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Regularization Based
Iterative Point Match Weighting for

Accurate Rigid Transformation Estimation
Yonghuai Liu, Senior Member, IEEE Luigi De Dominicis, Baogang Wei, Liang Chen, Ralph R. Martin

Abstract—Feature extraction and matching (FEM) for 3D shapes finds numerous applications in computer graphics and vision for
object modeling, retrieval, morphing, and recognition. However, unavoidable incorrect matches lead to inaccurate estimation of the
transformation relating different datasets. Inspired by AdaBoost, this paper proposes a novel iterative re-weighting method to tackle
the challenging problem of evaluating point matches established by typical FEM methods. Weights are used to indicate the degree of
belief that each point match is correct. Our method has three key steps: (i) estimation of the underlying transformation using weighted
least squares, (ii) penalty parameter estimation via minimization of the weighted variance of the matching errors, and (iii) weight re-
estimation taking into account both matching errors and information learnt in previous iterations. A comparative study, based on real
shapes captured by two laser scanners, shows that the proposed method outperforms four other state-of-the-art methods in terms of
evaluating point matches between overlapping shapes established by two typical FEM methods, resulting in more accurate estimates
of the underlying transformation. This improved transformation can be used to better initialize the iterative closest point algorithm and
its variants, making 3D shape registration more likely to succeed.

Index Terms—Feature extraction; Feature matching; Point match evaluation; Iterative re-weighting; Rigid transformation; Registration

F

1 INTRODUCTION
Object modeling, recognition, morphing, and retrieval
are widely used tasks in computer graphics and vision. A
common basis for performing such tasks relies on using
feature extraction and matching (FEM) methods to anal-
yse overlapping range images captured from different
viewpoints, each representing part of an object’s surface
shape (see Figure 1).

The features extracted typically depend on surface
structure around each point, matching proceeding by
identifying points in other range images with similar
neighbourhoods. Identified points may then be used
to register the partial shapes, a key output being to
estimate the underlying transformation that best aligns
them. Having found the transformation, if point corre-
spondences between the partial shapes are needed, they
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can be easily identified as point pairs with small enough
distances. In this paper, we consider the underlying
transformation to be a rigid motion involving a rotation
and translation, but our method is in principle also
applicable to more general classes of transformation such
as thin plate spline (TPS) deformations [21].

Feature extraction and matching are widely used to
register overlapping partial shapes [15], [19], [32], [33].
This approach is applicable to shapes with varying com-
plexities of geometry, varying degrees of overlap, and
varying magnitudes of transformation. The signature of
histograms of orientations (SHOT) [32] method is one
of the best methods for the extraction and matching
of features from overlapping partial shapes [4]. Even
so, it usually unavoidably includes outliers amongst
the point matches established, and typically a random
sample consensus (RANSAC) scheme [9] is used to reject
them. The unit quaternion method [5] is then used to
estimate the underlying transformation. However, the
RANSAC scheme has a number of shortcomings [29],
including, computational inefficiency, and the need to
select thresholds determining whether a match is an
inlier or outlier, and when a good model has been found.
In this paper, we propose a novel, alternative, iterative
re-weighting method for evaluating the point matches
established, with the aim of estimating the underlying
transformation as accurately as possible. This estimate
might typically be used to initialize a variant [17], [30]
of the iterative closest point (ICP) algorithm [5] for final
refinement of the transformation. A particular concern
is whether our approach provides an estimated trans-
formation closer to the globally optimal solution than
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Fig. 1. Real range images used in testing. From left to right: Row 1: valve20, valve10, valve0, pat108, pat144, pat180,
lobster0 and lobster20. Row 2: lobster40, pooh140, pooh160, pooh180, bluedino125, bluedino375, reddino0 and
reddino36. Row 3: bird20, bird40, buddha40, buddha60, lobster60, lobster80, lobster100 and cow50. Row 4: cow47,
cow44, tubby0, tubby20, tubby40, frog0, frog40 and frog80. Row 5: duck0, duck20, bird0, bunny0, bunny40, cow37,
cow40 and adapter2. Row 6: adapter3, agpart2, agpart3, column2, column5, curvblock1, curvblock2 and grn-blk1.
Row 7: grn-blk2, wye2, wye3, jumble11, jumble12, block2, and block3.

the one provided by the original SHOT method—if it
does, it is more likely [37] that the ICP variant will
converge correctly to the global optimum, rather than
a local optimum.

The adaptive boosting (AdaBoost) method [10] is a
powerful, well-known machine learning tool for data
classification. It iteratively increases the weights of in-
correctly classified data and decreases the weights of
correctly classified data. Based on such weights, different
weak classifiers can be trained. The output of several
weak learners is combined into a weighted sum that
represents the final output of the boosted classifier. Ad-
aBoost is adaptive in the sense that subsequent weak
learners are tweaked in favor of those instances mis-
classified by previous classifiers. AdaBoost is sensitive
to noisy data and outliers, but in some problems it
can be less susceptible to overfitting than other learning
algorithms. The individual learners can be weak, but as
long as the performance of each one is at least somewhat
better than random guessing (i.e. has an error rate less

than 0.5), the final model can be proven to converge
to a strong learner [1]. A careful analysis shows that
AdaBoost actually possesses three useful properties: (i)
it allows a direct selection of the best solution across
different iterations; (ii) the final solution can be estimated
as a weighted average of outputs provided by different
weak classifiers; and (iii) it provides as a byproduct an
estimate of the reliability with which each data item is
a good fit to the final model.

