ∈ M for some setM this means that M c
s is selected uniformly at random

fromM.
We define M c

0 ∈
{

0i10n−i−1 | i ∈ {0, 1, . . . , n− 1}
}

. For s ∈ {1, 2, . . . , n − 2} and
c ∈ N0 we define

M c
s ∈

{{
0i−11s+10n−i−s, 0i1s+10n−i−s−1

}
if M c

s−1 ∈
{

0i1s0n−i−s | i ∈ [1, n− s− 1]
}

,{
1i+10n−s−11s−i, 1i0n−s−11s−i+1

}
if M c

s−1 ∈
{

1i0n−s1s−i | i ∈ [0, s]
}

.

The definition of the transition masks M c
s ensures that the unique global optimum

moves from o to o in a very specific way. The bits where o and o⊕M c
s differ are always in

one contiguous block if one allows for blocks that are ‘wrapping around’, i. e., not end-
ing at the right end of the bit string but being considered as continuing at the beginning.
This can help artificial immune systems which make use of contiguous hypermutations
(Kelsey and Timmis, 2003) since those mutations always flip some contiguous blocks
of bits and have a much better chance of performing such a mutation than standard bit
mutations that are used in evolutionary algorithms.

To further clarify the definition of BSOo,τ we present a small example for n = 4,
o = 0110 and τ = 6. We consider the location of the unique global optimum for each
step of the first period, i. e., for each t ∈ {0, 1, . . . ,Π − 1} with Π = 2(τ + n − 1) = 18
in our example. To do this we need to fix the random transition masks and decide
M0

0 = 1000, M0
1 = 1100, M0

2 = 1101, M0
3 = 1111. Note that the first mask is selected

Evolutionary Computation Volume x, Number x 7

T. Jansen, C. Zarges

uniformly at random from the n masks with exactly one 1-bit and the other masks
are selected uniformly at random from the two possible masks that extend the current
block of 1-bits either to the left and right. The final mask, M0

3 , was not actually random
since there was only one choice left. We depict the sequence of unique global optima in
Figure 1.

x∗t :

t: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

01
10

01
10

01
10

01
10

01
10

01
10

11
10

10
10

10
11

10
01

10
01

10
01

10
01

10
01

10
01

00
01

01
01

01
00

Figure 1: Example: Sequence of unique global optima for BSO0110,6 with ‘random’
transition masks M0

0 = 1000, M0
1 = 1100, M0

2 = 1101, M0
3 = 1111. The stable

phases are marked in gray. Bits in the global optima differing from the predecessor are
printed in bold.

Using the same visualisation as in Figure 1 we depict an abstract version of the
way the unique global optimum moves in Figure 2, this time for two complete periods.
It also shows the change from the transition masks from M0

i to M1
i from the first to

the second period. The random choice of the transition masks indicates that it is much
more useful to remember the unique global optima from the stable phases, o and its
bit-wise complement o, than it is to remember the intermediate points.

x∗t :

t: 0 1

τ
−

1 τ

τ
+

1

τ
+
n
−

2

τ
+
n
−

1

τ
+
n

2τ
+
n
−

2

2τ
+
n
−

1

2τ
+
n

Π
−

1 Π

o o · · · o o
⊕
M
0
0

o
⊕
M
0
1

· · · o
⊕
M
0
n
−2

o o · · · o o
⊕
M
0
0

o
⊕
M
0
1

· · · o
⊕
M
0
n
−2

o

Π
+

1

Π
+
τ
−

1

Π
+
τ

Π
+
τ
+

1

Π
+
τ
+
n
−

2

Π
+
τ
+
n
−

1

Π
+
τ
+
n

Π
+

2τ
+
n
−

2

Π
+

2τ
+
n
−

1

Π
+

2τ
+
n

2Π
−

1
2Π

o · · · o o
⊕
M
1
0

o
⊕
M
1
1

· · · o
⊕
M
1
n
−2

o o · · · o o
⊕
M
1
0

o
⊕
M
1
1

· · · o
⊕
M
1
n
−2

o

Figure 2: Sequence of unique global optima for BSOo,τ for bit string length n, first
cycle and first global optimum of second cycle. The stable phases are marked in gray.

4 Evolutionary Algorithms and Artificial Immune Systems

We consider one evolutionary algorithm and two variants of an artificial immune sys-
tem. The evolutionary algorithm is known as (µ+λ) evolutionary algorithm (EA), uses
a population of size µ, uniform selection for reproduction, generates λ independently
identically distributed offspring by means of standard bit mutations (Algorithm 1) with
mutation probability 1/n (and no crossover) and employs plus-selection to select the
population for the next generation (see, e. g., Jansen (2013)). A formal description is
given as Algorithm 2.

Algorithm 1: Standard Bit Mutation (SBM)
Input: x ∈ {0, 1}n

1 for k ∈ {1, . . . , n}
2 With probability 1/n, invert the bit x[k];

8 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

Algorithm 2: (µ+λ) evolutionary algorithm (EA)
Input: µ, λ

1 Let g := 0 and choose x(g)
1 , . . . , x

(g)
µ ∈ {0, 1}n independently uniformly at

random (u. a. r.);
2 repeat
3 Set g := g + 1;
4 for i ∈ {1, 2, . . . , λ} // Variation

5 Select yi ∈ {x(g−1)
1 , . . . , x

(g−1)
µ } u. a. r.;

6 Perform SBM(yi) // see Algorithm 1 ;

7 Selection: Sort x(g−1)
1 , . . . , x

(g−1)
µ , y1, . . . , yλ descending according to fitness,

break ties by sorting y1, . . . , yλ in front of x(g−1)
1 , . . . , x

(g−1)
µ , break remaining

ties u. a. r. Set x(g)
1 , . . . , x

(g)
µ to the first µ elements from this sorted sequence.

8 until some termination condition is met;

The artificial immune system is the B-cell algorithm as introduced by Kelsey and
Timmis (2003). It uses a population of size µ, generates λ clones for each member of
the population, and applies somatic contiguous hypermutations (Algorithm 3) to all
and additionally standard bit mutation (Algorithm 1) to one of them. It applies plus-
selection between each member of the population and its clones. A formal description
is given as Algorithm 4.

Algorithm 3: Somatic Contiguous Hypermutation (CHM)
Input: x ∈ {0, 1}n

1 Select p ∈ {0, 1, . . . , n− 1} uniformly at random;
2 Select l ∈ {0, 1, . . . , n} uniformly at random;
3 for k ∈ {0, 1, . . . , l − 1}
4 Invert the bit x[1 + ((p+ k) mod n)];

We additionally consider a variant of the B-cell algorithm suggested by Jansen et al.
(2011). The only difference is that somatic contiguous hypermutations are applied to
the individual undergoing standard bit mutation with probability pCHM. Thus, with
probability 1 − pCHM one of the offspring is subject to standard bit mutations, only.
To obtain a formal description, we replace lines 6–11 in Algorithm 4 by Algorithm 5.
Usually we want the probability pCHM to be some positive constant strictly less than 1.
For experiments we will use pCHM = 1/2 and invite the reader to think of pCHM as this
value in all contexts. For theoretical results we will be more general and mention for
what range of probabilities the statements hold.

We summarise the three algorithms considered in this work:

Definition 4. In the following, we refer to Algorithm 2 simply as EA. We call Algorithm 4
BCA and denote Algorithm 4 using Algorithm 5 BCA∗.

For the algorithms we assume that whenever a fitness value f(x) is computed this
is automatically translated to the appropriated evaluation BSOo,τ (x, t) with parameters
o and τ and correct current time step t without the need for the algorithm to be aware
of the values of o, τ and t. We keep track of ‘time’ inside the algorithms by means of a
generation counter g.

