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Abstract 14 

The effective design of species conservation and management programs is reliant on information such as extant 15 

geographic distribution, taxon-specific life-history characteristics, and the relative influence of historic 16 

processes and contemporary environmental parameters in shaping population genetic diversity. Seahorses are 17 

small coastal fish, weak swimmers as adults and with brooded young, limiting their dispersal potential. 18 

Seahorses live in sheltered locations, including estuaries which are physically isolated from each other. 19 

Therefore panmixia across their geographic range is unlikely. Hippocampus guttulatus, a seahorse inhabiting 20 

European waters, has a geographic range spanning a number of contemporary oceanographic features that are 21 

proposed barriers to gene flow. Thus this fish is well-placed to test the relative contributions of environment and 22 

life-history factors in shaping contemporary population structuring.  23 

This study found that mitochondrial DNA and nuclear DNA (microsatellite) genotype data are concordant in 24 

suggesting that, like many other small fishes in European waters, H. guttulatus extant populations expanded 25 

from at least one southern European refugial population. Subsequent population differentiation of four 26 

geographic lineages reflects contemporary oceanographic barriers to gene flow. Demographic analyses suggest a 27 

northward expansion from a southern refugium, and long-term isolation between Black Sea and Mediterranean 28 

Sea populations. Moreover H. guttulatus contemporary population distribution and population structure is 29 

predominately explained by historic and oceanographic influences, rather than life-history traits and associated 30 

habitat preference. These findings suggest that conservation of genetic diversity in H. guttulatus may be aided 31 

by a network of Marine Protected Areas (MPAs), implemented to conserve coastal species and habitats, but the 32 

species’ unusual life history and gamete retaining behaviours should be considered as part of management 33 

decisions including MPA design and fisheries management plans. 34 

 35 
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Introduction 38 

Marine conservation can be enhanced when species-specific biological, ecological and genetic data are 39 

considered in conjunction with environmental parameters. For example, estimations of genetic connectivity can 40 

help resolve the relative influence of historical versus current environmental features and processes on 41 

contemporary population structuring. In marine species, many examples have shown the utility of genetic data 42 

in establishing the importance of life-history traits (Galindo et al. 2010), environmental factors (e.g. 43 

hydrodynamics Schunter et al. 2011) and historic processes (Maggs et al. 2008; Patarnello et al. 2007) in driving 44 

contemporary population diversity and structuring. Such studies have been used to inform species management 45 

and conservation strategies (Planes et al. 2009). 46 

Marine species have been predicted to have little genetic structure due to propagule dispersing factors such 47 

as long larval phases and dispersal by oceanographic currents (Ward, et al. 1994). Whilst some species show 48 

close fit to expected patterns of high genetic connectivity (e.g. the coral Astroides calycularis, Casado-Amezua 49 

et al. 2012), many species that have potential for high gene flow do not exhibit panmictic populations (e.g. 50 

European anchovy, Zarraonaindia et al. 2012; bluefin tuna, Riccioni et al. 2010), and some species predicted to 51 

have substantial population substructure such as the marbled goby, a lagoon dwelling fish, show widespread 52 

genetic homogeneity (Merjri et al. 2011). Thus the population structures of marine species are determined by a 53 

complex interaction of factors, and may or may not be easily predicted. 54 

Environmental factors are regularly shown to influence genetic differentiation of marine species. Factors 55 

include coastal topography (Nicastro, et al. 2008), oceanic currents (Quinteiro, et al. 2007), bathymetric profile 56 

(Hoarau, et al. 2002), habitat availability (Astolfi, et al. 2005), and temperature and salinity discontinuities 57 

(Jorgensen, et al. 2005). For example, water temperature changes seasonally in temperate zones, but currents 58 

(e.g. Gulf Stream) or depth (e.g. thermoclines) can also maintain distinct long-term temperature discontinuities. 59 

Historic events such as bottlenecks in population size (Bargelloni, et al. 2005), species range expansion (Wilson 60 

2006) and vicariance (Arnaud-Haond, et al. 2007) occur in response to environmental or anthropogenic factors, 61 

and may also influence contemporary population connectivity, species geographic range, and the distribution of 62 

genetic diversity. 63 

Both historic and extant environmental conditions in European waters of the NE Atlantic Ocean, 64 

Mediterranean Sea and Black Sea are known to have influenced their different faunal compositions. Within and 65 

between these waters there are a number of recognised barriers to individual dispersal that define population 66 



divergence of marine species, such as the Straits of Sicily and the Almeria-Oran frontal system in the 67 

Mediterranean Sea (Galarza et al. 2009; Patarnello et al. 2007; Schunter et al. 2011). 68 

Seahorses have distinct life-history characteristics that have led researchers to hypothesize limited 69 

connectivity among patchily distributed populations, as well as making them more vulnerable to habitat 70 

destruction and overexploitation (reviewed by Vincent et al. 2011). Predictions of low individual dispersal 71 

capacity result from traits such as internal fertilisation and brooding of young, a short planktonic juvenile phase 72 

(Boisseau 1967), and adult site fidelity, small home range (Curtis & Vincent 2006) and weak swimming ability 73 

(Blake 1976). However seahorses are known to move up to 150m daily, within a lagoon system (Caldwell & 74 

Vincent 2013) and have the potential for occasional migration events by rafting (Luzzatto et al. 2013; Perante et 75 

al. 2002; Vandendriessche et al. 2005). In addition, most seahorse species are socially (Foster & Vincent 2004) 76 

and genetically serially monogamous (Woodall et al. 2011a), which could result in a lower effective population 77 

size due to limited parental crossings. Seahorses therefore exhibit characteristics that suggest highly structured 78 

genetic populations. 79 

Hippocampus guttulatus, Cuvier 1829, is distributed along coasts of the North-East Atlantic from the 80 

English Channel in the north to NW Africa in the south, and throughout the Mediterranean Sea and Black Sea 81 