Inspired by the above third property of AdaBoost,
we propose a novel iterative re-weighting method for
evaluating point matches established through FEM [15],
[19], [32], [33]. Our main idea is as follows. Evaluation
of the established point matches is essentially a data
fitting problem: the putative point matches (PPMs) fit the
underlying transformation. In our problem, all the estab-
lished point matches belong to the same class and thus,
unlike Adaboost, we do not have to deal with classifica-
tion. Instead, we treat all the point matches in the same
way for the fitting of the underlying transformation,
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but as having different reliabilities or goodnesses. The
reliability or weight of each point match is represented
by a real number in the interval [0, 1]; the larger the
number, the more likely we believe it to be correct, and
the better it fits the underlying transformation. Lacking
other knowledge, we initialize these weights equally.
Once we have the PPMs and their weights, the under-
lying transformation can be estimated in a weighted
least squares sense using the quaternion method [5]. This
allows us to estimate the fitting errors of all the PPMs
and thus their weighted mean eµ and variance e2σ . We
then focus on estimating and updating the reliability
values iteratively. To do so, we construct an objective
function that minimizes the weighted average of the
matching errors with the weights regularized by their
entropy. To balance the contribution of the two terms,
instead of using a single parameter [13], we introduce a
penalty parameter for each point match to characterize
its unpredictable correctness. To estimate the penalty
parameter, we construct another objective function that
minimizes the variance from eµ of the errors of the point
matches weighted by twice the squares of these penalty
parameters regularized by their shifted entropy. The two
terms are balanced by 2e2σ .

To make full use of and fuse the weights from different
iterations, we maximize such weights over all previous
iterations when estimating the reliability of each point
match. The proposed method is based on regularization
for iterative re-weighting and is thus refered to as RIRW
in the rest of this paper. The above process is repeated
until either a maximum number of iterations has been
reached, or the weighted average fitting error is smaller
than the average distance between the closest neighbor-
ing points in the original shapes.

We have validated our proposed RIRW method us-
ing real range scans from two publicly accessible
databases [25] and also compare it to four state-of-the-
art point match evaluation methods. The performance
of each method is assessed using the relative differences
between the rotation axis, rotation angle, and transla-
tion vector of the transformation estimated from the
evaluated point matches, and those refined by a state-
of-the-art ICP variant, SoftICP [17]. The experimental
results show that the proposed RIRW method outper-
forms these competitors when evaluating point matches
established by two representative FEM methods: the
SHOT method [32] and the universal shape context
(USC) method [33]. In all cases it yields smaller errors in
the rotation axis, rotation angle, and translation vector.
Furthermore, the estimated underlying transformation
derived from the weighted point matches is closer to the
global optimal solution, allowing the SoftICP algorithm
to succeed in refinement.

The rest of this paper is structured as follows: Section 2
reviews related work, while Section 3 describes our pro-
posed RIRW method. Section 4 presents an experimental
evaluation using real data, and finally, Section 5 draws
conclusions and indicates future work.

2 RELATED WORK

In this section, we review significant work on evaluation
of point matches (established mainly by FEM methods),
and uses of the AdaBoost classification method in com-
puter vision.

2.1 Point match evaluation
Suggested point matches can take into account single
points from each surface [15], pairs of points [7], or
more (in higher-order point matching) [6], which suc-
cessively improves the probability of finding correct
matches. While higher-order point matching can usefully
reduce outliers, it is computationally expensive due to
the increased number of possibilities which must be
considered. Indeed, to arrive at a computationally fea-
sible method, such approaches are reduced to sampling
potential matches, potentially discarding useful data.
Whichever method is adopted, incorrect matches are
unavoidably introduced, as real world data have areas
of relatively featureless simple geometry, and because
of imaging noise, holes, occlusion, appearance and dis-
appearance of points, and cluttered backgrounds. All
of these mean that the extracted features are typically
not informative enough to enable points to be matched
without ambiguity. The point matches established are
typically heavily corrupted by outliers with gross errors,
which in turn leads to inaccurate estimation of the
underlying transformation. To overcome this problem,
a means is needed to evaluate the quality or reliability
of each match. Point match evaluation attempts to either
classify the PPMs as inliers or outliers, or to characterize
the extent to which each match is likely to be correct. In
this paper, we adopt the second strategy to tackle the
point match evaluation problem.

Li and Hu [16] were probably the first to consider
evaluating established point matches, and various other
work has followed. Methods used are based on one of
three ideas (or a combination thereof): (i) structural con-
sistency based methods verify whether the point matches
adhere to structural constraints such as invariance of
inter-point distances; (ii) transformation consistency based
methods assume that all correct point matches share the
same underlying transformation and thus have similar
residuals after applying the correctly estimated transfor-
mation; and (iii) statistical regression methods use statis-
tically robust functions to limit the influence of outliers
when estimating the parameters of interest.

Structural consistency based methods assume that the
correct point matches must have similar features and
thus regard such point matches as false if their fea-
tures are insufficiently similar. PPMs are filtered out
in [15] using a feature similarity measure and geometric
consistency. A point match that has low similarity of
spin images and large geometric consistency distance
between the coordinates of these spin images is regarded
as an outlier. A match is deemed unreliable in [19] if the
ratio between the dissimilarity of the best match and that
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of the second best match is above a threshold. Possible
correspondences between planes are refined in [27] using
a set of consistency tests based on size, orientation, and
position. Feature similarity scores and geometric con-
sistency scores (using interpoint Euclidean distance) are
used in [18] to define a weighted adjacency matrix when
searching for common visual patterns between two im-
ages or shapes. Local isometry is considered in [31] (for
non-rigid matching), using a diffusion method based on
interpoint geodesic distances to prune false matches.

While feature similarity has already been employed
for the identification of PPMs, structural consistency
based methods may have difficulty in identifying other
invariant features as a basis for the removal of false
matches. Instead, transformation consistency based meth-
ods attempt first to estimate a consensus transformation
and then consider the fitting errors of these matches
under this transformation—a large fitting error usu-
ally implies that the corresponding match is an outlier.
RANSAC [28], [32] is the basis for the most widely
used transformation consistency based methods, typi-
cally operating on the residuals of point matches after
transformation. A candidate underlying transformation
is estimated from a sample of the PPMs, then all matches
whose errors are smaller than a threshold are regarded
as inliers, and finally all inliers are used to estimate
the optimal transformation. A Hough transform (HT)
approach is used in [19] to eliminate matching outliers.
It is assumed in [16] that there is a linear correspondence
function relating two images, which is estimated through
support vector machine regression from the projections
of the PPMs. Any match that does not satisfy the corre-
spondence function is regarded as an outlier. Recently,
Zhao et al have published a series of papers [39], [20],
[21], [22], [23] on mismatch removal based on the as-
sumption that the point matches undergo a coherent
transformation which can be iteratively estimated by
the expectation maximisation (EM) algorithm. While the
underlying transformation between the PPMs is rep-
resented using TPS in [23] and a displacement field
in [21], it is represented as a linear transformation in
a reproducing kernel Hilbert space (RKHS) in [20], [22],
[39].

