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Abstract 

This study compares natural and laboratory generated thermally transferred optically 
stimulated luminescence (TT-OSL) dose response curves (DRCs) for fine-grain quartz extracts from 
the Luochuan loess section in central China. Both DRCs saturate at high doses relative to the quartz 
OSL signal; the natural TT-OSL DRC saturates at about 2200 Gy and laboratory DRCs saturate at 
about 2700 Gy. However, the natural and laboratory TT-OSL DRCs deviate from one another at circa 
150 Gy resulting in TT-OSL equivalent dose underestimation relative to palaeodoses expected from 
dose rates and independent age control. The lifetime of the TT-OSL signal at 10 °C, calculated from 
values of trap parameters E and s, is compared against the value for lifetime of the TT-OSL signal in 
nature at average burial temperature as determined from the age underestimation caused by deviation 
of the natural and laboratory generated DRCs. These two independent assessments of TT-OSL signal 
lifetime at Luochuan give similar values, suggesting that laboratory measurements of thermal stability 
reflect natural burial lifetimes and can potentially be used to correct TT-OSL ages for the difference 
between natural and laboratory dose response curves. 
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1. Introduction  

 Luminescence dating techniques rely on the assumption that luminescence signal response 

to irradiation within a laboratory resembles the signal response to irradiation in a natural environment. 

Recent studies have demonstrated that this assumption is testable through comparing laboratory dose 

response curves with natural dose response curves (e.g. Chapot et al, 2012). While laboratory dose 

response curves are constructed by plotting normalised luminescence intensities against administered 

radiation doses, natural dose response curves require a suite of known age samples for which 

normalised luminescence intensities can be plotted against expected palaeodose (i.e. the radiation 

dose that is estimated to have accumulated during burial based on independent age control and dose 

rate measurements). This study compares natural and laboratory dose response curves of the thermally 

transferred optically stimulated luminescence (TT-OSL) signal from fine grain quartz extracts of a 

suite of samples from the Luochuan loess section of the Chinese Loess Plateau. 

 The quartz TT-OSL signal was introduced as a dosimeter for dating sediments by Wang et 

al. (2006) and has been suggested to be able to date beyond the age range of the quartz OSL signal 

(Duller and Wintle, 2012).  Attempts to date old samples with the TT-OSL signal have had mixed 

results, with some studies reporting agreement with independent age control (e.g. Pickering et al., 

2013) and others reporting age underestimation (e.g. Thiel et al., 2012). Wang et al. (2006) reported 

TT-OSL equivalent dose underestimation for four samples bracketing the Brunhes-Matayuma 

paleaomagnetic boundary (~775 ka), unless a pulsed irradiation procedure was applied, in which case, 

the pulsed irradiated TT-OSL ages agreed with the independent age control. 

 Pulsed irradiation procedures involve administering laboratory radiation doses in discrete 

pulses with a heat treatment in between. For example, 2000 seconds of exposure to a radiation source, 

may be divided into 10 pulses of 200 seconds exposure with the aliquot heated to 240 °C for 10 

seconds between each pulse. The pulsed irradiation technique was proposed by Bailey (2004) for the 

fast component quartz OSL signal in order for charge competition during laboratory irradiations to be 

similar to the low intensity, long duration radiation exposure in natural burial environments.  

However, Chapot et al. (2014) investigated pulsed irradiation procedures for TT-OSL protocols and 
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they suggest that inter-pulse heat treatments during the pulsed irradiation procedures thermally 

deplete the TT-OSL signal and should not be used for TT-OSL dating purposes. 

 Agreement between TT-OSL and fast component quartz OSL ages has been reported in a 

number of studies (e.g. Arnold et al., in press and references therein). At Luochuan, fast component 

OSL and TT-OSL ages are reported to be consistent for samples with equivalent doses up to ~400 Gy 

(Wang et al., 2006). However, the reliability of OSL equivalent doses >150 Gy can be questioned at 

this site (Chapot et al., 2012) as OSL ages have been observed to underestimate independent age 

control (e.g. Buylaert et al. 2007, Lai 2010, Chapot et al. 2012). This fast component OSL age 

underestimation cannot be resolved by component fitting or using a multiple aliquot regenerative 

protocol (Chapot et al., 2012) and suggests the possibility that TT-OSL and fast component OSL ages 

can be in agreement but both underestimate the actual burial age. Even still, consistent fast component 

OSL and TT-OSL ages can also be in agreement with independent age control (e.g. samples at 

Luochuan with equivalent doses < 150 Gy) and it is uncertain whether any observed underestimation 

is caused by the same or differing mechanisms (e.g. uncorrected sensitivity change, low thermal 

stability, etc). 