(Lourie et al. 2004). Like many seahorses, H. guttulatus is a shallow coastal and estuarine dweller, often 82 

associated with seagrass beds (Curtis & Vincent 2005), potentially limiting dispersal across deep open water. 83 

Throughout its range these habitats are disjunct (Green & Short 2003) and as such this species exhibits non-84 

continuous populations, which can reduce the chance of nearby populations mixing. Seahorses such as H. 85 

guttulatus are thus well placed to elucidate the relative influence of life history traits versus environmental and 86 

historical climatic factors in determining population connectivity. 87 

A single recent study has assessed genetic variation in H. guttulatus across a small part of the species' 88 

geographic range (NW Iberian Peninsula), and found no significant barriers to gene flow (Lopez et al. 2015), 89 

but studies of three other syngnathid species from areas more representative of the geographic range of H. 90 

guttulatus suggest more defined population differentiation in such species. Contemporary population structure 91 

of the pipefish Syngnathus typhle has been shown to be influenced by Pleistocene glaciations, with post glacial 92 

recolonisation effects evident in movement of the geographic range north and eastwards (Wilson & Eigenmann 93 

Veraguth 2010), whilst another pipefish (S. abaster) displays significant post-glacial fragmentation and 94 

differentiation (Sanna et al. 2013). Similarly, both contemporary (i.e. oceanographic barriers) and historic 95 

factors (i.e. Pleistocene glaciation) were identified as shaping the population structure across European waters in 96 



Hippocampus hippocampus, with no evidence for the limited propagule connectivity expected in this family 97 

(Woodall et al. 2011b). 98 

In this study mtDNA and nuclear DNA (microsatellite) markers were applied to samples from the entire 99 

geographic range of H. guttulatus to: investigate contemporary genetic population structure; identify potential 100 

barriers to gene flow; infer demographic history, including times of population divergence and range expansion; 101 

and propose conservation and management practices in the light of data from this and other European seahorse 102 

species. 103 

Materials and Methods 104 

Sample acquisition and DNA extraction 105 

Specimens were collected from 17 locations across the NE Atlantic Ocean, northern Mediterranean Sea and 106 

Black Sea, covering over 6000 km of coastline and with a range of 60-1200 km between neighbouring sites (Fig 107 

1, Table 1). Seahorses generally live in low densities, are cryptic and are not commercially targeted in Europe, 108 

so they are particularly difficult to sample. As a result at some sites it was necessary to re-sample over 109 

successive days and/or consecutive years (site MSP). Tissue samples were collected from each individual in situ 110 

underwater and non-lethally to minimise impacts on individuals and populations (see Woodall et al. 2012). 111 

Genomic DNA was isolated from 3-4 mm
2
 of dorsal fin tissue using a standard cetyltrimethyl ammonium 112 

bromide (CTAB) chloroform/isoamyl alcohol DNA extraction method (after Winnepenninckx, et al. 1993). 113 

Mitochondrial DNA sequencing 114 

Fragments of mitochondrial DNA in the hypervariable 5’ end of the Control Region (CR) and the 115 

cytochrome b gene (cytb) were amplified for a maximum of 29 specimens from each of the 17 range-wide 116 

locations (Table 1). The CR was amplified using seahorse-specific primer HCAL2 (Teske et al. 2003) and H. 117 

guttulatus-specific primer HIPPCONR (5’AAG CCG AGC GTT CTC TCC 3’). The cytb was amplified using 118 

primer SHORSE 5.3L (Casey et al. 2004) and H. guttulatus-specific primer GUTTCYTB-R (5’ AGG GGG TTC 119 

TAC AGG CAT TAC 3’). Each 50µl PCR reaction contained: 5µl 10X manufacturer provided buffer, 2.5µl 120 

MgCl2 (50mM - Bioline, UK), 5µl deoxynucleotide triphosphate mix (dNTP) (1.25nM), 1.2 µl of each primer 121 

(10µM), 0.25µl Taq polymerase (5U/µl - Bioline, UK), 14.25µl H2O and 20µl template DNA (10-50 ng). The 122 

PCR profile was composed of an initial denaturation step (2 min at 94 °C), followed by 35 cycles of 123 

denaturation (30 s at 94 °C), annealing (30s at 50 °C) and extension (60s at 72 °C), and a final extension step (2 124 

min at 72 °C). 125 



Amplified products were purified, using either PCR purification kit (Qiagen) or Exonuclease 1-Shrimp 126 

Alkaline phosphatase protocols, sequenced in both directions by Macrogen (Korea), then deposited in Genbank 127 

(Accession numbers: KM061952 to KM062016). 128 

Amplification and screening of microsatellites 129 

Twenty-five previously developed seahorse-specific microsatellite primers (Galbusera et al. 2007; Pardo et 130 

al. 2006) were tested for amplification, allelic variation, null alleles and stutter bands. Five polymorphic 131 

microsatellite loci were selected for final screening (Hgu4, Hgu12, Hcaµ11, Hcaµ25 & Hcaµ27); the other loci 132 

either failed to amplify or were monomorphic. In total 313 specimens were genotyped from ten locations for a 133 

minimum of 15 individuals per site (Table 2). Loci were amplified separately in 10 µl reactions containing 2 µl 134 

template DNA (1–5 ng), 1 µl manufacturer-provided buffer, 0.6 µl MgCl
2
 (50 mM-Bioline), 1 µl dNTP mix 135 

(1.25 mM), 0.25 µl of each primer (10 µM, one being Cy5’ labelled), 0.05 µl Taq polymerase (5U/µl-Bioline). 136 

The thermocycle profile comprised an initial denaturing step (3 min at 95°C), followed by 35 cycles of 137 

denaturing (30 s at 95°C), annealing (30 s at 50°C (Hgu12), 53°C (Hcaµ11 and Hcaµ25) or 55°C (Hgu4 and 138 