The main goal for shape registration is to use the PPMs
to estimate the underlying transformation that brings
the two shapes into the best possible alignment, but
robust statistical methods for regression allow this to be
done in such a way that the reliable point matches make
more contribution while others make little contribution.
Typical methods are based on M-estimators [2], [16], [38],
least median of squares, or RANSAC [9]. M-estimators
require the definition of an influence function, and re-
quires estimation of some tuning constants like the stan-
dard deviation of the data. The least median of squares
method involves optimising a discontinuous objective
function and is thus usually time consuming. RANSAC
requires [29] choice of a threshold determining whether
a point match is an inlier or outlier, and specifying how

good a model is. Such thresholds are usually problem
specific.

In contrast with existing methods which classify PPMs
as inliers or outliers, we avoid making a hard decision
by using real numbers in the unit interval to express our
confidence in the extent to which they are correct.

After the initial transformation parameters have been
estimated by FEM, they are typically refined using the
(iterative) ICP algorithm [5] or one of its variants [17],
[30]. The closer the initial underlying transformation is
to the global minimum, the more likely the refinement
will succeed. On the contrary, if the initial transformation
estimate is not good enough, the refinement can fail
catastrophically [37].

2.2 Boosting

The AdaBoost method [10] has received much attention
from the machine learning community. It employs a
set of weak learners to obtain strong solutions to data
classification and learning problems, assuming that each
weak classifier performs better than random guessing.
It attempts to minimise the weighted sum of the expo-
nential losses of the sample data. The main idea when
training learners is to decrease the weights for correctly
classified data instances and increase the weights for
mis-classified instances, forcing the learning method to
focus on the mis-classified instances. The iterative learn-
ing process has four main steps: given labelled instances
are sampled, multiple weak classifiers are fitted and
the one with a minimum weighted average of errors
is identified, the boosting parameter is estimated as a
function of the minimum error, and the weight of each
instance is updated. Each instance is finally classified us-
ing a function depending on the weighted average of the
outputs from the weak classifiers, with weights defined
as the boosting parameters and greater weights given to
classifiers with lower errors. Different approaches have
been used to determine the error of the weak learner,
the boosting parameter, the weight update scheme, and
the final decision rule, leading to a number of variants,
such as gradient boosting [11], Real AdaBoost [12], Log-
itBoost [12], and Gentle AdaBoost [12].

Even though the AdaBoost method is a powerful tool
for classification and learning, it has been employed only
in a limited number of computer vision applications:
classification of handwritten data [3], real time face
detection [35], object tracking [26], classification of trees
and vehicles in urban scenes [36], categorization of natu-
ral scenes [24], and keypoint detection and landmarking
on human faces [8].

In particular, it has not yet been adapted for the
evaluation and estimation of the reliabilities/weights
of point matches established between overlapping 3D
partial shapes determined by an FEM method, perhaps
for several reasons. Firstly, registration ultimately repre-
sents a regression problem, rather than a classification
problem. In some sense, all the point matches belong to
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the same class but differ in how good a fit they are to the
underlying transformation. Secondly, labelled training
data is not available (AdaBoost is a supervised learn-
ing method). Thirdly, it may be challenging to identify
suitable weak learners and formalize the problem using
an additive model, making it difficult to adapt AdaBoost
to this new task.

3 THE ITERATIVE RE-WEIGHTING METHOD

We now explain our novel algorithm. Given two overlap-
ping 3D partial shapes, any representative FEM method,
e.g. the SHOT algorithm [32] or the USC algorithm [32],
can be employed to establish a set of PPMs (pi,p

′
i)

(i = 1, 2, · · · , N ≥ 3) where the pi come from the first
shape and the p′

i from the second. Such point matches
are typically contaminated by outliers. In this paper,
we use a weight wi in the interval [0, 1] to represent
the extent to which we believe match (pi,p

′
i) to be

correct, with a value of 1 meaning certainty. Our novel
RIRW method iteratively estimates and updates these
weights. Using the final weights allows more accu-
rate weighted least-squares estimation of the underlying
transformation. The iteration counter k is initialised to
k = 0. All weights are initialized to w

(0)
i = 1; the

superscript denotes the iteration. Our method is based
on three ideas: underlying transformation estimation,
penalty parameter estimation, and weight re-estimation
and update, as described in the next subsection. We
then summarise our algorithm, and finally compare the
properties of our novel algorithm with AdaBoost and an
M-estimator.

3.1 Derivation of main computational steps

Given the point matches (pi,p
′
i), and their weights w(k)

i ,
these weights are first normalised to sum to one. The
underlying transformation parameters in the form of
a rotation matrix R and translation vector t can be
estimated in the weighted least squares sense using the
following objective function:

J(R, t) =

N∑
i=1

w
(k)
i ||p

′
i −Rpi − t||2. (1)

We use the quaternion method [5] to minimize this
objective function, yielding an estimate of the rotation
matrix R(k) and translation vector t(k). In order to
reliably estimate (R, t), it is crucial to accurately estimate
the weights w(k)

i , which characterize the extent to which
each point match (pi,p

′
i) is correct. To this end, we

build a new objective function based on the entropy
maximization (EntMax) principle [13]:

J(W(k+1)) =
∑
i

w
(k+1)
i e

(k)
i

+
∑
i

1

β
(k+1)
i

w
(k+1)
i (logw

(k+1)
i − 1) (2)

where W(k+1) = {w(k+1)
1 , w

(k+1)
2 , · · · , w(k+1)

N } and e
(k)
i =

||p′
i − R(k)pi − t(k)||. This objective function minimizes

the weighted average registration error e(k)i of all PPMs
(pi,p

′
i), and maximizes the entropy of these weights

w
(k+1)
i . In contrast with [13], which implicitly assumes

that all point matches are of comparable quality and thus
uses a single parameter β to balance the contribution
of the two terms, we use individual parameters βi to
distinguish their varying correctnesses. Setting the first
order derivative of this objective function with respect
to w

(k+1)
i to zero leads to:

w
(k+1)
i = exp(−β(k+1)

i e
(k)
i ).