Evolutionary Computation Volume x, Number x 9

T. Jansen, C. Zarges

Algorithm 4: The B-Cell Algorithm (BCA)
Input: µ, λ

1 Let g := 0 and choose x(g)
1 , . . . , x

(g)
µ ∈ {0, 1}n independently uniformly at

random (u. a. r.);
2 repeat
3 Set g := g + 1;
4 for i ∈ {1, . . . , µ} // Clonal expansion

5 for j ∈ {1, . . . , λ} Set yi,j := x
(g−1)
i ;

6 for i ∈ {1, . . . , µ} // Standard bit mutation
7 Select j ∈ {1, . . . , λ} u. a. r.;
8 Perform SBM(yi,j) // see Algorithm 1 ;

9 for i ∈ {1, 2, . . . , µ} // Hypermutation
10 for j ∈ {1, 2, . . . , λ}
11 Perform CHM(yi,j) // see Algorithm 3 ;

12 for i ∈ {1, 2, . . . , µ} // Selection

13 if f(x
(g−1)
i) ≤ max{f(yi,1), . . . , f(yi,λ)} then

14 Set x(g)
i := yi,j where f(yi,j) = max{f(yi,1), . . . , f(yi,λ)}, break ties

u. a. r.;
15 else
16 Set x(g)

i := x
(g−1)
i

17 until some termination criterion is met;

As discussed in Section 2, we assume that the execution platform ensures that val-
ues of search points do not change during one round, i. e., one generation can be carried
out within one time step of the dynamic optimisation problem. For the algorithms con-
sidered here this means that we need to have µ(λ+ 1) ≤ σ for the BCA and BCA∗ and
µ + λ ≤ σ for the EA as these are the numbers of function evaluations per generation
for the two algorithms.

5 Analysis of Evolutionary Algorithms and Artificial Immune Systems for
the Dynamic Bi-Stable Example Problem

5.1 Heuristic Dynamic Optimisation with a Slow Execution Platform

We start our analyses by considering slow execution platforms with σ = Θ(1) and
compare the three algorithms introduced in Section 4 for three different lengths of the

Algorithm 5: Modified BCA Mutation
Input: µ, λ, pCHM

6 for i ∈ {1, . . . , µ}
7 Select g ∈ {1, . . . , λ} u. a. r. // Standard bit mutation;
8 Perform SBM(yi,g) // see Algorithm 1 ;
9 With probability pCHM, perform CHM(yi,g) // Algorithm 3 ;

10 for j ∈ {1, 2, . . . , λ}, j 6= g // Hypermutation
11 Perform CHM(yi,j) // see Algorithm 3 ;

10 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

stable interval in this setting: τ = n, τ = n3/2, and τ = n3. Note that σ = Θ(1) implies
µ = Θ(1) and λ = Θ(1) since we assume that one generation can be carried out within
one time step of the dynamic optimisation problem.

5.1.1 Short Stable Intervals
We show that all three algorithms fail to catch up with the global optimum if the stable
phase is short, i. e., τ = n. We start with an analysis of the EA and afterwards transfer
the theoretical results to the two variants of the BCA.

Theorem 5. Let τ = n, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The EA
(Definition 4) is always bad in the first nO(1) steps with probability converging to 1.

Proof. Since µ = Θ(1), all initial search points have Hamming distance Θ(n) to the
optimum with probability exponentially close to 1. We first consider the situation dur-
ing a stable phase of length τ , i. e., while the optimum does not move. Let d denote
the current Hamming distance to the optimum. The expected decrease in distance
in one mutation is bounded above by (d/n)(1 − 1/n)n−d. For d < n we have that
(1− 1/n)n−d < c < 1 for some appropriately chosen constant c ∈ (0, 1). We see that the
expected decrease in distance in nλ mutations, i. e., n generations, is bounded above
by (d/n)c · nλ = cdλ < dλ. Application of Chernoff bounds yields that the probabil-
ity to decrease the distance by at least c(1 + ε)dλ is bounded above by e−Ω(dλ) for all
positive constant ε. We can choose ε = (1 − c)/(2cλ) which guarantees that ε > 0 and
c(1 + ε)d < d both hold. For d = Θ(n) the probability is exponentially small and the
claim follows.

Outside the stable phases the optimum is moving. If the optimum is moving away
from the current search point it is even more unlikely to decrease the Hamming dis-
tance to o(n). For the case where it moves towards the current search point assume
that the optimum moves from o to o (the other case is symmetric). We consider all
points with equal distance from the search point o. Due to symmetry reasons all these
points have equal probability to become the current search point. The moving global
optimum will hit exactly one of these points. Since the current search point has linear
Hamming distance to o there are exponentially many such search points and it is ex-
ponentially unlikely that the global optimum decreases the Hamming distance to the
current search point below c′n for some sufficiently small constant c′ > 0.

Theorem 6. Let τ = n, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ. The BCA
(Definition 4) is always bad in the first nO(1) steps with probability converging to 1.

Proof. Again, after initialisation all search points have Hamming distance Θ(n) to the
optimum with probability exponentially close to 1. For the BCA we observe that the
probability for any specific mutation is Θ

(
1/n2

)
. This implies that the probability to

decrease the Hamming distance to the global optimum by any constant is significantly
smaller than for the EA. Since the initial search point is selected uniformly at random
the probability that the Hamming distance can be decreased by ω(log n) is superpoly-
nomially small. When optimising ONEMAX this does not change significantly (Jansen
and Zarges, 2011). This implies that the BCA performs at most as well as the EA.

Theorem 7. Let τ = n, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ and
pCHM ∈ [0, 1]. The BCA∗ (Definition 4) is always bad in the first nO(1) steps with probability
converging to 1.

Evolutionary Computation Volume x, Number x 11

T. Jansen, C. Zarges

Proof. In the proof of Theorem 6 we have seen that the probability to decrease the Ham-
ming distance by ω(log n) by means of contiguous hypermutations is superpolynomi-
ally small. Additionally applying one standard bit mutation to one of the offspring
does not change this. It is not important if we apply only standard bit mutation or
standard bit mutation together with contiguous hypermutations. Therefore, the value
of pCHM is not important and the results follows in the same way.

The above theorems prove that all three algorithms perform badly in the consid-
ered setting and fail to catch up with the global optimum. However, the theoretical
results obtained are rather abstract and only provide a coarse picture of the situation at
hand. We therefore consider the results of experiments to provide a more concrete and
clear picture. All experiments comprise of 100 independent runs of the three consid-
ered algorithms for n = 100, σ = 2, and λ = µ = 1. For the BCA∗ we set pCHM = 1/2.
We display average fitness function values over these runs in Figure 3a and indicate
start and end of stable intervals by vertical lines. Note that the x-axis displays time
steps as defined by the dynamic problem, not generations or function evaluations. In
one time step up to σ function evaluations are made (potentially ‘wasting’ function
evaluations if there are not enough function evaluations left in the current time step
to accommodate a complete generation). The algorithms we consider perform either
λ + µ function evaluations (the EA) or µ(λ + 1) function evaluations (the BCAs) per
generation. Since we have σ = 2 and λ + µ = µ(λ + 1) = 2 here we do have that time
steps and generations coincide in this case.

We see that all three algorithms are bad as predicted by Theorems 5, 6, and 7 and
are not able to reduce the distance to 20 or below (corresponding to fitness 80 or above).
We see that the EA gets clearly closer to the global optimum in the stable phases than
the BCA and has worse fitness when the optimum moves rapidly. Note that our the-
oretical results are too coarse to reveal these differences. The BCA∗ seems to combine
the advantages of the other two algorithms and thus, performs best with respect to the
observed average function values.

In order to investigate the significance of these experimental results we have per-
formed Wilcoxon signed rank tests (Lehmann, 2006) for each pair of algorithms and
each iteration. Due to the large number of tests for each pair, we perform Holm-
Bonferroni correction (Holm, 1979) and depict the resulting p-values in Figure 4a along
with the standard confidence level of 0.05.

Here and in the following the diagrams showing the results of the Wilcoxon signed
rank tests confirm that, roughly speaking, differences in functions values which are
clearly visible tend to be statistically significant. In time steps where the function values
of the potential solutions are very similar or even intersect there are no statistically
significant differences, of course. The interested reader can see the details in those
plots.