Hcaµ27), and extension (30 s at 72°C), with a final extension step (3 min at 72°C)). PCR products were run on 139 

6% denaturing polyacrylamide gels in an ALFexpressII automated DNA sequencer (Amersham Pharmacia) and 140 

allele sizes scored using Fragment Manager v2.9 (Amersham Pharamcia). 141 

Genetic Diversity 142 

Sequence chromatographs were manually checked for errors and edited unambiguously in BIOEDIT v7.2.5 143 

(Hall 1999), then consensus sequences were aligned using CLUSTAL X (Thompson et al. 1997). Genetic 144 

diversity indices of haplotype diversity (h) and nucleotide diversity (π) were calculated in ARLEQUIN v3.5.1.3 145 

(Excoffier & Lischer 2010). Diversity was calculated for all sample locations and regions with a sample size of 146 

15 or larger. Genealogy networks were used to visualise nucleotide sequence divergence and genetic 147 

relationships between haplotypes; implemented in TCS v1.21 (Clement et al. 2000). 148 

Microsatellite locus number of alleles, conformity with Hardy Weinberg (HW) expectation and linkage 149 

disequilibrium were computed in GENEPOP v4.0 (Rousset 2008). Observed and expected heterozygosity were 150 

calculated in ARLEQUIN. Due to small samples sizes sites CGR and KGR were pooled to form a single Greek 151 

sample (GRE), after testing for allele frequency conformity between the individual samples. 152 

Power Analysis 153 

No evidence of null alleles was detected within any microsatellite locus using FreeNA (Chapuis & Estoup 154 

2007), and a <1% genotyping error was established by re-scoring five separate gels of each locus and comparing 155 



allele sizes with the original scoring. POWSIM v4.0 (Ryman and Palm 2006) was used to test the power of the 156 

microsatellite data to detect signals of genetic differentiation with current sample sizes, using different levels of 157 

genetic divergence ranging from FST = 0.005 to 0.200. 158 

Genetic differentiation 159 

Populations were combined into seven regions (Table 1) for testing for differentiation, based on geographic 160 

distance between sites and biogeographic provinces. Genetic structuring was assessed using AMOVA conducted 161 

in ARLEQUIN using ΦST (mtDNA) and FST (microsatellites) to test for significant differences within and 162 

between regions across Europe. To determine which pairwise comparisons contributed to the genetic structure 163 

inferred in AMOVA, two measures of genetic differentiation were used, the fixation index FST implemented in 164 

ARLEQUIN for mtDNA and FSTAT v2.9.2.3 (Goudet 2001) for microsatellites. Estimates of gene flow between 165 

regions were made using the maximum likelihood method (ML), implemented in MIGRATE 3.2.1 (Beerli & 166 

Felsenstein 2001). The estimates in MIGRATE were based on MCMC simulations using ten long chains and 167 

five short chains, of 150,000 and 11,250 genealogies respectively, with a burn-in of an additional 10,000, data 168 

recorded every 20 reconstructed genealogies. The mutation model was derived by calculating the gamma 169 

distribution (alpha) in PAUP* v4.0b10 (Swofford 2003). 170 

Subpopulation assignment tests were performed on population level microsatellite data in STRUCTURE v2.3.4 171 

(Pritchard et al. 2000) using both admixture and no admixture models with a burn-in of 5x10
5
 and 1x10

6
 MCMC 172 

chains. Both models were tested as some regions contained near-by unsampled populations, and some 173 

populations were close whereas some were isolated (SPORT and BISCAY), and these are more likely to have 174 

admixture than geographically distant/isolated ones (i.e. WMED and BLACK). All possible numbers of 175 

populations (K) were tested (1-9), using 20 replicates, and the most parsimonious were assessed according to 176 

ΔK (Evanno et al. 2005) using STRUCTURE HARVESTER web v0.6.92 (Earl & vonHoldt 2012). 177 

The mantel test, which tests the correlation between genetic and geographic distance, was implemented in 178 

IBDWS v 3.23 (Jensen et al. 2005) using 30,000 randomisations on concatenated sequences and microsatellite 179 

genotypes separately. Distances between sampled sites were calculated using minimum sea distances (Table S1). 180 

Historical Processes 181 

To infer the probability of demographic parameters we used an approximate Bayesian computation (ABC) 182 

approach in the program DIYABC v.2.03 (Cornuet et al. 2010; Cornuet et al. 2008), wherein molecular data are 183 

condensed into summary statistics and then compared to simulated data using a coalescent population model. 184 

For our model, we simulated four major regions of H. guttulatus distribution: 1) UK+BISCAY, 2) SPORT+MSP, 185 



3) WMED+EMED, and 4) BLACK. This regional grouping was selected based on concordance of population 186 

differentiation estimates from both mtDNA and microsatellite analyses (see previous methods and Table 3 as 187 

well as Fig. 3 and 4) and inferred oceanographic regions. The posterior distributions of parameters were 188 

calculated based on 1 million simulations using a total of 48 summary statistics. The fit of summary statistics to 189 

the model and chosen prior distributions were evaluated by locating the observed value and each summary 190 

statistic within a principal component analysis of 5000 simulated data sets. Microsatellite summary statistics 191 

included Mean size variance, Two-sample FST, and (du)
2
. Mitochondrial summary statistics included Mean 192 

pairwise differences, Variance of pairwise differences, Tajima’s D, Private segregating sites, and Mean numbers 193 

of rarest segregating sites. Between-population statistics included Mean of pairwise differences and FST (Hudson 194 

et al. 1992). Simulations were based on a complete dataset of 214 individuals. Mutation rates for mtDNA and 195 

microsatellites were uniformly distributed with an upper and lower bound of 8.00E-9 to 1.3E-8 and 1.00E-005 196 

to 1.00E-004 (in units of per site / per generation / per lineage) respectively. Uniform priors for effective 197 

population size ranged from (Ne) of 10 x 10
2
 to 15 x 10

6
, and divergence time 10 x 10

2
 to 10 x 10

5
 scaled to a 198 

generation time of 1 year. Euclidean distances between the observed and simulated data set were computed 199 

using a local linear regression, and 5,000 of the closest simulated to the observed datasets were retained to 200 

estimate posterior distributions of 18 parameters, which included divergence times, effective populations sizes, 201 

and timing and magnitude of size change within each region (Table 4) (Beaumont et al. 2002; Cornuet et al. 202 