The key issue is thus to estimate the parameters β(k+1)
i .

To this end, we build another objective function again in
the framework of entropy maximization:

J(β(k+1)) =
∑
i

2β
(k+1)
i

2
(e

(k)
i − e

(k)
µ )2 −

2e(k)σ

2∑
i

(2β
(k+1)
i

2
+ 1)

[
log(2β

(k+1)
i

2
+ 1)− 1

]
(3)

where β(k+1) = {β(k+1)
1 , β

(k+1)
2 , · · · , β(k+1)

N },

e(k)µ =

N∑
i=1

w
(k)
i e

(k)
i

and

e(k)σ =

√√√√ N∑
i=1

w
(k)
i (e

(k)
i − e

(k)
µ )2.

This objective function minimizes the weighted variance
from e

(k)
µ of the registration errors e

(k)
i for all PPMs

(pi,p
′
i); the weights 2β

(k+1)
i

2
are regularized by their

shifted entropy

B =
∑
i

((2β
(k+1)
i

2
+ 1)

[
log(2β

(k+1)
i

2
+ 1)− 1

]
.

The two terms are balanced by 2e
(k)
σ

2
. Then, setting

the derivative with respect to β
(k+1)
i of this objective

function to zero gives

β
(k+1)
i =

√
0.5(1− α(k)

i )/α
(k)
i

where

α
(k)
i = exp(−(e(k)i − e

(k)
µ )2/(2e(k)σ

2
)).

In order to learn from previous iterations, we also take
into account the current normalized weight w(k)

i , so the
weight in the new iteration is finally updated to be:

w
(k+1)
i = max(w

(k)
i , w

(k+1)
i ). (4)

Firstly, this ensures that wi remains in the interval [0, 1].
Secondly, taking the maximum of these weights better
characterizes than other alternative schemes (like geo-
metric mean) the extent to which a point match is correct,
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no matter how accurately the rotation matrix R and
translation vector t were estimated from past iterations.
This observation is verified by the experimental results
given in Section 4.2. Thirdly, the method can learn from
both its good and poor estimates in successive iterations.

In sharp contrast to the main idea of the traditional
AdaBoost algorithm, which boosts the weights of the
misclassified instances and decreases the weights of the
correctly classified instances, our algorithm penalizes all
the matches (pi,p

′
i) in a uniform manner according to

their errors e(k)i as well as their corresponding penalty
parameters β(k+1)

i . The larger the registration error and
the penalty parameter of a point match, the more heavily
this point match will be penalized, and the less likely this
point match will be judged correct. Note that we do not
classify the point matches as inliers or outliers, so there
are no weak classifiers to adjust during iteration. We
focus instead on the estimation of the weights of point
matches, showing the extent to which they are believed
to be reliable.

3.2 The iterative re-weighting algorithm
Pulling the previous ingredients together gives our pro-
posed RIRW algorithm:

1: Use features to establish a set of point matches
between two overlapping 3D partial shapes

2: Calculate the average distance s between the closest
neighboring points in the original partial shapes, ini-
tialize the weight of each point match to 1, the max-
imum number kmax of iterations, iteration counter
k = 0 and e

(0)
µ =∞

3: while e(k)µ > s and k < kmax do
4: Normalise the weights: wk)i ← w

(k)
i /

∑N
j=1 w

(k)
j

5: Estimate the solution (R(k), t(k)) from Equation 1
6: Calculate the weighted average e(k)µ and standard

deviation e
(k)
σ of the point match errors

7: Estimate the penalty parameter β
(k+1)
i for each

point match using Equation 3
8: Estimate the weight w(k+1)

i of each point match
using Equation 2

9: Update the weight w
(k+1)
i of each point match

using Equation 4
10: k ← k + 1
11: end while
12: Re-estimate the underlying transformation (R, t)

from all point matches (pi,p
′
i) using Equation 1

As each step has a computational complexity of O(N)
in the number N of established point matches between
the overlapping partial shapes, the overall algorithm
thus has a linear computational complexity O(kmaxN).
All experiments described later set kmax = 200.

3.3 Analysis of the proposed method
Our proposed method has similarities to the AdaBoost
and iteratively re-weighted least squares (IRLS) (M-
estimator) methods. In this section, we compare and

identify the differences that may lead to improved per-
formance in evaluating the PPMs.

The boosting parameter βi in Real AdaBoost in [12]
is set to β

(k)
i = 0.5 log(α

(k)
i /(1 − α

(k)
i )), and the new

weight w(k+1)
i is set to w

(k+1)
i = exp(−β(k)

i yi), where an
instance is classified into two classes with labels yi = ±1.
Clearly, if α(k)

i > 0.5 and this example is likely to be
correctly classified with label yi = 1, then β

(k)
i > 0 and

w
(k+1)
i will be decreased. However, if this example is

incorrectly classified with label yi = −1, then w
(k+1)
i

will be increased. If α
(k)
i < 0.5 and this example is

likely to be incorrectly classified with label yi = 1, then
β
(k)
i < 0, giving it a larger weight w(k+1)

i , but if, this
example is likely to be correctly classified with yi = −1,
then w(k+1)

i will be decreased. In either case, this scheme
attempts to boost the incorrectly classified data, i.e. in-
creases its weight. The boosting parameter βi guarantees
to optimize the objective function E[exp(−yiFi)] where
Fi = sign(