 

1.1 Previous investigations characterising TT-OSL source traps 

 Characterisation of the kinetic parameters (E and s) of the source traps for TT-OSL signals 

and their associated thermal stabilities has been investigated by several research groups (e.g.  Li and 

Li, 2006; Adamiec et al., 2010; Shen et al., 2011). Li and Li (2006) identified three thermal transfer 

source traps that they refer to as shallow, medium and deep.  The TT-OSL signal used for dating 

corresponds to the medium trap of that study, which is reported to have an E value of 1.14 ± 0.05 eV 

and an s value on the order of 106.2 s-1 (Table 1a) based on an isothermal test and Arrhenius plot 

(Table 2). The signal lifetime at 10 °C corresponding to these trap parameters is 3.7 Ma (Table 1a). 

 Adamiec et al. (2010) identified two TT-OSL source traps that they refer to as recuperated 

OSL (Re-OSL) and basic transfer (BT-OSL), following the nomenclature of Wang et al. (2006). The 

theoretical basis of the Re-OSL and BT-OSL signals presented by Wang et al. (2006) was that the Re-

OSL signal originated from a double transfer mechanism involving the fast component OSL trap and 
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the BT-OSL signal originated by single transfer from optically insensitive traps with a near-endless 

supply of electrons. Wang et al. (2006) initially separated these two TT-OSL signals by measuring 

multiple thermal transfers (preheat/ optical stimulation cycles) until the TT-OSL signal reached a low 

intensity plateau. The plateau defined the BT-OSL signal while the first TT-OSL cycle intensity 

minus the BT-OSL signal defined the Re-OSL signal. Adamiec et al. (2010) suggested that the Re-

OSL signal has a lifetime of 4.5 Ma at 10 °C (E = 1.46 eV, s = 7.6 x 1011 s-1; Table 1a), whereas the 

BT-OSL signal has a lifetime of 4800 Ma at the same temperature (E = 1.72 eV, s = 2.9 x 1012 s-1), 

based on Arrhenius plots constructed following Hoogenstraten’s method of measuring TL curves with 

variable heating rates (Table 2). 

 Shen et al (2011) identified three TT-OSL source traps that they referred to as A, B, and D 

(Trap C refers to the fast component OSL trap). Trap A is suggested to be the primary source trap 

accounting for ~80% of the TT-OSL signal used in dating protocols. Traps B and D are thought to 

each provide ~10% of the signal. Traps A and B are suggested to be sources for single transferred 

charge, while Trap D is a refuge trap for a double transfer mechanism involving the fast component 

OSL trap (Shen et al., 2011). The primary source, Trap A, is reported to have a lifetime of about 0.24 

Ma at 10 °C (E = 1.34 ± 0.05 eV, s = 1011 s-1; Table 1a), whereas Trap B has a lifetime of about 8500 

Ma at the same temperature (E = 1.66 ± 0.07 eV, s = 1012 s-1). Similar to Adamiec et al (2010) these 

trap parameters were calculated following Hoogenstraten’s method of measuring subtracted TL 

curves with variable heating rates (Table 2). 

 In addition to calculating lifetime at a specific temperature from estimates of trap 

parameters, it is possible to estimate lifetime at average burial temperature by comparing measured 

and known ages of a suite of samples and assuming that observed deviations are due to temperature-

induced signal loss. Thiel et al. (2012) used such a technique by comparing quartz TT-OSL ages with 

ages derived from the 290 °C post-infrared infrared-stimulated luminescence (post-IR IRSL290) signal 

from feldspars and assuming that the average burial temperature was comparable to the modern mean 

annual air temperature of 19 °C at their sampling site in north-eastern Tunisia. Their results suggest 

an average lifetime of 0.69 Ma at 19 °C (Table 1d), which is similar to lifetimes at 19 °C calculated 

for the medium trap of Li and Li (2006) and the Re-OSL trap of Adamiec et al. (2010) (Table 1a). 
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 This paper compares natural and laboratory generated TT-OSL dose response curves to test 

the assumption that the response to radiation in the laboratory can be compared with the response in 

the natural environment. TT-OSL trap parameters E and s are calculated from laboratory 

measurements following Hoogenstraten’s method (similar to the protocols of Adamiec et al. (2010) 

and Shen et al. (2011)). These parameters are used to calculate the TT-OSL signal lifetime at 10 °C. 

The natural lifetime of the signal at average burial temperature is calculated following the method of 

Thiel et al. (2012), except, in the present study, the independent age control is derived from the record 

of Ding et al. (2002; ‘Chinese loess particle timescale’ abbreviated to Chiloparts,) based on grain size 

variations from five stacked loess sections tuned to orbital cycles. Although the TT-OSL signal 

lifetime has been calculated by these two different methods in previous studies, this is the first time 

both measurements are made on the same samples and that the results are discussed in relation to the 

comparison of natural and laboratory dose response curves. The trap parameter derived lifetime 

estimate at modern mean annual temperature is then used to correct the measured TT-OSL ages, and 

the resulting corrected ages are compared against independent age control. 