2008). 203 

Results 204 

Population description 205 

A total of 236 individuals were genotyped for both CR and cytb and concatenated to give a sequence of 206 

991bp. The concatenated sequences revealed 70 haplotypes, with the most common haplotype seen in 28% of 207 

individuals across all regions. Total haplotype diversity was high (h=0.91) and nucleotide diversity was low 208 

(π=0.003) (Table 1). High haplotype diversity was found across all locations and regions, with the exception of 209 

the UK (PUK) and southern France (SFR). Nucleotide diversity was low across all populations and regions. The 210 

maximum parsimony network of concatenated sequences resembles a shallow star-like pattern (Fig. 2). Little 211 

geographic structuring can be seen in the network; the most common haplotype is represented in all regions; 212 

almost all other common haplotypes are found in multiple regions, except for the Black Sea; all regions display 213 

multiple private haplotypes. However the percentage of private haplotypes present differed considerably 214 

between regions; the UK has none and the Black Sea 81%, whereas the other regions have between 40-55%. 215 



All 313 individuals sampled were genotyped at five microsatellite loci, with all loci displaying no significant 216 

overall departures from Hardy Weinberg expectations of genotype frequencies or linkage disequilibrium. 217 

Moderate to low levels of genetic variability were observed at all loci (Table 2), but private alleles were present 218 

at each locus and all sampled locations. Observed and expected heterozygosity (Table 2) did not display 219 

geographic patterns, and no indication of inbreeding (FIS) were significant following Bonferroni correction. 220 

Power analysis based on sample size and screened microsatellite loci suggested that genetic divergence can be 221 

detected with >93% confidence for FST of 0.005, 98% confidence for FST of 0.007 and > 99.9% confidence for 222 

FST ≥0.010. An expected FST of zero estimates α to be 0.060–0.078, indicating expected levels of type I error. 223 

These results suggest that the five loci have the power to detect low levels of genetic differentiation (down to 224 

FST of 0.005). 225 

Genetic differentiation 226 

The global FST (ΦST 0.089 p<0.0001 mtDNA; FST=0.087, p<0.0001 microsatellites) indicated that there was 227 

significant population genetic differentiation across the sampled range. The AMOVA indicated that the greatest 228 

proportion of variation at both mtDNA and nDNA loci is among individuals within sample sites, although both 229 

marker types detected significant variation among regions (mtDNA: 10.4%, ΦSC 0.104, p <0.0001) (nDNA; 230 

7.28%, FSC 0.157, p<0.005), with marginally significant variation between locations within regions for the 231 

microsatellite data (Table S2). 232 

When samples were grouped and tested by geographical region widespread significant genetic structuring 233 

was shown in both mtDNA and microsatellite data across the range of H. guttulatus (Table 3). The majority of 234 

pairwise FST tests were significant even after sequential Bonferroni correction, the two exceptions being UK v 235 

BISCAY and MSP v SPORT. Gene flow estimates calculated in Migrate reveal a complex population structure 236 

(Fig. 3) that shares aspects of the pattern revealed in pairwise differentiation tests (Table 3), with high values 237 

within UK-BISCAY and SPORT-MSP but much lower values elsewhere. The UK-BISCAY estimates are 238 

bidirectional but unequal, with substantially more gene flow southwards, whereas the SPORT-MSP estimates 239 

are bidirectional and symmetrical. The Black Sea displays zero gene flow between it and all other regions. 240 

However the EMED populations do have genetic exchange with populations from WMED, MSP and SPORT. 241 

The STRUCTURE analysis with both admixture and non-admixture models indicated highest support for three 242 

genetic clusters among the sampled locations, which are UK-BISCAY, SPORT-MSP-WMED-EMED and 243 

BLACK (Fig. 4). Subsequent analysis of just the SPORT-MSP-WMED-EMED cluster shows clear of support 244 

for divergent clustering of SPORT-MSP and WMED-EMED (Fig. 4) resulting in four overall clusters. As a 245 



precautionary analysis to comply with the conservation management aims of the study, four metapopulations 246 

were chosen for demographic coalescent model analysis (UK+BISCAY, SPORT+MSP, WMED+EMED, and 247 

BLACK). Henceforth these metapopulations are referred to as N. ATLANTIC (comprising PUK, BFR, CFR, 248 

RFR, SSP samples), SW. IBERIA (TPO, PPO, RPO, MSP), MED (ASP, SFR, NITRIT, KGR, CGR) and 249 

BLACK (VBU). 250 

Mantel tests to assess correlation of genetic and geographic distance gave a positive and significant 251 

relationship among all Atlantic and Mediterranean samples (mtDNA: r=0.6910, p<0.01; microsatellites: 252 

r=0.5267, p<0.05). Subdivision of the sample sets indicated that the significant relationship was maintained 253 

across the samples from the Atlantic Ocean to Malaga site (MSP) (r=0.5352 p<0.001), but that no correlation 254 

existed across the Mediterranean samples (r=0.3033, p>0.05). 255 

Historical processes 256 

The DIYABC coalescent analysis indicated large values for contemporary effective population size in all 257 

four regional metapopulations (NE of ~730K to 1130K – Table 4). Estimates of divergence times between the 258 

four populations were all relatively recent, ranging from 18Kya between N.ATLANTIC and SW.IBERIA up to 259 