∑k
j=0 β

(j)
i ) is an additive model of the final

classifier.
In contrast, our point match evaluation problem is

quite different, lacking labelling information. It is es-
sentially a continuous data fitting problem for the un-
derlying transformation relating correct point matches.
Our weight estimation scheme considers not just the
penalty parameter β(k+1)

i but also the fitting error e(k)i .
Both parameters vary significantly from one point match
to another. The penalty parameter β(k+1)

i as defined in
this paper is always positive: β(k+1)

i > 0 and attempts
to penalise those point matches whose errors are either
much smaller or larger than e(k)µ . Note that point matches
with small errors are also penalised. To compensate
for this penalty, the fitting error is taken into account.
When α

(k)
i > 0.5 and the point matches are likely to

be correct, β(k+1)
i <

√
0.5, leading to an increase in the

associated weight. When α
(k)
i < 0.5, the point matches

are unlikely to be correct, unless they have small fitting
errors: β(k+1)

i >
√
0.5, leading to a decrease in weight.

When α
(k)
i = 0.5, then e

(k)
i = e

(k)
µ ±

√
2 ln 2e

(k)
σ . This

shows that the scheme actually increases weights of the
point matches with either small fitting errors or fitting
errors e(k)i in the range of [e(k)µ −1.177e(k)σ , e

(k)
µ +1.177e

(k)
σ ],

but reduces the weights of the point matches with large
fitting errors. While the fitting error e(k)i measures the
error of a particular match and thus evaluates point
matches separately, giving a bias against point matches
with small errors, the penalty parameter β(k+1)

i considers
the spread of errors over all the point matches and thus
evaluates them as a whole, providing a more complete
picture of correctness. A combination of these two factors
better characterizes the extent w(k+1)

i to which a point
match is correct.

AdaBoost and our RIRW method differ in five ways.
Firstly, the former requires labeled data for training
various weak and strong learners; labeled data is neither
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available nor required in our method. Secondly, the
boosting parameter in the former may be positive, zero,
or negative, while it is always positive in our method.
Thirdly, while the former attempts to boost incorrectly
classified examples through learning from both their
labels and penalty parameters, the latter attempts to
penalize those point matches whose fitting errors are
much larger than the weighted average point matching
error. Fourthly, the boosting parameter in the former
optimizes the objective function E[exp(−yiFi)], while the
latter minimizes the weighted variance of the registra-
tion errors of the point matches. Fifthly, while the former
eventually classifies each instance into one of two classes,
the latter estimates the extent to which each point match
is correct, for the purpose of optimizing the underlying
transformation in a weighted least squares sense.

Our proposed algorithm is also in the spirit of IRLS
(M-estimator) [2], [16], [38]. One of the best IRLS meth-
ods uses Tukey’s biweight function [2]:

w(x) =

{
(1− (x/c)2)2 if |x| ≤ c,

0 otherwise.

where x is the normalized fitting error of any point
match (pi,p

′
i): x = (e

(k)
i −e

(k)
µ )/δ, δ = 1.48621(1+5/(N−

6))median(e
(k)
i ), and c = 4.6851 × 0.0625. Using Tukey’s

biweight function and our proposed method differ in
two ways: Firstly, the former uses heuristics to classify
point matches into two classes with different weights,
while the latter treats all point matches uniformly, penal-
izing them according to their fitting errors and penalty
parameters. Secondly, the former needs a data dependent
threshold c, but our method is parameter free.

4 EXPERIMENTAL RESULTS

In this section, we use real data to demonstrate the pro-
posed RIRW algorithm for evaluating N point matches
(pi,p

′
i) established using the SHOT features [32] unless

otherwise stated, or USC features [33]. A comparative
study was performed using methods from each of the
three categories discussed in Section 2: from structural
consistency based methods, we used common visual
pattern discovery (CVPD) [18], from transformation con-
sistency based methods we used RANSAC [32] and
sparse vector field consensus (SparseVFC) [22], and
from statistical regression methods, we used IRLS (M-
estimator) based on Tukey’s biweight function [38].

The aim of this study was to understand which
method can most effectively evaluate the established
point matches in the sense of producing the most accu-
rate estimation of the underlying transformation relative
to a refined estimate produced by ICP. In detail, the
estimated underlying transformation was used to initial-
ize an ICP variant, SoftICP [17] which usually produces
accurate results after refinement. These results can be
used to assess the performance of different methods
under test [34]; this approach is particularly useful when
ground truth concerning either the point matches or

the underlying transformation is partially or completely
unavailable, as is the case for the data used in this paper.

All real data in Figure 1 were downloaded from [25];
they were captured using a Minolta Vivid 700 range
camera with a fixed resolution of 200×200 or a Technical
Arts 100X range scanner with resolution varying from
86 × 129 to 240 × 240. The percentage relative errors
eh, eθ, and et in the rotation axis h, rotation angle θ,
and translation vector t of the finally estimated underly-
ing transformation were computed. Further quantitative
measures of the performance of the methods are the
time taken for point match evaluation, and estimation
of the underlying transformation refined by the SoftICP
algorithm.

To illustrate the extent to which the established point
matches are corrupted by false mathches and how chal-
lenging they are to evaluate, we also calculated the
proportion ec of correct point matches as a percentage:
ec = n/N × 100% where n is the number of the correct
matches. A correct match is taken to be a point match
whose error ei is smaller than 4 times the average
distance between the closest neighboring points in the
original shapes, measured using the underlying transfor-
mation estimated from the point matches evaluated by
our RIRW method and refined by the SoftICP algorithm.

Our experimental study concerned four issues: regis-
tration error definition, the weight accumulation scheme
within our RIRW algorithm, and studies comparing the
RIRW algorithm and competing ones using two dif-
ferent databases. Experimental results are presented in
Figures 2–9 and Tables 1–4. For each pair of overlapping
3D partial shapes, we call the first the data shape, and the
second the reference shape. In Figures 3, 5, 7 and 9, yellow
represents the transformed data shape with the transfor-
mation estimated from the evaluated point matches, and
green represents the reference shape. All experiments
were carried out on a PC with an Intel Xeon E5620
processor with unoptimized C code written in Microsoft
Visual Studio 2008.