5.1.2 Long Stable Intervals
We now consider a longer stable period, i. e., τ = n3/2. We see that this length is still
not sufficiently long for the BCA, however, both the EA and the BCA∗ are now able to
catch up with the global optimum.

Theorem 8. Let τ = n3/2, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The BCA
(Definition 4) is always bad in the first nO(1) steps with probability converging to 1.

Proof. The statement follows from the proof of Theorem 6. There we have argued that
the expected decrease in distance for the BCA is O

(
log(n)/n2

)
per generation. Thus,

12 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

0

10

20

30

40

50

60

70

80

90

100

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(a) τ = 100 (Th. 5, 6, 7)

0

10

20

30

40

50

60

70

80

90

100

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(b) τ = 1000 (Th. 8, 9, 10)

0

10

20

30

40

50

60

70

80

90

100

10
00

00
0

10
00

09
9

99
97

00

10
03

30
0

Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(c) τ = 106 (Cor. 11, 13; Th. 12)

Figure 3: Visualisation of experiments showing average fitness values over time over
100 independent runs for all three algorithms on BSOo,τ for n = 100, σ = 2, µ = λ = 1,
pCHM = 0.5, and different values of τ . Vertical lines indicate start and end of stable
intervals.

the expected decrease in O
(
n3/2

)
generations is bounded above by O

(
log(n)/n1/2

)
and

the result follows since in the phases where the optimum moves it is increased with
probability converging to 1 as shown in the proof of Theorem 6.

Theorem 9. Let τ = n3/2, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The EA
(Definition 4) becomes perfect after O(n log n) steps, remains perfect for the remaining Θ(τ)
steps of the stable phase and becomes bad again in the next n steps with probability converging
to 1. This behaviour is repeated in the next nO(1) steps with probability converging to 1.

Proof. The statement about the repeating behaviour is a direct consequence of the first
statement when applying the union bound. We see that the EA becomes perfect after
O(n log n) steps and remains perfect as long as the optimum does not change as we did
in the proof of Theorem 5. Now consider the subsequent n steps where the optimum
changes by 1 bit in each of the steps. If the Hamming distance to the global optimum
and the current search point is d the probability that the EA is able to decrease the
Hamming distance is bounded above by d/n. We see that in n steps a Hamming dis-
tance d = Θ(n) is reached with probability exponentially close to 1. After the global
optimum has reached either o or o we are in a simulation very similar to the one after
initialisation and we can repeat the argument.

Theorem 10. Let τ = n3/2, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ and
0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) becomes perfect after O(n log n)
steps, remains perfect for the remaining Θ(τ) steps of the stable phase and becomes bad again in
the next n steps with probability converging to 1. This behaviour is repeated in the next nO(1)

steps with probability converging to 1.

Proof. We consider only the offspring which are created with application of standard
bit mutation. With probability 1− pCHM = Ω(1) such an offspring is not also subject to
a contiguous hypermutations. For those offspring the probability distribution is iden-
tical to the offspring in the EA. Since all values involved (the speed of the execution
platform σ, the number of individuals µ and offspring λ) are constants the introduction
of the factor 1 − pCHM = Θ(1) does not change anything significantly. Therefore, the
statements about becoming and remaining perfect follow from the proof of Theorem 9.

Evolutionary Computation Volume x, Number x 13

T. Jansen, C. Zarges

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(a) τ = 100 (Theorems 5, 6, 7)

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(b) τ = 1000 (Theorems 8, 9, 10)

0.00

0.25

0.50

0.75

1.00

10
00

00
0

10
00

09
9

99
97

00

10
03

30
0

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

10
00

00
0

10
00

09
9

99
97

00

10
03

30
0

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

10
00

00
0

10
00

09
9

99
97

00

10
03

30
0

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(c) τ = 106 (Corollaries 11, 13; Theorem 12)

Figure 4: Visualisation of experiments showing p-values of the Wilcoxon tests after
Holm-Bonferroni correction over 100 independent runs for all three algorithms on
BSOo,τ for n = 100, σ = 2, µ = λ = 1, pCHM = 0.5 and different values of τ (cf
Theorems 5, 6, and 7). Vertical lines indicate start and end of stable intervals.

14 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

We have already seen in the proof of Theorem 8 that contiguous hypermutations do
not help in avoiding becoming bad. Therefore, the complete statement follows.

We again perform experiments to get a more complete picture and depict the re-
sults in Figure 3b and 4b in the same way as in the previous subsection. We see that
the BCA is still not able to keep up with the global optimum. While the EA reaches
the global optimum just before the end of the stable phase, the BCA∗ is not quite as
successful. On first sight this seems to be a contradiction to Theorem 10. However, we
stress that all our results are asymptotic and thus, O(n log n) can still be smaller than
τ = n3/2 for n = 100. We remark that for n = 1000 we obtain the results predicted by
Theorem 10. We omit a visualisation of these results due to space restrictions.

5.1.3 Very Long Stable Intervals
Finally, we consider very long stable intervals, i. e., τ = n3. It does not come as a sur-
prise that in settings where an algorithm was already good for shorter stable intervals
this continues to be the case here. Moreover, the longer stable phases allows the BCA to
catch up with the global optimum, too, whereas the stable phase of length n3/2 was too
short for this. All results here are quite direct consequence from results in the earlier
subsections.

Corollary 11. Let τ = n3, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The EA
(Definition 4) becomes perfect after O(n log n) steps, remains perfect for the remaining Θ(τ)
steps of the stable phase and becomes bad again in the next n steps with probability converging
to 1. This behaviour is repeated in the next nO(1) steps with probability converging to 1.

Proof. Follows directly from Theorem 9 since a longer stable interval cannot decrease
the performance of the algorithm.

Theorem 12. Let τ = n3, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ. The
BCA (Definition 4) becomes perfect after O

(
n2 log n

)
steps, remains perfect for the remaining

Θ(τ) steps of the stable phase and becomes mediocre or bad in the next n steps with probability
converging to 1. We call this a phase. In the next p(n) = nO(1) phases this behaviour is repeated
in p(n)− o(p(n)) phases with probability converging to 1.

Proof. Theorem 8 in (Jansen and Zarges, 2011) proves an upper bound of O
(
n2 log n

)
for the BCA on ONEMAX. This implies that the BCA becomes perfect after O

(
n2 log n

)
steps and remains perfect for the remaining Θ(τ) steps of the stable phase. That it be-
comes mediocre or bad in the next n steps, when the optimum changes rapidly, follows
from the proof of Theorem 6. Since all this happens with probability very close to 1 the
statement about the repetition in a polynomial number of phases follows.

Corollary 13. Let τ = n3, σ = Θ(1), µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ and
0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) becomes perfect after O(n log n)
steps, remains perfect for the remaining Θ(τ) steps of the stable phase and becomes bad again in
the next n steps with probability converging to 1. This behaviour is repeated in the next nO(1)

steps with probability converging to 1.

Proof. Follows directly from Theorem 10 since a longer stable interval cannot decrease
the performance of the algorithm.

Again we perform experiments to get a more complete picture and depict the re-
sults for the most interesting time steps (around the unstable interval) in Figure 3c and
4c. The experiments match the predictions in our theorems.

Evolutionary Computation Volume x, Number x 15

T. Jansen, C. Zarges

5.2 Heuristic Dynamic Optimisation with a Fast Execution Platform

In this subsection we consider the situation when we have a faster execution platform.
We consider the situation when the execution platform is able to make σ = Θ

(
n3/2

)
function evaluations in one time step of the dynamic optimisation problem. This al-
lows us to consider the algorithms with larger number of search points and study the
effects of this. The comparison is fair and meaningful since all algorithms have the
same computational budget each time the dynamic problem has the chance to change.
In this paper we restrict our attention to larger offspring population size λ and leave
the number of search points µ an algorithm uses as bases for its search restricted to
µ = Θ(1). Studying the effects of larger populations is beyond the scope of this article.
We conjecture that having larger values for µ makes only sense with either more com-
plex dynamic optimisation problems or when one additionally employs mechanisms
to make the population maintain some level of diversity (or both). See work by Oliveto
and Zarges (2014) for an example of such a study.