66 Kya between SW.IBERIA and MED (Table 4). Estimates of time since population expansion are even more 260 

recent, ranging from 2.4 Kya to 9.5 Kya (Table 4). However, because our models do not include divergence with 261 

gene flow, divergence times should be considered as approximations, allowing for the possibility of lineage 262 

divergence with gene flow taking place over a longer period of time. 263 

Discussion  264 

Genetic variability 265 

Levels of genetic diversity within species are important to consideration of conservation and management 266 

plans, where maintenance of genetic diversity is recommended (Kenchington et al. 2003). The high haplotype 267 

number combined with low nucleotide diversity observed in H. guttulatus is indicative of recent population 268 

expansion (Grant and Bowen 1998) across the species range. There are two exceptions to this range-wide 269 

pattern: the most northern population and a population located in the Thau lagoon, a water mass with extremely 270 

limited water flow to the Mediterranean Sea, have lower haplotype diversity. Lower diversity in the UK can be 271 

explain by Hewitt’s (2000) model of colonisation of geographically peripheral range edge sites,whereas the 272 

Thau lagoon population is more likely to be a result of inbreeding in a small isolated population (Frankham 273 

2005). Such patterns are common in marine species (Astolfi et al. 2005; Gysels et al. 2004; Teske et al. 2003) 274 

both at the extreme limits of the species’ range and in isolated sites. Such differences in diversity, however, were 275 



not observed in H. hippocampus (Woodall et al. 2011b), which may result from differences in habitat preference 276 

between these two seahorse species, with H. hippocampus more often found along open coasts whereas H. 277 

guttulatus is more frequently found in discontinuous habitats such as estuaries and lagoons (Woodall 2009). 278 

The range-wide ubiquity of a common mtDNA haplotype combined with many closely related haplotypes, and 279 

regional population groups with differing proportions of private haplotypes, in H. guttulatus is congruent with 280 

the distribution of microsatellite genotype variation, and a pattern common to other seahorses and is thought to 281 

reflect post-bottleneck expansions from a single refugium with ongoing contemporary gene flow (Saarman et al. 282 

2010; Teske et al. 2003; Woodall et al. 2011b). Other syngnathid species, however display different distributions 283 

of genetic diversity, so species-specific characteristics need to be discerned and taken into account in 284 

management. The Mediterranean lagoon-dwelling pipefish Syngnathus abaster has a more complex haplotype 285 

network but no shared haplotypes between populations, and similar nucleotide diversity to seahorses (Sanna et 286 

al. 2013), suggesting that the fragmented habitat and life history characteristics of the species have resulted in 287 

population isolation and breakdown of gene flow following the initial post-glacial expansion. One a larger 288 

geographical scale the seahorse H. erectus also demonstrates regionality and genomic divergence, with little 289 

connectivity between northern and southern populations occupying waters with very different environmental 290 

conditions (Boehm et al. 2015).  291 

Population structuring 292 

Genetic analysis revealed a complex pattern of subpopulations and connectivity with the initial regional 293 

assignments (Table 1), with four geographically defined lineages indicated: UK to northern Spain; Portugal to 294 

Malaga on the Mediterranean coast of Spain; the rest of the Mediterranean; and the Black Sea. There was some 295 

evidence for divergence between western and eastern regions of the Mediterranean Sea, but this was to an extent 296 

much less than the other divisions and not supported by all analyses (see below). Subpopulation genetic 297 

divergence revealed in H. guttulatus appears to partially reflect that found in the congeneric and co-distributed 298 

short snouted seahorse H. hippocampus (Woodall et al. 2011b). It may be expected that both species would have 299 

a similar pattern of population differentiation as they can co-occur and have very similar life-history characters. 300 

However they show differences in micro-habitat preference (Curtis et al. 2007) and macro-habitat distribution 301 

(Woodall 2009). Hippocampus hippocampus also has a greater southern latitudinal range and is thought to have 302 

undergone more recent range expansion than H. guttulatus (Boehm et al. 2013; Teske et al. 2007). This apparent 303 

greater structuring of H. guttulatus suggests that a different combination of historical and contemporary 304 

processes may have contributed to these species’ population structure. 305 



Impact of life-history on genetic diversity 306 

In contrast to expectations of very limited dispersal and gene flow predicted from species biology and life 307 

history, the pattern of genetic similarity observed within and among geographical regions across the species 308 

range suggests that H. guttulatus dispersal, although limited in places, is sufficient to maintain long-term gene 309 

flow across relatively large distances. The apparent isolation of the Black Sea population, signified by 310 

significant inbreeding and genetic differentiation, and breakdown of gene flow across several regions (NW 311 

Iberia and Mediterranean coast of southern Spain) illustrates the potential for this species to form segregated 312 

populations. The overall genetic similarity across large areas suggests that unsampled stepping-stone 313 

populations could be the conduit for genetic exchange between sampled populations, as supported by isolation-314 

by-distance effects across large parts of the range (Palumbi 2003). 315 

Contemporary barriers to gene flow in H. guttulatus 316 

Cape Finisterre. A major barrier to gene flow between the northern Spanish and southeast Portugese sites was 317 

supported in H. hippocampus (Woodall et al. 2011b), and a similar pattern is consistent with our analysis of H. 318 

guttulatus. Other studies have observed Cape Finisterre in northwest Spain as being associated with genetic 319 

differentiation of marine populations (Neiva et al. 2012; Piñeira et al. 2008; Quesada et al. 1998), although a 320 

small-scale study of H. guttulatus across this area did not find population differentiation to either side of the 321 

cape (Lopez et al. 2015). A more southerly barrier to gene flow, between Rio Mondego and Rio Sado in central 322 