4.1 Registration error definition

In our RIRW method, the registration error is de-
fined as: ei = ||p′

i − Rpi − t||, the Euclidean dis-
tance (ED) between the matched points (pi,p

′
i). In

this section, we experimentally investigate whether the
squared Euclidean distance (SED) might produce better
results than ED. To this end, the overlapping shapes
valve20–10, valve10–0, pat108–144, pat144–180, lobster0–
20, lobster20–40, pooh140–160, and pooh160–180 in Fig-
ure 1 were selected for the experiments; the results are
presented in Figures 2 and 3 and Table 1.

They show that ED outperforms SED as a defini-
tion of registration error of point matches, leading to
significantly lower mean and standard deviations of
error in the estimated rotation axes, rotation angles, and
translation vectors of the underlying transformations.
For example, SED results in significant displacement of
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TABLE 1
Average µ and standard deviation σ of relative errors

eh(%), eθ(%), and et(%) in the estimated rotation axis ĥ,
rotation angle θ̂, and translation vector t̂ and evaluation
time ti in seconds using different definitions for ei in our

RIRW method.

Parameter Metric eh (%) eθ (%) et (%) ti (sec)
µ ED 3.61 -0.05 3.63 71.13

SED 16.34 3.67 12.36 71.75
σ ED 4.17 3.12 3.53 21.15

SED 32.28 15.39 18.56 22.27

the transformed pat108 data shape relative to the pat144
reference shape.

Since the established point matches are heavily cor-
rupted by outliers, SED strongly penalizes matches with
larger errors, tending to reject correct matches as out-
liers, and so sometimes loses balance in characterizing
errors and reliable matches, failing to distinguish them.
In extreme cases SED may even lead to underflow in
the computations performed. Overall, ED provides a
better compromise between penalising point matches
with registration errors and accurate estimates of their
reliabilities. Our results provides further evidence for the
claims in [6] for feature matching and in [14] for noise
removal that the L2 norm, SED, is over-aggressive in
rejecting data as outliers compared to the L1 norm, ED.
This justifies our use of the L1 norm, ED.

4.2 Weight accumulation

The RIRW algorithm combines the weights estimated
in successive iterations. Various schemes can be used
for this task. We investigated three different schemes:

w
(k+1)
i = max(w

(k)
i , w

(k+1)
i ), w

(k+1)
i =

√
w

(k)
i w

(k+1)
i ,

and w
(k+1)
i = min(w

(k)
i , w

(k+1)
i ), which we denote

maximum (MAX), geometric mean (GEM), and mini-
mum (MIN) in the rest of this section. We note that

max(w
(k)
i , w

(k+1)
i ) ≥

√
w

(k)
i w

(k+1)
i ≥ min(w

(k)
i , w

(k+1)
i ).

The overlapping bluedino125–375, reddino0–36, bird20–
40, buddha40–60, lobster60–80, lobster80–100, cow50-47,
and cow47–44 shapes in Figure 1 were selected for these
experiments; the results are presented in Figures 4 and 5
and Table 2.

No single scheme always produces the most accurate
results. However, the MAX scheme is the most stable and
produced the most accurate evaluation results overall.
Both the GEM and MIN schemes lead to failures: the
transformed data cow50 shape intersected the reference
cow47 shape, rather than overlapping it correctly. The
MAX scheme has on average lowest relative errors in
the estimated rotation axis, rotation angle and translation
vector over the eight pairs of the overlapping shapes.
The GEM scheme is affected by the penalty parameters
and underlying transformations inaccurately estimated
in certain iterations, while the weights selected by the

TABLE 2
Average µ and standard deviation σ of relative errors

eh(%), eθ(%), and et(%) of the estimated rotation axis ĥ,
rotation angle θ̂, and translation vector t̂ and evaluation

time ti in seconds using different schemes for combining
weights from different iterations in our RIRW method.

Param. Scheme eh (%) eθ (%) et (%) ti (sec)
µ MAX 4.35 -0.26 5.87 38.88

GEM 6.94 -1.30 8.76 39.00
MIN 6.89 -4.69 9.35 39.62

σ MAX 3.66 5.84 5.46 25.38
GEM 6.62 6.76 8.93 23.93
MIN 8.59 11.22 8.27 24.50

MIN scheme from different iterations are not always
representative of the actual quality of the point matches.
The weights from the MAX scheme are more informative
in distinguishing between correct and false matches,
benefiting from an accurate estimate of the weights of
the point matches in any iteration. These results justify
our selection of the MAX scheme.

4.3 SHOT feature matches, Minolta Vivid 700 data

This section provides a comparative study of differ-
ent techniques: RANSAC [9], Tukey’s biweight func-
tion based IRLS [38], CVPD [18], SparseVFC [22] and
our RIRW method using matches based on SHOT
features [32]. The overlapping tubby0–20, tubby20–40,
frog0–40, frog40–80, duck0–20, bird0–20, bunny0–40 and
cow37–40 shapes in Figure 1 were used in these ex-
periments; the results are presented in Figures 6 and 7
and Table 3. The percentages ec of correct point matches
among the ones established between these shapes are
21.83%, 22.36%, 3.32%, 4.38%, 6.82%, 11.76%, 4.07%, and
31.67% respectively; note that these are always less than
50%, and much less in some cases.