5.2.1 Short Stable Intervals
We begin with the consideration of very small offspring populations, i. e., λ = Θ(1).
This means we invest the increased speed of the execution platform into having more
generations per time step.

Theorem 14. Let τ = n, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The EA

(Definition 4) is always perfect after the first step for nO(1) steps with probability converging to
1.

Proof. It is well known that the expected optimisation time of the EA with µ = λ = 1
on ONEMAX is Θ(n log n) and that the probability not to be finished in O

(
n3/2

)
genera-

tions is exponentially small (Jansen, 2013). This implies that the EA performs perfectly
after one step with overwhelming probability. After this it will remain perfect while
the optimum does not move. When the optimum moves it changes by 1 bit in each
step. In a single step the EA generates bσ/2c offspring by means of standard bit muta-
tion. The probability that none of these equals the new optimum is bounded above by(
1− (1/n)(1− 1/n)n−1

)Θ(n3/2)
= e−Ω(n1/2). Thus, the probability to be always perfect

for the next nO(1) steps is 1− nO(1) · e−Ω(n1/2) = 1− e−Ω(n1/2).

Theorem 15. Let τ = n, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ(1) with µ(λ+1) ≤ σ. The BCA

(Definition 4) becomes perfect afterO
(
n1/2 log n

)
steps, remains perfect for the remaining Θ(τ)

steps of the stable phase and becomes bad again in the next n steps with probability converging
to 1. This behaviour is repeated in the next nO(1) steps with probability converging to 1.

Proof. In each step the BCA performs Θ(σ) = Θ
(
n3/2

)
generations. In the beginning

we have a stable phase and BSOo,τ is ONEMAX-like for τ steps. It is known that
the BCA optimises this function on average and with probability very close to 1 in
O
(
n2 log n

)
generations (Jansen and Zarges, 2011). Thus, it reaches the optimum in a

stable phase within the first O
(
n1/2 log n

)
steps with probability converging to 1. The

second part of the statement follows from the proof of Theorem 6. When the optimum
starts moving the probability to decrease the Hamming distance by 1 in 1 generation is
O
(
1/n2

)
. Thus, the BCA remains perfect only with probability O

(
1/n1/2

)
. Remember

that also for larger Hamming distances the expected decrease in distance is bounded by
O
(
log(n)/n2

)
. Thus, with probability converging to 1, the Hamming distance becomes

linear in n steps.

16 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

50

60

70

80

90

100

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(a) τ = 100 (Th. 14, 15, and 16)

50

60

70

80

90

100

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(b) τ = 1000 (Th. 21, 22, 23)

50

60

70

80

90

100

00 2400
Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(c) τ = 106 (Th. 27, 28, 29)

Figure 5: Visualisation of experiments showing average fitness values over time over
100 independent runs for all three algorithms on BSOo,τ for n = 100, σ = 1001, µ =
λ = 1, pCHM = 0.5, and different values of τ . Vertical lines indicate start and end of
stable intervals.

Theorem 16. Let τ = n, σ = Θ
(
n3/2

)
, µ = Θ(1), λ = Θ(1) and 0 < pCHM < 1 with

pCHM = Θ(1) with µ(λ+ 1) ≤ σ. The BCA∗ (Definition 4) is always perfect after the first step
for nO(1) steps with probability converging to 1.

Proof. The proof makes use of the same idea as the proof of Theorem 10. In each gener-
ation we consider only the offspring that is created by means of standard bit mutation
and that with probability 1 − pCHM = Θ(1) is not also subject to a contiguous hyper-
mutation. Again, the introduction of this constant factor does not change anything
significantly and the result is a direct consequence of Theorem 14.

We again perform experiments and present their results in Figure 5a and 6a.
The alternative to sticking with small offspring population sizes and having as

many generations per time step as possible is to increase the offspring population size.
Of course, the execution platform needs to be fast enough to execute at least one com-
plete iteration of the three considered algorithms. The number of function evaluations
for the EA equals µ + λ = λ + 1 (since we have µ = 1) and for the two BCA variants
it equals µ · (λ + 1) = λ + 1 (since we have µ = 1). This implies that λ ≤ σ − 1 needs
to hold. We restrict our attention to the extreme case where λ = Θ(σ), i. e., to the case
where the offspring population size of so large that the number of generations per time
step is bounded above by a constant.

Theorem 17. Let τ = n, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ + λ ≤ σ.

The EA (Definition 4) is always perfect after the first O(n) steps for the next nO(1) steps with
probability converging to 1.

Proof. We consider the situation directly after initialisation and denote with d the cur-
rent Hamming distance to the optimum. Clearly, d ≤ n holds. The probability to
decrease the Hamming distance by at least 1 in a single generation of the EA with
λ = Θ

(
n3/2

)
is at least

1−

(
1− 1

n
·
(

1− 1

n

)n−1
)Θ(n3/2)

= 1− e−Ω(
√
n)

Evolutionary Computation Volume x, Number x 17

T. Jansen, C. Zarges

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(a) τ = 100 (Theorems 14, 15, 16)

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(b) τ = 1000 (Theorems 21, 22, 23)

0.00

0.25

0.50

0.75

1.00

00 2400
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

00 2400
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

00 2400
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(c) τ = 106 (Theorems 27, 28, 29)

Figure 6: Visualisation of experiments showing p-values of the Wilcoxon tests after
Holm-Bonferroni correction over 100 independent runs for all three algorithms on
BSOo,τ for n = 100, σ = 2, µ = λ = 1, pCHM = 0.5 and different values of τ . Verti-
cal lines indicate start and end of stable intervals.

18 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

and the probability to see up to d ≤ n such decreases in d subsequent generations is
at least 1 − d · e−Ω(

√
n) = 1 − e−Ω(

√
n). Thus, after at most n generations, the EA is

perfect. Since the EA executes n generations within the first τ = n steps, i. e., before the
optimum starts moving, the first claim follows.

Outside the stable phases the optimum is moving, however, in each step only a
single bit of the current optimum changes. Thus, again with probability 1 − e−Ω(

√
n),

the EA is able to catch up with this change and the probability to be always perfect for
the next nO(1) steps is 1− nO(1) · e−Ω(

√
n) = 1− e−Ω(

√
n).

For the BCA things are rather tight for this kind of setting. We start with proving a
statement about the expected number of iterations the BCA with λ = Θ

(
n3/2

)
needs to

optimise ONEMAX. We use this result to establish a result for the BCA in a setting that
is a bit weaker than what we normally consider.

Lemma 18. The BCA with µ = Θ(1) and λ = Θ
(
n3/2

)
(Definition 4) finds the optimum of

ONEMAX in expected E(T) = O(n) iterations.

Proof. Let d denote the Hamming distance of the current search point to the global opti-
mum. Then, a single contiguous hypermutation decreases the Hamming distance with
probability d/(n · (n+ 1)). The probability that at least one of the λ = Θ

(
n3/2

)
offspring

decreases the Hamming distance is 1− (1− d/ (n(n+ 1)))
Θ(n3/2) ≥ 1− e−Ω(d/

√
n). Us-

ing standard fitness-level argument and exp(x)/(exp(x) − 1) ≤ 1 + 1/x we derive an
upper bound on E(T):

E(T) ≤
n∑
d=1

1

1− exp (−d/
√
n)

=

n∑
d=1

exp (d/
√
n)

exp (d/
√
n)− 1

≤
n∑
d=1

(
1 +

1

d/
√
n

)
= n+

√
n ·

n∑
d=1

1

d
= n+ 2

√
nHn

where Hn is the n-th Harmonic number. With Hn = O(lnn) we get E(T) =
O(n+

√
n ln(n) +

√
n) = O(n).