Portugal, has been suggested for other marine species (Diekmann et al. 2005; Pascoal et al. 2009). Further 323 

small-scale research will be required to elucidate exactly where gene flow breaks between H. guttulatus 324 

population around the northwestern Iberian Peninsula occur. However the interaction of current and upwelling 325 

systems along with fragmented habitat are likely to define the location of the barrier, which could be understood 326 

by biophysical oceanographic modelling (Nolasco et al. 2013).  327 

Gibraltar Straits or Almeria/Oran front? Genetic data indicate that the population MSP, in the Alboran Sea, east 328 

of the Straits of Gibraltar but west of the Almeria-Oran front (AOF), is part of the SW IBERIA metapopulation 329 

(Atlantic coasts). Thus the AOF correlates with H. guttulatus population structure and is the likely barrier to 330 

genetic exchange between Atlantic Ocean and Mediterranean Sea populations. The Atlantic–Mediterranean 331 

biogeographic boundary has been analysed in over 70 studies of many different marine organisms, and both fish 332 

(Charrier et al. 2006; Domingues et al. 2007) and invertebrates (Baus et al. 2005; Perez-Losada et al. 2002) 333 

show genetic differentiation correlating with the AOF. A number of studies, reviewed in Patarnello et al. (2007), 334 

suggest that the AOF is a significant physical barrier to individual dispersal and gene flow. 335 



The Siculo-Tunisian strait. Although to a much lesser extent than other gene flow boundaries identified in the 336 

present study, there is some evidence for genetic differentiation between populations of the western and eastern 337 

basins of the Mediterranean. The shallow sill of the Siculo-Tunisian straits disrupts local hydrodynamics and 338 

current flows, and so hinders genetic exchange between the two basins in a number of marine species (Merjri et 339 

al. 2009; Serrra et al. 2009) and is thought to be a biogeographic boundary (Bianchi and Morri 2000). The 340 

absence of isolation-by-distance effects in H. guttulatus across the Mediterranean suggests that the 341 

differentiation across the Siculo-Tunisian Strait is worthy of further investigation and decision as to its 342 

importance to management of this species. 343 

The Bosporus Straits and the Black Sea. The Black Sea is geographically isolated with only a narrow connection 344 

to the Mediterranean Sea through the Bosporus Straits. The historic isolation of the Black Sea and its distinct 345 

present environmental parameters (Sorokin 2002) suggest that the observed seahorse population structure could 346 

be a result of both historic and contemporary conditions. Our coalescent analysis suggests that historically the 347 

Black Sea population diverged from that in the Mediterranean roughly 50 Kya, just prior to the last glacial 348 

maximum (LGM), followed by a more recent population expansion after the LGM. The present low but 349 

significant genetic differentiation of the Black Sea H. guttulatus population (Table 3) indicates that it has not yet 350 

achieved migration-drift equilibrium with the Mediterranean population since the LGM. Genetic differentiation 351 

of Black Sea from eastern Mediterranean fish populations has been reported previously (Debes et al. 2008; 352 

Durand et al. 2013; and see Patarnello et al. 2007), but by contrast so has genetic homogeneity in other fish 353 

species (Magoulas et al. 2006), including the confamilial pipefish (Wilson & Eigenmann Veraguth 2010). It is 354 

likely that H. guttulatus has experienced episodic colonisation, isolation and gene flow in the Black Sea during 355 

multiple glacial cycles, in common with other fish species such as shad (Faria et al. 2012), but at present the 356 

Black Sea appears to harbour a distinct subpopulation of this seahorse. 357 

Historic demographic effects on diversity and distribution 358 

The H. guttulatus mtDNA haplotype network is consistent with a past demographic process of population 359 

expansion following a bottleneck across the species range. Such a demographic signature of population 360 

bottleneck plus expansion of is found in many other marine fishes across the same geographic range (e.g. 361 

Domingues et al. 2008), including other Syngnathids (Saarman et al. 2010; Wilson & Eigenmann Verguth 2010; 362 

Woodall et al. 2011b). The DIYABC analyses suggest that isolation and divergence of populations of H. 363 

guttulatus across Europe occurred during the last glacial maximum (66-18 Kya), and that population expansions 364 

occurred in all sub-populations after the LGM to the present (<10 Kya). Similar demographic signatures of past 365 



glacial periods are commonly seen in European marine species, and in some populations of Syngnathidae 366 

(Maggs et al. 2008; Wilson & Eigenmann Veraguth 2010; Woodall et al. 2011b). In common with other 367 

temperate marine species, and in accord with Hewitt’s (2000) model, the presence of a common haplotype 368 

across the range and higher genetic diversity of the more southern populations (SW IBERIA and Mediterranean 369 

in the present study) indicates that these areas harboured larger or refugial populations during previous glacial 370 

periods of the Pleistocene, and that the more northern populations of Biscay that exhibit the most extreme 371 

signals of expansion (Table 1) may have been extirpated and subsequently recolonized (at least during the more 372 

extreme glacial maxima before the LGM). 373 

Conservation Conclusions 374 

Our data indicate substantial genetic diversity and connectivity across the European range of H. guttulatus, 375 

but also the effects of two substantial barriers to gene flow (and consequent genetic differentiation), at Cape 376 

Finisterre and the Bosporus Straits, and further differentiation across the Almeria-Oran front and between the 377 

eastern and western Mediterranean. These patterns reveal that both contemporary processes (life-history and 378 

oceanographic features) and historic (paleoclimatic) events influence present population structure of H. 379 

guttulatus. We suggest that following the initial speciation in the Miocene (Teske et al. 2007), contraction of the 380 

species range during Pleistocene glacial maxima to at least one southern European refugial population followed 381 

by recurrent expansion and re-colonisation from these sites has been mediated by the isolating mechanism of 382 

oceanographic features combined with the low dispersal potential of H. guttulatus. 383 

Current genetic structuring and diversity suggests four main H. guttulatus metapopulations, with potential 384 

subdivision of the east and west Mediterranean, which should be recognised as management units (MU) 385 

(Palsboll et al. 2006). In future, further details of genetic differentiation across smaller geographic ranges 386 