The results show that the CVPD method failed to cor-
rectly identify the common patterns defined by the point
matches between the frog0-40 and bunny0-40 shapes.
The RANSAC and CVPD methods failed to successfully
downweight bad point matches between the frog40-80
shapes. The SparseVFC methods failed to accurately esti-
mate the weights of the point matches between the frog0-
40 and frog40-80 shapes. The RANSAC, IRLS, CVPD and
SparseVFC methods also determined unsuitable weights
for the point matches between the duck0-20, bird0-
20 and cow37-40 shapes. However, our RIRW method
determined suitable weights for the point matches for all
8 pairs of overlapping shapes. Failures are manifested by
the fact that the transformed frog0, bunny0, and frog40
data shapes intersect the frog40, bunny40 and frog80
reference shapes in 3D space. Inaccurate evaluation of
point matches leads the transformed duck0, bird0, and
cow37 shapes to be displaced around the beaks of the
duck and the bird, and the head of the cow, compared
to the reference duck20, bird20, and cow40 shapes.
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Fig. 2. Final registration results of different overlapping partial shapes for our RIRW method, using different definitions
of ei: top row: ED; bottom row: SED. Left to right: valve20–10, valve10–0, pat108–144, pat144–180, lobster0–20,
lobster20–40, pooh140–160, and pooh160–180.

Fig. 3. The average µ and standard deviation σ of the relative errors eh(%), eθ(%), and et(%) of the estimated rotation
axis ĥ (left), rotation angle θ̂ (middle), and translation vector t̂ (right) for our RIRW method with parameter ei taking
different definitions. Indexes 1 through 8 represent the overlapping shape pairs valve20–10, valve10–0, pat108–144,
pat144–180, lobster0–20, lobster20–40, pooh140–160, and pooh160–180 respectively.

These observations are verified in Figure 7 and Table 3,
showing that the proposed RIRW method provided the
most accurate and stable estimates of the underlying
transformation from the weighted point matches estab-
lished by the SHOT method. In the RANSAC method,
difficult choices must be made [29] for the threshold
used to distinguish inliers from outliers, and to specify
the goodness of a model, while the IRLS method has
difficulties in classifying the PPMs into two categories
with different weights. The CVPD method must esti-
mate the adjacency matrix for the description of visual
patterns and has difficulties in identifying common vi-
sual patterns in different overlapping shapes, while the
SparseVFC method imposes few constraints and has 3N
degrees of freedom, which is much larger than the 6
needed to model the underlying rigid transformation,
causing overfitting. In sharp contrast, the minimization
of the weighted variance and average of the registration
errors of the PPMs in our RIRW method provides a pow-
erful and effective way of estimating the intermediate
parameters of interest and thus their reliabilities.

Our proposed method is also fastest. The RANSAC
method has to sample data and estimate the underlying

transformation in each of many iterations, and it is diffi-
cult to decide when to terminate. The IRLS method has
to sort the fitting errors of the PPMs, the CVPD method
has to do many matrix and vector multiplications, and
the SparseVFC method has to solve a linear system
with many unknowns in each iteration. Our method
computes simple statistics on the fitting errors of the
point matches, and updates their weights using simple
exponential and maximum operations. A further benefit
is that its better estimates of the underlying transforma-
tion enable the SoftICP algorithm used for refinement to
converge very quickly.

4.4 USC feature matches, Technical Arts 100X data
A similar comparative study was performed using
the same methods, but USC features [33] and data
captured by a Technical Arts 100X scanner. This en-
ables us to check the generality of the conclusions
drawn in the last section. The overlapping adapter2–3,
agpart2–3, column2–5, curvblock1–2, grn-blk1–2, wye2–
3, jumble11–12 and block2–3 shapes in Figure 1 were
selected for the experiments; the results are presented
in Figures 8 and 9 and Table 4. The percentages ec of
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Fig. 4. Registration results of different overlapping partial shapes for our RIRW method, using different approaches
for combining weights from different iterations. Left to right: bluedino125–375, reddino0–36, bird20–40, buddha40–60,
lobster60–80, lobster80–100, cow50-47, and cow47–44. Top: MAX; Middle: GEM; Bottom: MIN.

Fig. 5. Average µ and standard deviation σ of relative errors eh(%), eθ(%), and et(%) of the estimated rotation axis
ĥ (left), rotation angle θ̂ (middle), and translation vector t̂ (right) for our RIRW method, using different approaches for
combining weights from different iterations. Indexes 1 through 8 represent bluedino125–375, reddino0–36, bird20–40,
buddha40–60, lobster60–80, lobster80–100, cow50-47, and cow47–44 respectively.

correct point matches among the established ones were
again low, being 23.32%, 11.43%, 9.27%, 2.94%, 11.20%,
1.18%, 2.49%, and 4.68% respectively.

The various methods show similar behavior to that
observed in the last section. The IRLS, CVPD, and Spar-
seVFC methods failed to successfully downweight the
bad point matches between the column2–5 and block2–3
shapes, while the CVPD and SparseVFC methods failed
to determine appropriate weights for point matches be-
tween the curvblock1–2 and wye2–3 shapes. As a result
the transformed column2, block2, curvblock1, and wye2
data shapes intersect the column5, block3, curvblock2
and wye3 reference shapes in 3D space respectively. In

sharp contrast, our RIRW method determined appro-
priate weights for the point matches between all the
eight pairs of overlapping shapes, yielding an accu-
rate estimation of the underlying transformation with
good alignment. It is interesting to note that while the
RANSAC and the proposed RIRW methods aligned the
larger green blocks in the jumbles example, the IRLS,
CVPD and SparseVFC methods made a compromise in
aligning both the columns and the green blocks. See
Figures 8 and 9.

The proposed RIRW method had lowest relative er-
rors on average for the estimated rotation axis, rotation
angle, and translation vector. Again, it was also the most
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Fig. 6. Registration results of different overlapping partial shapes for different evaluation algorithms. Left to right:
tubby0–20, tubby20–40, frog0–40, frog40–80, duck0–20, bird0–20, bunny0–40 and cow37–40. Top row: RANSAC;
Second: IRLS; Third: CVPD; Fourth: SparseVFC; Bottom: RIRW.