Theorem 19. Let τ = c · n (c > 0 constant), σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with

µ(λ + 1) ≤ σ. If c = O(1) is sufficiently large, the BCA (Definition 4) becomes perfect after
O(n) steps, remains perfect for the remaining steps of the stable phase and becomes mediocre or
bad in the next n steps with probability converging to 1. In the next nO(1) steps this behaviour
is repeated with probability converging to 1.

Proof. After initialisation the Hamming distance to the global optimum is Θ(n) with
probability exponentially close to 1. We know that BCA becomes perfect in O(n) itera-
tions if the optimum does not move. If the stable phase has length τ = cn big enough
this will happen and the BCA remains perfect for the remaining steps of the stable
phase.

At the end of the stable phase the optimum starts to move by 1 bit per step. As
long as the BCA is good the Hamming distance between the optimum and the current
search point of the BCA is O(1) and for a single offspring the probability to exactly hit
the optimum is O

(
1/n2

)
. Thus, for λ = Θ

(
n3/2

)
the probability to find the optimum is

bounded by O
(
1/n1/2

)
. We conclude that the BCA becomes mediocre or worse.

Evolutionary Computation Volume x, Number x 19

T. Jansen, C. Zarges

50

60

70

80

90

100

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(a) τ = 100 (Th. 17, 19, and 20)

50

60

70

80

90

100

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(b) τ = 1000 (Th. 24, 25, 26)

50

60

70

80

90

100

10
00

00
0

10
00

09
9

99
98

00

10
00

50
0

Time Steps of the Dynamic Problem

F
itn

es
s

V
al

ue

Algorithm
EA

BCA

BCA*

(c) τ = 106 (Th. 30, 31, 32)

Figure 7: Visualisation of experiments showing average fitness values over time over
100 independent runs for all three algorithms on BSOo,τ for n = 100, σ = 1001, µ = 1,
λ = 1000, pCHM = 0.5, and different values of τ . Vertical lines indicate start and end of
stable intervals.

When using small offspring population size, λ = Θ(1), we have seen that the
BCA∗ had a performance that is comparable to that of the EA and much better than
that of the BCA. The reason is that on a ONEMAX-like function standard bit mutations
are much more efficient in reducing an already small Hamming distance to the global
optimum further than contiguous hypermutations. Since the BCA∗ uses only standard
bit mutation for one of the λ offspring with probability 1− pCHM the expected fraction
of offspring that have equal probability distribution in the EA and the BCA∗ equals
(1 − pCHM)/λ. With λ = Θ(1) and 1 − pCHM = Θ(1) this is a constant fraction of the
offspring population. Since we only perform an asymptotic analysis it is not surprising
that the performance of the EA and the BCA∗ are comparable. With λ = Θ

(
n3/2

)
the

fraction shrinks to Θ
(
1/n3/2

)
and we can expect to see significant differences.

Theorem 20. Let τ = c · n (c > 0 constant), σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with

µ(λ + 1) ≤ σ. If c = O(1) is sufficiently large, the BCA∗ (Definition 4) becomes perfect after
O(n) steps, remains perfect for the remaining steps of the stable phase and becomes mediocre or
bad in the next n steps with probability converging to 1. In the next nO(1) steps this behaviour
is repeated with probability converging to 1.

Proof. If we ignore the one offspring in each generation that is created by standard bit
mutation the result follows from Theorem 19. Now we consider this offspring. We see
that the probability that this offspring is able to follow the moving optimum in a single
step is O(1/n). However, there is only one such offspring and therefore the probability
that any of the λ offspring (including the one that is created by standard bit mutation)
locates the optimum is bounded by O

(
1/n1/2

)
+ O(1/n) = O

(
1/n1/2

)
. Therefore the

result follows from Theorem 19.

We again perform experiments and present their results in Figure 7a and 8a. We
see that already τ = n (i. e., c = 1) is sufficiently large for the BCA and the BCA∗ to
locate the optimum during the stable phases.

5.2.2 Long Stable Intervals
We now consider the situation when the length of the stable interval is considerably
longer, τ = n3/2, giving the algorithms a much better chance to catch up with the

20 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

0 100 199 299 398 498 597 697 796
Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(a) τ = 100 (Theorems 17, 19, 20)

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

0

10
00

10
99

20
99

21
98

31
98

32
97

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(b) τ = 1000 (Theorems 24, 25, 26)

0.00

0.25

0.50

0.75

1.00

10
00

00
0

10
00

09
9

99
98

00

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA 0.05

0.00

0.25

0.50

0.75

1.00

10
00

00
0

10
00

09
9

99
98

00

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm (1+1) EA v BCA (modified) 0.05

0.00

0.25

0.50

0.75

1.00

10
00

00
0

10
00

09
9

99
98

00

Time Steps of the Dynamic Problem

p−
va

lu
e

Algorithm BCA v BCA (modified) 0.05

(c) τ = 106 (Theorems 30, 31, 32)

Figure 8: Visualisation of experiments showing p-values of the Wilcoxon tests after
Holm-Bonferroni correction over 100 independent runs for all three algorithms on
BSOo,τ for n = 100, σ = 2, µ = 1, λ = 1000, pCHM = 0.5 and different values of τ .
Vertical lines indicate start and end of stable intervals.

Evolutionary Computation Volume x, Number x 21

T. Jansen, C. Zarges

global optimum. Clearly, algorithm performance can only improve in comparison to
shorter stable intervals. We start our investigation with small offspring population size
where the performance was already quite good with much shorter stable phases.

Corollary 21. Let τ = n3/2, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The

EA (Definition 4) is always perfect after the first step for the next nO(1) steps with probability
converging to 1.

Proof. The statement is a direct consequence from the proof of Theorem 14 since making
the stable phase longer by a polynomial number of steps cannot adversely affect the
performance of the algorithm.

Theorem 22. Let τ = n3/2, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ(1) with µ(λ+ 1) ≤ σ. The

BCA (Definition 4) becomes perfect afterO
(
n1/2 log n

)
steps, remains perfect for the remaining

Θ(τ) steps of the stable phase and becomes mediocre or bad in the next n steps with probability
converging to 1. We call this a phase. In the next p(n) = nO(1) phases this behaviour is repeated
in p(n)− o(p(n)) phases with probability converging to 1.

Proof. The proof is similar to the proof of Theorem 9. The bound ofO
(
n1/2 log n

)
for the

time needed to become perfect follows from the expected optimisation timeO
(
n2 log n

)
of the BCA on ONEMAX (Jansen and Zarges, 2011) and the fact that the BCA performs
Θ
(
n3/2

)
generations per time step. The probability to reduce the Hamming distance

by d is bounded by O
(
d/n2

)
. The probability to see such an event in n steps before the

Hamming distance is Ω(n) is bounded above by n · o
(
n/n2

)
= o(1). The expected num-

ber of phases where we see this behaviour when considering p(n) phases is bounded
below by (1− o(n)) p(n). Application of Chernoff bounds yields the result.

Corollary 23. Let τ = n3/2, σ = Θ
(
n3/2

)
, µ = Θ(1), λ = Θ(1) and 0 < pCHM < 1 with

pCHM = Θ(1) with µ(λ+ 1) ≤ σ. The BCA∗ (Definition 4) is always perfect after the first step
for nO(1) steps with probability converging to 1.

Proof. The statement is a direct consequence of Theorem 16 since making the stable
phase longer by a polynomial number of steps cannot adversely affect the performance
of the algorithm.

We again perform experiments and present their results in Figure 5b and 6b.
We now consider the case of using larger offspring populations. Like above we

concentrate only on the extreme case, λ = Θ
(
n3/2

)
.

Corollary 24. Let τ = n3/2, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ + λ ≤ σ.

The EA (Definition 4) is always perfect after the first O(n) steps for the next nO(1) steps with
probability converging to 1.

Proof. This is a direct consequence of Theorem 17 since a longer stable interval cannot
decrease the performance of the algorithm.

For the BCA with λ = Θ
(
n3/2

)
the behaviour changes considerably.

Theorem 25. Let τ = n3/2, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ(λ + 1) ≤ σ.