(additional sub-structuring) and of specific genetic barriers could be used to determine if particular priority 387 

should be given to specific populations (Volkmann et al. 2014). However current data suggest that the MU 388 

designation is robust and should be considered as the basis of a management strategy for this species, which 389 

would mean combining range-wide coastal habitat conservation and transboundary planning for protected areas. 390 

Connectivity around the coastline is reliant on suitable habitat for H. guttulatus, which should be considered 391 

carefully in conservation plans. The population structure observed, suggests that the sedentary nature of this fish 392 

is most likely partially offset by the dispersal of juveniles as zooplankton, occasional migration events by adults, 393 

and/or dispersal by rafting (Luzzatto et al. 2013) . 394 



Coastal ecosystems have many wildly varying environmental parameters, suggesting seahorses often 395 

experience non-ideal conditions, which in turn may cause demographic fluctuations (Caldwell & Vincent 2012; 396 

Curtis & Vincent 2006; Woodall 2009, 2012). These demographic decreases may be the drivers for the observed 397 

genetic differentiation. Additionally, reduced genetic diversity as a result of these localised bottleneck events is 398 

thought to be an indicator of extinction risk in threatened species (Frankham 2005). Care should therefore be 399 

taken not just to conserve H. guttulatus metapopulations but also to protect potential habitat. Indeed this 400 

ecosystem management approach is now popular (Pérez-Ruzafa et al. 2008), and an identified international 401 

fisheries policy goal (Veitch et al. 2012). Hippocampus guttulatus is currently listed as Data Deficient on the 402 

IUCN Red List (Woodall 2012) with a suggestion that more information on population demographic changes is 403 

required before it can be categorized. Therefore long-term monitoring of known populations is required to 404 

determine population trends. In addition, further genetic studies are required, focusing on population 405 

connectivity along the coast at the 50-100 Km scale, to determine possible stepping–stone populations and to 406 

establish if contemporary gene flow within metapopulations is deemed large enough to ensure long term 407 

survival. There is no known targeted fishery for this species, but seahorses are threatened by anthropogenic 408 

activities in coastal ecosystems, such as habitat disturbance from aggregate dredging, coastal development, 409 

pollution and fishing activity (Vincent et al. 2011). As reported for H. hippocampus (Woodall et al. 2011b) there 410 

are no Europe-wide conservation measures in place for seahorses, but it is important for management agencies 411 

to work internationally due to the transboundary nature of the H. guttulatus’ range and proposed MUs. In 412 

addition, seahorses are globally considered a charismatic flagship species, and because they share habitat with 413 

numerous taxa the protection of their populations and habitat can extend to whole ecosystems being protected 414 

from harmful activities. 415 

The signatures of the complex history of climate shifts are evident in H. guttulatus population structure. This 416 

suggests that this species has previously coped with environmental conditions that have caused localised 417 

population extinctions. Many extant populations are seen to inhabit regions with large temperature fluctuations 418 

(Woodall 2009). However, contemporary climate change will result in changes to the population structure 419 

through habitat and hydrodynamic changes, and thus to the location and possibly the composition of the MUs 420 

suggested here. Therefore the implications of climate change on H. guttulatus would have to be carefully 421 

considered and add further justification to the importance of monitoring populations of this fish. In summary, 422 

the design of any proposed international management strategies should be informed by the meta-populations 423 



elucidated in this study, but further monitoring of population structure and demography is recommended to 424 

ensure the long-term viability of European seahorse populations. 425 
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Figure Legends 665 

Figure 1. Map of Hippocampus guttulatus sample sites and potential oceanographic barriers along the European 666 

coastline including the regional groupings assigned to populations (in brackets). Proposed oceanographic 667 

barriers to effective dispersal / gene flow in H. guttulatus: 1 Brittany; 2 Cape Finisterre; 3 Gibraltar straits; 4 668 

Almeria-Oran front; 5 Siculo-Tunisian front; 6 Bosphorus straits. 669 

 Figure 2. Hippocampus guttulatus mtDNA haplotype network based on concatenated partial Control Region 670 

and cytochrome b sequences. Haplotypes are shown with size proportional to observed frequency, and segments 671 

represent the four proposed regional metapopulations. Lines indicate single mutations and black squares 672 

unobserved intermediate haplotypes. 673 

Figure 3. Map of Hippocampus guttulatus migration rates estimated using MIGRATE. The thicker the line the 674 

larger the migration rate and the dashed line shows no migrate exchange is suggested in any direction. 675 

Figure 4. Hippocampus guttulatus population structure inferred by STRUCTURE analysis; for the whole 676 

geographic region (a) and for the central regions (SW. IBERIA and MED) (b). 677 
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Figure 3 687 
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Tables 694 

Table 1 Hippocampus guttulatus: Sample information- sample location, sample code and biogeographic region. 695 

Sample size sequenced (S), number of haplotypes (H), number of private haplotypes (P), haplotype diversity (h) 696 

and nucleotide diversity (π). Haplotype and nucleotide diversity are only given when sample size ≥ 15 and for 697 

all regions. 698 

 699 

Location Code Region S H P h π 

Poole, UK PUK UK 15 4 0 0.73 0.001 

Brest, France BFR BISCAY 2 2 0   

Le Croisic, France CFR BISCAY 3 2 0   

La Rochelle, France RFR BISCAY 5 4 1   

Arcachon, France AFR BISCAY 26 12 4 0.89 0.002 

San Sebastian, Spain SSP BISCAY 3 2 1   

  BISCAY 39 15 6 0.89 0.002 

Troia, Portugal TPO SPORT 24 13 3 0.88 0.002 

Portimao, Portugal PPO SPORT 26 15 5 0.90 0.003 

Ria Formosa, Portugal RPO SPORT 29 19 6 0.95 0.003 

  SPORT 79 30 15 0.91 0.003 

Malaga, Spain MSP MSP 19 12 1 0.94 0.003 

Alicante, Spain ASP WMED 4 3 1   

Sete, France SFR WMED 26 7 4 0.66 0.001 

Napoli, Italy NIT WMED 1 1 0   

  WMED 31 9 5 0.66 0.001 

Riccione, Italy RIT EMED 2 2 0   

Kalamaki, Greece KGR EMED 14 9 4 0.88 0.002 

Chalkida, Greece CGR EMED 13 9 5 0.92 0.002 

  EMED 29 17 9 0.91 0.002 

Varna, Bulgaria VBU BLACK 24 16 13 0.91 0.003 



Table 2 Hippocampus guttulatus summary statistics for genetic variation across five microsatellite loci and the 700 

nine samples where n>14. Sample size (n), haplotype diversity (h), number of alleles (Na), expected and 701 

observed heterozygosity (HE and HO), FIS = inbreeding coefficient. Significance *=p<0.05 and 702 