Fig. 7. Average µ and standard deviation σ of relative errors eh(%), eθ(%), and et(%) of the estimated rotation axis ĥ
(left), rotation angle θ̂ (middle), and translation vector t̂ (right) for different algorithms. Indexes 1 through 8 represent
tubby0–20, tubby20–40, frog0–40, frog40–80, duck0–20, bird0–20, bunny0–40 and cow37–40 respectively.

computationally efficient method. These results show
that the proposed RIRW method is powerful and can
stably estimate the underlying transformation from point
matches based on different features using data captured

by various scanners.
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Fig. 8. Registration results of different overlapping partial shapes for different evaluation algorithms. Left to
right: adapter2–3, agpart2–3, column2–5, curvblock1–2, grn-blk1–2, wye2–3, jumble11–12 and block2–3. Top row:
RANSAC; Second: IRLS; Third: CVPD; Fourth: SparseVFC; Bottom: RIRW.

Fig. 9. Average µ and standard deviation σ of relative errors eh(%), eθ(%), and et(%) of the estimated rotation axis ĥ
(left), rotation angle θ̂ (middle), and translation vector t̂ (right) for different algorithms. Indexes 1 through 8 represent
adapter2–3, agpart2–3, column2–5, curvblock1–2, grn-blk1–2, wye2–3, jumble11–12 and block2–3 respectively.

5 CONCLUSIONS

Feature extraction followed by matching is widely used
for registering overlapping 3D partial shapes. Our ex-
perimental results show that unfortunately, up to 99% of
the point matches established can be outliers with unpre-
dictable errors, and they are thus extremely challenging

to evaluate. Our new method is based on two main
steps, using two objective functions to estimate penalty
parameters first and then weights. After initializing or
estimating weights of the PPMs, the underlying transfor-
mation is estimated in the weighted least squares sense,
allowing computation of the weighted average eµ and
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TABLE 3
Average µ and standard deviation σ of the relative errors
eh(%), eθ(%), and et(%) of the estimated rotation axis ĥ,
rotation angle θ̂, and translation vector t̂ and evaluation

time ti in seconds for different algorithms.

Para. Algo. eh (%) eθ (%) et (%) ti (sec)
µ RANSAC 30.38 33.16 50.74 73.75

IRLS 3.51 -9.80 10.84 44.50
CVPD 26.07 0.35 20.70 62.63

SparseVFC 11.78 -10.15 9.52 44.50
RIRW 3.35 -1.42 3.29 42.75

σ RANSAC 62.16 126.15 96.53 74.26
IRLS 2.90 6.40 7.31 36.84

CVPD 26.47 19.50 17.79 64.78
SparseVFC 10.84 -10.15 9.52 38.66

RIRW 1.77 2.54 1.89 34.95

TABLE 4
Average µ and standard deviation σ of relative errors

eh(%), eθ(%), and et(%) of the estimated rotation axis ĥ,
rotation angle θ̂, and translation vector t̂ and evaluation

time ti in seconds for different algorithms.

Para. Algo. eh (%) eθ (%) et (%) ti (sec)
µ RANSAC 7.31 -1.09 9.53 54.63

IRLS 8.09 2.07 23.95 72.37
CVPD 26.55 16.09 40.89 65.87

SparseVFC 37.41 42.69 43.27 177.75
RIRW 5.94 -1.20 7.93 54.00

σ RANSAC 9.41 8.46 8.12 42.22
IRLS 5.10 5.27 37.89 48.47

CVPD 24.32 54.08 39.13 46.79
SparseVFC 46.43 146.51 50.93 260.75

RIRW 5.84 7.98 6.69 42.09

variance e2σ of the registration errors over all PPMs. The
first objective function aims to minimize the weighted
variance from eµ of the registration errors of the PPMs
with the weights defined by the penalty parameters,
regularized by their shifted entropy and balanced by 2e2σ .
The second aims to minimize the weighted average of
the registration errors of the PPMs with the weights reg-
ularized by their entropy and balanced by their penalty
parameters. The result is that the reliability of each point
match is accurately characterized by a real number in the
unit interval, leading to an accurate estimation of the
underlying transformation via weighted least-squares.

Our contributions can be summarized as follows.
Firstly, we have provided a novel regularization based
iterative re-weighting method for evaluating point
matches between two overlapping 3D partial shapes,
assuming that matches have already been established
by any chosen FEM method. Point matches are treated
as having different reliabilities, and are accordingly
weighted both when re-estimating these reliabilities, and
when using the point matches to estimate the underlying
transformation. Our method provides a generic and
principled framework for the task based on a mathe-
matically elegant approach. It is easily implemented, has
a closed form solution, and does not depend on any

arbitrary parameters.
Secondly, our comparative study based on real data

captured by two different laser scanners shows that reg-
ularization based objective functions provide a powerful
means for estimation of transformation parameters. The
proposed method outperforms four selected state-of-the-
art methods: RANSAC, IRLS, CVPD, and SparseVFC,
providing accurate and stable estimation of the underly-
ing transformation from point matches established by
two different FEM methods. It significantly improves
upon a coarse pose estimate provided by using all
matches in an unweighted combination, an approach
often used in practice to initialise fine registration using
the ICP algorithm or some variant. Better initialization
results in the latter being more likely to find a correct
global minimum, providing more accurate and robust
registration results; fewer ICP iterations are also required
with better initialization.

Thirdly, our study shows that even though up to 99%
of the established point matches may be outliers, use
of our algorithm can still lead to accurate recovery of
the underlying transformation with errors as small as
5% relative to the globally optimal solution. Indeed, for
some applications, such errors may be low enough to
avoid having to use refinement at all.

Finally, our results also show that the point matches
established by typical FEM methods may not be as bad
as they appear and may include more information than
expected. More work is needed on the development
of point match evaluation methods; novel features have
attracted far more attention, but the former may provide
greater opportunities for improving registration results.

While our RIRW method is computationally efficient
and converges very quickly, more is needed to theo-
retically investigate its convergence properties: does it
always converge within a limited number of iterations
and have limited error after convergence, like AdaBoost?
Incorporating a rigidity constraint is also likely to further
improve the results provided by our method.
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