The BCA (Definition 4) becomes perfect after O(n) steps, remains perfect for the remaining
Θ(τ) steps of the stable phase and becomes mediocre or bad in the next n steps with probability
converging to 1. This behaviour is repeated in the next nO(1) steps with probability converging
to 1.

22 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

Proof. The first part of the theorem follows direct from Lemma 18 since the first
τ = n3/2 steps after initialisation are stable and the underlying problem corresponds to
ONEMAX. Once the BCA is perfect in a stable phase, it remains stable until the end of
the stable phase.

After the stable phase the optimum is moving and in each step the Hamming
distance of the new global optimum to the global optimum in the stable phase is
increased by 1. Let d denote the Hamming distance after d such steps. As in the
proof of Lemma 18 the probability to decrease the Hamming distance by at least 1
is 1 − exp (−Ω(d/

√
n)). For d = ω(

√
n) this is 1 − o(1) and thus, with probability con-

verging to 1, d will not increase beyond o(n) between two stable phases.
We repeat the above argumentation to conclude the theorem.

Theorem 26. Let τ = n3/2, σ = Θ
(
n3/2

)
, µ = Θ(1), λ = Θ

(
n3/2

)
(with µ(λ+ 1) ≤ σ) and

0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) becomes perfect after O(n) steps,
remains perfect for the remaining Θ(τ) steps of the stable phase and becomes mediocre or bad in
the next n steps with probability converging to 1. This behaviour is repeated in the next nO(1)

steps with probability converging to 1.

Proof. If we ignore the offspring that is created using standard bit mutation the result is
a direct consequence of Theorem 25. Taking this one offspring per generation into ac-
count can only make things better. First we observe that it cannot speed up the expected
number of generations needed to become perfect because this number is already O(n)
and standard bit mutations need Θ(n log n) steps to achieve this. Since in the phase
of change the optimum moves in each step by 1 bit and we only have Θ(σ/λ) = Θ(1)
generations per step this single standard bit mutation is insufficient to keep up with
it.

We again perform experiments and present their results in Figure 7b and 8b.

5.2.3 Very Long Stable Intervals
Here, we consider the same settings as before but now with very long stable intervals,
concrete with τ = n3. We have already seen that longer stable phases imply better
performance. As above we begin with very small offspring population sizes.

Corollary 27. Let τ = n3, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The

EA (Definition 4) is always perfect after the first step for the next nO(1) steps with probability
converging to 1.

Proof. This is a direct consequence of Corollary 21 since a longer stable interval cannot
decrease the performance of the algorithm.

Corollary 28. Let τ = n3, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ. The

BCA (Definition 4) becomes perfect afterO
(
n1/2 log n

)
steps, remains perfect for the remaining

Θ(τ) steps of the stable phase and becomes mediocre or bad in the next n steps with probability
converging to 1. We call this a phase. In the next p(n) = nO(1) phases this behaviour is repeated
in p(n)− o(p(n)) phases with probability converging to 1.

Proof. This is a direct consequence of Theorem 22 (longer stable interval).

Corollary 29. Let τ = n3, σ = Θ
(
n3/2

)
, µ = Θ(1), λ = Θ(1) (with µ(λ + 1) ≤ σ) and

0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) is always perfect after the first
step for nO(1) steps with probability converging to 1.

Evolutionary Computation Volume x, Number x 23

T. Jansen, C. Zarges

Proof. This is a direct consequence of Corollary 23 (longer stable interval).

Here, we also consider what happens if we invest into a larger offspring popula-
tion size at the expense of the number of generations. As before we restrict our analysis
to the extreme case λ = Θ

(
n3/2

)
.

Corollary 30. Let τ = n3, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ + λ ≤ σ.

The EA (Definition 4) is always perfect after the first O(n) steps for the next nO(1) steps with
probability converging to 1.

Proof. This is a direct consequence of Corollary 24 (longer stable interval).

Corollary 31. Let τ = n3, σ = Θ
(
n3/2

)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ(λ+1) ≤ σ. The

BCA (Definition 4) becomes perfect after O(n) steps, remains perfect for the remaining Θ(τ)
steps of the stable phase and becomes mediocre in the next n steps with probability converging
to 1. This behaviour is repeated in the next nO(1) steps with probability converging to 1.

Proof. This is a direct consequence of Theorem 25 (longer stable interval).

Corollary 32. Let τ = n3, σ = Θ
(
n3/2

)
, µ = Θ(1), λ = Θ

(
n3/2

)
(with µ(λ + 1) ≤ σ) and

0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) becomes perfect after O(n) steps,
remains perfect for the remaining Θ(τ) steps of the stable phase and becomes mediocre in the
next n steps with probability converging to 1. This behaviour is repeated in the next nO(1) steps
with probability converging to 1.

Proof. This is a direct consequence of Theorem 26 (longer stable interval).

5.3 Heuristic Dynamic Optimisation with a Very Fast Execution Platform

Now we consider an even faster execution platform by considering σ = Θ
(
n3
)

function
evaluations in one time step of the dynamic optimisation problem. We consider the
same lengths of the stable interval and the same offspring population sizes as in the
previous section. We additionally analyse the extreme case λ = Θ

(
n3
)
. The case λ =

Θ
(
n3/2

)
is now an intermediate case.

5.3.1 Short Stable Intervals
We start with the case τ = n and gradually increase the offspring population size. Most
of the theoretical results follow directly from previous theorems since increasing the
speed of the execution platform does not decrease the performance of the considered
algorithms.

Corollary 33. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ(1) with µ + λ ≤ σ. The EA

(Definition 4) is always perfect after the first step for nO(1) steps with probability converging to
1.

Proof. This is a direct consequence of Theorem 14 since increasing the speed σ cannot
decrease the performance of the algorithm.

Theorem 34. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ(1) with µ(λ + 1) ≤ σ. The

BCA (Definition 4) is always perfect after the first step for the next nO(1) steps with probability
converging to 1.

24 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

Proof. For the BCA’s performance after the first step and during the stable phase it suf-
fices to remember that the expected optimisation time of the BCA with µ = λ = 1 on
ONEMAX isO

(
n2 log n

)
and that the probability not to be finished inO

(
n3
)

generations
is exponentially small (Jansen and Zarges, 2011). Analogously to the proof of Theo-
rem 14 the probability that no offspring equals the new optimum is bounded above by(
1− (1/(n2 + n))(1− 1/n)n

)Θ(n3)
= e−Ω(n). Thus, the probability to be always perfect

for the next nO(1) steps is 1− nO(1) · e−Ω(n) = 1− e−Ω(n).

Corollary 35. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1), λ = Θ(1) and 0 < pCHM < 1 with

pCHM = Θ(1) with µ(λ+ 1) ≤ σ. The BCA∗ (Definition 4) is always perfect after the first step
for nO(1) steps with probability converging to 1.

Proof. This is a direct consequence of Theorem 16 since increasing the speed σ cannot
decrease the performance of the algorithm.

Next, we consider λ = Θ
(
n3/2

)
.

Corollary 36. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ+ λ ≤ σ. The EA

(Definition 4) is always perfect after the firstO(n) steps for the next nO(1) steps with probability
converging to 1.

Proof. This is a direct consequence of Theorem 17 since increasing the speed σ cannot
decrease the performance of the algorithm.

Theorem 37. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ

(
n3/2

)
with µ(λ + 1) ≤ σ.

The BCA (Definition 4) is always perfect after the first O(1) steps for the next nO(1) steps with
probability converging to 1.

Proof. The probability to decrease the Hamming distance by at least 1 in 1 generation is

bounded below by 1− (1− 1/(n(n+ 1)))
Θ(n3/2) = 1−e−Θ(1/

√
n) = Θ(1/

√
n) (compare

Lemma 18). In one step the BCA performs Θ(σ/λ) = Θ
(
n3/2

)
generations. Therefore,

the expected progress in 1 step is Θ(n) and this also holds with probability close to 1.
Once the optimum starts moving the probability not to catch up in one step is

Θ
(

(1− 1/
√
n)
n3/2

)
= e−Θ(n).