**=p<0.01. All regions are represented by a single site, apart from SPORT (denoted by 
a
). 703 

 704 

Locus Populations 

PUK AFR TPO
a PPO

a RPO
a MSP SFR GRE VBU 

n 15 41 36 42 50 19 24 27 59 

h 0.44 0.45 0.38 0.37 0.39 0.37 0.35 0.44 0.34 

Hgu4          

Na 3 4 4 5 8 4 5 2 5 

Ho 0.13 0.24 0.25 0.43 0.34 0.37 0.38 0.30 0.22 
HE 0.13 0.23 0.22 0.36 0.36 0.37 0.51 0.26 0.25 

FIS -0.02 -0.09 -0.13 -0.16 -0.11 -0.01 0.27* -0.16 0.11* 
Hgu12          

Na 4 3 3 3 3 3 2 3 1 

Ho 0.20 0.10 0.17 0.21 0.26 0.21 0.21 0.15 0.00 
HE 0.19 0.09 0.16 0.21 0.24 0.20 0.19 0.14 0.00 

FIS -0.04 -0.03 -0.05 0.00 0.02 -0.06 -0.10 -0.04 NA 

Hca11          
Na 8 14 13 15 15 9 7 11 11 

Ho 1.00 0.80 0.69 0.88 0.82 0.74 0.62 0.67 0.63 
HE 0.80 0.81 0.74 0.81 0.87 0.84 0.54 0.74 0.72 

FIS -0.27 0.00 0.06 -0.08 -0.02* 0.13** -0.15 0.10 0.14** 

Hca25          

Na 3 5 5 4 5 4 3 5 3 

Ho 0.53 0.54 0.36 0.33 0.24 0.32 0.08 0.15 0.07 
HE 0.52 0.53 0.47 0.35 0.27 0.33 0.08 0.27 0.07 

FIS -0.02 0.01 0.24** 0.05 0.21 0.04 -0.01 0.46* -0.02 

Hca27          

Na 4 6 6 4 7 3 6 12 10 

Ho 0.53 0.71 0.36 0.09 0.18 0.11 0.33 0.74 0.54 
HE 0.56 0.61 0.32 0.09 0.19 0.10 0.43 0.78 0.63 

FIS 0.06 -0.18 -0.12 -0.02 0.38 -0.01 0.23 0.06 0.15** 
All          

Na 4.4 6.4 5.8 6.2 7.6 4.6 4.6 6.6 6.0 
Ho 0.48 0.48 0.37 0.39 0.36 0.35 0.33 0.4 0.29 

HE 0.44 0.45 0.38 0.36 0.39 0.37 0.35 0.44 0.33 

FIS -0.09 -0.06 0.04 -0.06 0.04 0.06 0.08 0.09 0.13** 
          

 705 



 

Table 3 Hippocampus guttulatus genetic differentiation among regional populations (see text and Table 1 for 706 

definition) FST values for mtDNA are below the diagonal and nDNA microsatellites above diagonal, significance 707 

levels: ; ** = p<0.01; *** = p<0.001 all remain significant following Bonferroni correction. 708 

a) 709 

 UK BISCAY SPORT MSP WMED EMED BLACK 

UK  0.012 0.177*** 0.182*** 0.220*** 0.118*** 0.155*** 

BISCAY 0.016  0.103*** 0.098*** 0.169*** 0.094*** 0.125*** 

SPORT 0.119*** 0.119***  0.000 0.050*** 0.062*** 0.065*** 

MSP 0.196*** 0.178*** 0.212  0.065*** 0.072*** 0.079*** 

WMED 0.202*** 0.170*** 0.083*** 0.158***  0.052*** 0.057*** 

EMED 0.122*** 0.098*** 0.182*** 0.089** 0.064***  0.026*** 

BLACK 0.124*** 0.138*** 0.081*** 0.112*** 0.080*** 0.036**  



 

Table 4 DIYABC estimates of A) contemporary effective population size (Ne) and population expansion, and B) time since divergence for regional populations of 710 

Hippocampus guttulatus 711 

A 712 

Parameters for Regional 

Populations 

Modern Ne 

(individuals) 

Quartiles 2.5-9.75% 

Time of size 

change (years) 

Quartiles 2.5-97.5% Pre size change Ne Quartiles 2.5-9.75% 

BISCAY 736,000 234,000 - 1,450,000 3,730 614-47,500 15,200 6,910-1,270,000 

SW.IBERIA 771,000 289,000 - 1,450,000 8,950 522-45,400 269,000 55,100-1,440,000 

MED 1,130,000 474,000 - 1,480,000 9,520 1,210-70,300 214,000 54,700 – 1,460,000 

BLACK 765,000 218,000 - 1,460,000 2,460 1,050-67,700 170,000 30,400-1,380,000 

 713 

B 714 

Parameters for Regional 

Populations 

Divergence times 

(years) 

Quartiles 5-95% 

T1 S.IBERIA and BISCAY 18,300 7,400-70,400 

T2 MED and BLACK 47,100 19,100-87,800 

T3 S.IBERIA and MED 66,000 32,300-116,000 
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