Corollary 38. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1), λ = Θ

(
n3/2

)
with µ(λ + 1) ≤ σ and

0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) is always perfect after the first
O(1) steps for the next nO(1) steps with probability converging to 1.

Proof. This follows from Theorem 37 since only one of the λ = Θ
(
n3/2

)
offspring is

subject to standard bit mutation. This is not a significant change.

Finally, we examine the extreme case λ = Θ
(
n3
)
.

Corollary 39. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ

(
n3
)

with µ + λ ≤ σ. The EA
(Definition 4) is always perfect after the firstO(n) steps for the next nO(1) steps with probability
converging to 1.

Proof. The result is a direct consequence of Theorem 17 since increasing the speed σ
(and the offspring population size λ accordingly) cannot decrease the performance of
the algorithm.

Evolutionary Computation Volume x, Number x 25

T. Jansen, C. Zarges

Theorem 40. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ

(
n3
)

with µ(λ + 1) ≤ σ. The
BCA (Definition 4) is always perfect after the first O(n) steps for the next nO(1) steps with
probability converging to 1.

Proof. For the BCA we follow the argumentation of Theorem 17 for the EA and ob-
serve that the probability to decrease the Hamming distance by at least 1 in a single
generation of the BCA is at least

1−
(

1− 1

n · (n+ 1)

)Θ(n3)
≥ 1− e−Ω(n).

Consequently, the BCA is perfect after O(n) steps and stays perfect for the next nO(1)

steps with probability 1− nO(1) · e−Ω(n) = 1− e−Ω(n).

Corollary 41. Let τ = n, σ = Θ
(
n3
)
, µ = Θ(1) and λ = Θ

(
n3
)

with µ(λ + 1) ≤ σ and
0 < pCHM < 1 with pCHM = Θ(1). The BCA∗ (Definition 4) is always perfect after the first
O(n) steps for the next nO(1) steps with probability converging to 1.

Proof. This follows from Theorem 40 since the one offspring subject to standard bit
mutation is not relevant for the proof.

We do not perform any experiments for the above cases since these do not add
much to our theoretical analyses. All algorithms are perfect and remain perfect after
some initial optimisation phase. Thus, all plots are very similar to the one in Figure 5c.

5.3.2 Long and Very Long Stable Intervals
We have seen in Section 5.3.1 that on the very fast execution platform (σ = Θ

(
n3
)
) all

three considered algorithms are always perfect after some initial optimisation steps. If
we increase the length of the stable interval to any larger value (in particular to n3/2

and n3) nothing changes significantly. For each statement from Section 5.3.1 there is a
corresponding equal statement for the longer stable phases.

6 Conclusions

Dynamic optimisation by means of randomised search heuristics like evolutionary al-
gorithms and artificial immune systems is an important topic because it is practically
relevant. This makes it important to build a firm theoretical foundation. We have con-
tributed to this foundation by pointing out the importance of recognising the speed
of the execution platform running the randomised search heuristics as an important
parameter in its own right. We have also contributed by defining a bi-stable dynamic
example problem that shares important properties with ONEMAX and real dynamic
optimisation problems. Using the perspective of fixed budget computations we have
proven a large number of concrete theoretical results for mutation-based evolutionary
algorithms and two variants of the B-cell algorithm on our new example problem. We
summarise these theoretical results in Table 1.

We hope that the introduction of the speed σ will be picked up in future theoretical
studies of dynamic optimisation. We also hope that our example problem proves to
be a useful benchmark for other randomised search heuristics that are accessible to
theoretical studies.

Clearly, all our theoretical results are relatively rough and could be refined in fu-
ture research. The specific way the optimum moves in the non-stable phases of our
example problem tends to be helpful for the contiguous hypermutations used in the

26 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

speed of exec.
platform

length of
stable intervals

short: τ = n long: τ = n3/2 very long: τ = n3

slow
σ = Θ(1)

EA (1): always bad (Thm. 5)
BCA (1): always bad (Thm. 6)
BCA∗ (1): always bad
(Thm. 7)

EA (1): repeating perfect-bad
(Thm. 9)
BCA (1): always bad (Thm. 8)
BCA∗ (1): repeating
perfect-bad (Thm. 10)

EA (1): repeating perfect-bad
(Cor. 11)
BCA (1): repeating perfect-
mediocre or bad (Thm. 12)
BCA∗ (1): repeating perfect-
bad (Cor. 13)

fast
σ = Θ

(
n3/2

)

EA (1): always perfect
(Thm. 14)
EA (n3/2): always perfect
(Thm. 17)
BCA (1): repeating perfect-bad
(Thm. 15)
BCA (n3/2): repeating
perfect-mediocre or bad
(Thm. 19)
BCA∗ (1): always perfect
(Thm. 16)
BCA∗ (n3/2): repeating
perfect-mediocre or bad
(Thm. 20)

EA (1): always perfect
(Cor. 21)
EA (n3/2): always perfect
(Cor. 24)
BCA (1): repeating perfect-
mediocre or bad (Thm. 22)
BCA (n3/2): repeating
perfect-mediocre or bad
(Thm. 25)
BCA∗ (1): always perfect
(Cor. 23)
BCA∗ (n3/2): repeating
perfect-mediocre or bad
(Thm. 26)

EA (1): always perfect
(Cor. 27)
EA (n3/2): always perfect
(Cor. 30)
BCA (1): repeating perfect-
mediocre or bad (Cor. 28)
BCA (n3/2): repeating
perfect-mediocre or bad
(Cor. 31)
BCA∗ (1): always perfect
(Cor. 29)
BCA∗ (n3/2): repeating
perfect-mediocre or bad
(Cor. 32)

very fast
σ = Θ

(
n3

)

EA (1): always perfect
(Cor. 33)
EA (n3/2): always perfect
(Cor. 36)
EA (n3): always perfect
(Cor. 39)
BCA (1): always perfect
(Cor. 34)
BCA (n3/2): always perfect
(Thm. 37)
BCA (n3): always perfect
(Thm. 40)
BCA∗ (1): always perfect
(Cor. 35)
BCA∗ (n3/2): always perfect
(Cor. 38)
BCA∗ (n3): always perfect
(Cor. 41)

EA (1): always perfect
EA (n3/2): always perfect
EA (n3): always perfect
BCA (1): always perfect
BCA (n3/2): always perfect
BCA (n3): always perfect
BCA∗ (1): always perfect
BCA∗ (n3/2): always perfect
BCA∗ (n3): always perfect

EA (1): always perfect
EA (n3/2): always perfect
EA (n3): always perfect
BCA (1): always perfect
BCA (n3/2):always perfect
BCA (n3): always perfect
BCA∗ (1): always perfect
BCA∗ (n3/2): always perfect
BCA∗ (n3): always perfect

Table 1: Overview of all theoretical results; for the precise formulations see the The-
orems in the main text. The format is A (v) where A is an algorithm used with the
parameter values µ = Θ(1) and λ = Θ(v).

Evolutionary Computation Volume x, Number x 27

T. Jansen, C. Zarges

two B-cell algorithm variants. Jansen and Zarges (2014c) demonstrate that in compari-
son to standard bit mutations used in evolutionary algorithms the somatic contiguous
hypermutations employed by the B cell algorithm have advantages on ONEMAX when
the global optimum is far away. This motivated us to investigate if this advantage
transfers into a tangible advantage in dynamic optimisation for our example problem.
In our analytical framework no such clear advantage can be observed in our theoretical
results. Looking at the empirical results it appears that the worst function values the
algorithms exhibit are always worst for the EA. This perspective of guaranteed worst
case solution quality is exactly captured by the perspective of approximation where
one considers the worst case ratio of the quality of an optimal solution and the solution
delivered by an algorithm. It would be interesting to reconsider the situation with an
emphasis of the approximation performance of the randomised search heuristics un-
der consideration. From a practical point of view it would be important to know which
kind of search heuristic tends to promise better approximations in such a scenario.

It also remains an open problem to identify example problems, preferably not too
artificial ones, where artificial immune systems excel from the analytical perspective
adopted in this article.

References
Auger, A. and Doerr, B., editors (2011). Theory of Randomized Search Heuristics. World Scientific

Review.

Branke, J. (2002). Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publish-
ers.

Branke, J. and Wang, W. (2003). Theoretical analysis of simple evolution strategies in quickly
changing environments. In Genetic and Evolutionary Computation Conference (GECCO 2003),
pages 537–548.

Bu, Z. and Zheng, B. (2010). Perspectives in dynamic optimization evolutionary algorithm. In
Proceedings of the 5th International Conference on Advances in Computation and Intelligence, pages
338–348.

Doerr, B., Jansen, T., Witt, C., and Zarges, C. (2013). A method to derive fixed budget results
from expected optimisation times. In Genetic and Evolutionary Computation Conference (GECCO
2013), pages 1581–1588.

Droste, S. (2002). Analysis of the (1+1) EA for a dynamically changing onemax-variant. In Proc.
of CEC’02, pages 55–60. IEEE Press.

Droste, S. (2003). Analysis of the (1+1) EA for a dynamically bitwise changing onemax. In Genetic
and Evolutionary Computation Conference (GECCO 2003), LNCS 2723, pages 909–921. Springer.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6:65–70.

Jansen, T. (2013). Analyzing Evolutionary Algorithms. The Computer Science Perspective. Springer.

Jansen, T., Oliveto, P. S., and Zarges, C. (2011). On the analysis of the immune-inspired b-cell
algorithm for the vertex cover problem. In Proceedings of the 10th International Conference on
Artificial Immune Systems (ICARIS 2011), pages 17–131.

Jansen, T. and Schellbach, U. (2005). Theoretical analysis of a mutation-based evolutionary algo-
rithm for a tracking problem in the lattice. In Genetic and Evolutionary Computation Conference
(GECCO 2005), pages 841–848. ACM Press.

Jansen, T. and Zarges, C. (2011). Analyzing different variants of immune inspired somatic con-
tiguous hypermutations. Theor. Comput. Sci., 412(6):517–533.

28 Evolutionary Computation Volume x, Number x

Analysis of Randomised Search Heuristics for Dynamic Optimisation

Jansen, T. and Zarges, C. (2012). Fixed budget computations: A different perspective on run time
analysis. In Genetic and Evolutionary Computation Conference (GECCO 2012), pages 1325–1332.

Jansen, T. and Zarges, C. (2014a). Evolutionary algorithms and artificial immune systems on a
bi-stable dynamic optimisation problem. In Genetic and Evolutionary Computation Conference
(GECCO 2014), pages 975–982. ACM.

Jansen, T. and Zarges, C. (2014b). Performance analysis of randomised search heuristics operat-
ing with a fixed budget. Theoretical Computer Science, 545:39–58.

Jansen, T. and Zarges, C. (2014c). Reevaluating immune-inspired hypermutations using the fixed
budget perspective. IEEE Transactions on Evolutionary Computation, 18:674–688.

Kelsey, J. and Timmis, J. (2003). Immune inspired somatic contiguous hypermutations for func-
tion optimisation. In Genetic and Evolutionary Computation Conference (GECCO 2003), pages
207–218.

Kötzing, T., Lissovoi, A., and Witt, C. (2015). (1+1) EA on generalized dynamic onemax. In
Foundations of Genetic Algorithms (FOGA 2015), pages 40–51.

Kötzing, T. and Molter, H. (2012). ACO beats EA on a dynamic pseudo-boolean problem. In
Proceedings of the 12th International Conference on Parallel Problem Solving From Nature (PPSN
2012), pages 113–122.

Lehmann, E. L. (2006). Nonparametrics. Statistical Methods Based on Ranks. Springer.

Lengler, J. and Spooner, N. (2015). Fixed budget performance of the (1+1)-EA on linear functions.
In Foundations of Genetic Algorithms (FOGA 2015), pages 52–61.

Lissovoi, A. and Witt, C. (2013). Runtime analysis of ant colony optimization on dynamic shortest
path problems. In Genetic and Evolutionary Computation Conference (GECCO 2013), pages 1605–
1612.

Lissovoi, A. and Witt, C. (2014). MMAS vs. population-based EA on a family of dynamic fitness
functions. In Genetic and Evolutionary Computation Conference (GECCO 2014), pages 1399–1406.

Morrison, R. W. (2004). Designing Evolutionary Algorithms for Dynamic Environments. Springer.

Nallaperuma, S., Neumann, F., and Sudholt, D. (2014). A fixed budget analysis of randomized
search heuristics for the traveling salesperson problem. In Genetic and Evolutionary Computation
Conference (GECCO 2014), pages 807–814.

Neumann, F. and Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization – Algo-
rithms and Their Computational Complexity. Springer.

Nguyen, T. T., Yang, S., and Branke, J. (2012). Evolutionary dynamic optimization: a survey of
the state of the art. Swarm and Evolutionary Computation, 6:1–24.

Oliveto, P. S. and Zarges, C. (2013). Analysis of diversity mechanisms for optimisation in dy-
namic environments with low frequencies of change. In Genetic and Evolutionary Computation
Conference (GECCO 2013), pages 837–844. ACM.

Oliveto, P. S. and Zarges, C. (2014). Analysis of diversity mechanisms for optimisation in dynamic
environments with low frequencies of change. Theor. Comput. Sci. To appear.

Rohlfshagen, P., Lehre, P. K., and Yao, X. (2009). Dynamic evolutionary optimisation: an analysis
of frequency and magnitude of change. In Genetic and Evolutionary Computation Conference
(GECCO 2009), pages 1713–1720. ACM Press.

Stanhope, S. A. and Daida, J. M. (1999). (1+1) genetic algorithm fitness dynamics in a changing
environments. In CEC, pages 1851–1858. IEEE.

Tifenbach, R. M. (2013). A combinatorial approach to nearly uncoupled Markov chains i: Re-
versible Markov chains. Electronic Transactions on Numerical Analysis, 40:120–147.

Evolutionary Computation Volume x, Number x 29

T. Jansen, C. Zarges

Tinos, R. and Yang, S. (2010). An analysis of the XOR dynamic problem generator based on the
dynamical system. In Parallel Problem Solving From Nature (PPSN), pages 274–283.

Tinos, R. and Yang, S. (2013). Analyzing evolutionary algorithms for dynamic optimization prob-
lems based on the dynamical systems approach. In Yang, S. and Yao, X., editors, Evolutionary
Computation for Dynamic Optimization Problems, pages 241–267. Springer.

Tinos, R. and Yang, S. (2014). Analysis of fitness landscape modifications in evolutionary dy-
namic optimization. Information Sciences, 282:214–236.

Vose, M. D. (1998). The Simple Genetic Algorithm: Foundations and Theory. MIT Press.

Weicker, K. (2003). Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Ver-
lag.

Yang, S. and Yao, X. (2005). Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Computing, 9:815–834.

Yang, S. and Yao, X., editors (2013). Evolutionary Computation for Dynamic Optimization Problems.
Springer.

30 Evolutionary Computation Volume x, Number x

	Introduction
	Our Contribution
	State of the Art in the Theoretical Analysis of Dynamic Optimisation
	Organisation of the Article

	Analysing Randomised Search Heuristics on Dynamic Problems
	A Dynamic Example Problem
	Evolutionary Algorithms and Artificial Immune Systems
	Analysis of Evolutionary Algorithms and Artificial Immune Systems for the Dynamic Bi-Stable Example Problem
	Heuristic Dynamic Optimisation with a Slow Execution Platform
	Short Stable Intervals
	Long Stable Intervals
	Very Long Stable Intervals

	Heuristic Dynamic Optimisation with a Fast Execution Platform
	Short Stable Intervals
	Long Stable Intervals
	Very Long Stable Intervals

	Heuristic Dynamic Optimisation with a Very Fast Execution Platform
	Short Stable Intervals
	Long and Very Long Stable Intervals

	Conclusions