 

2 Sample description and instrumentation  

 Fine-grain (4-11 µm diameter) quartz extracts were prepared from twenty loess samples 

taken from the Luochuan section and from one modern analogue collected from windblown dust 

during fieldwork. Some of these samples (PT1, PT2, PT3, PT4, and PT5) were also used in the 

Chapot et al. (2012) investigation, however that study used an alternative (35-63 µm) grain size. Each 

of the samples in this study was treated with 10% volume to volume dilution of 37% concentrated 

HCl and with 20 vols H2O2 until no continued reactions could be identified. The samples were settled 

in sodium oxalate following Stokes Law to obtain 4-11 µm grain size fractions. The fine grain mineral 

fractions were treated with H2SiF6 for 14 days to remove feldspar (Roberts, 2007), and subsequently 

re-settled as a further quartz purification step. All of the sample preparation was undertaken in red 

light conditions and each of the samples passed OSL IR depletion ratio tests (Duller, 2003). 

 Environmental dose rates were measured with thick source alpha and beta counting using 

material that had been removed from the exterior of the samples. An a-value of 0.035 ± 0.003 for 
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quartz extracted from Chinese loess (Lai et al., 2008) was applied to the alpha portion of the dose 

rates. Gamma dose rates were calculated based on the concentrations of uranium, thorium, and 

potassium estimated from thick source alpha and beta counting, using the dose rate conversion factors 

of Guérin et al. (2011). The cosmic dose rate contribution was calculated following Prescott and 

Hutton (1994). Average water content during burial was assumed to be 10 ± 5% based on modern 

variations in soil moisture content with depth (Wang et al., 2013) and distance (Wang et al., 2012) 

across the Chinese Loess Plateau.  

 Luminescence measurements were performed on a Risø TL-DA-20 reader (Bøtter-Jensen et 

al., 2010) incorporating blue LEDs (470 ∆ 30 nm) delivering ~45 mW/cm2 at the sample position. The 

luminescence signal was recorded using an EMI9635QA photomultiplier tube with 7.5 mm of U-340 

filter, and a convex quartz lens to improve signal collection efficiency (giving ~75% brighter signal). 

A strontium/yttrium beta source with a dose rate of circa 0.083 Gy/s was used for laboratory 

irradiation.  

 

3 TT-OSL Dating Protocol 

 The TT-OSL dating protocol used in this study is the constant irradiation protocol of 

Chapot et al. (2014) (Table 3). It is a single aliquot protocol using a TT-OSL test dose signal, but 

maintaining the same thermal treatments and optical stimulation durations of Wang et al. (2006). To 

ensure removal of the TT-OSL signal before the test dose and the subsequent regenerative dose, ten 

TT-OSL signal cycles (260 °C 10 s preheat, 100s 125 °C OSL) are measured (Table 3, steps 6 and 

12), thereby reducing the TT-OSL signal to the BT-OSL intensity. This process provides a 

measurement of the BT-OSL signal (tenth TT-OSL cycle, shown in red in Fig.  1) which can be 

subtracted from the total TT-OSL (first TT-OSL cycle, highlighted in blue in Fig.  1) to obtain a Re-

OSL signal. The TT-OSL signal of each measurement cycle was defined as the luminescence 

recorded during the initial second of optical stimulation minus an early background from the 

subsequent four seconds of stimulation (Fig. 1 inset). Early background subtraction was used in order 

to minimize the influence of slow OSL components, which continue to decay from the initial OSL 

stimulation (Fig. 1). 
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4 Natural Dose Response Curve 

 The framework of independent age control provided by the Chinese Loess Plateau 

stratigraphy was converted into expected palaeodoses using the procedure of Chapot et al. (2012). 

First, the expected age for each sample was determined through linear interpolation of loess/palaeosol 

boundary ages from the Chiloparts record (Ding et al., 2002) with an assumed 10% error; the 

Chiloparts chronology was created by correlating grain size records from five loess sections, 

variations in the Earth’s obliquity and precession, and palaeomagnetic reversals (Ding et al., 2002). 

Expected palaeodoses were then calculated by multiplying the expected age of each sample by its 

environmental dose rate (Table 4).  

 Six test dose normalised natural TT-OSL signals (Ln/Tn) were measured for each of the 

twenty one samples (165 Gy test dose, Table 3). These normalised values were plotted against 

expected palaeodose to construct a natural TT-OSL dose response curve (Fig. 2) describing TT-OSL 

signal increase with natural radiation exposure over long time scales. The results follow the expected 

shape of a dose response curve (signals increase with dose until plateauing at saturation) but with 

large scatter between aliquots for samples with low TT-OSL sensitivity (e.g. sample L9-11 with 

expected palaeodose of ~3500 Gy). The natural TT-OSL dose response curve constructed in this study 

is best described by a double saturating exponential function with D0 values of 1300 and 110 Gy.  

 Determining a reliable maximum limit to the estimation of equivalent doses based on the 

shape of the corresponding dose response curve is problematic, but a pragmatic value of 2D0 has been 

previously suggested (e.g. Wintle and Murray, 2006). This value cannot be calculated for dose 

response curves fitted with more than a single exponential component, such as the natural TT-OSL 

dose response curve measured in this study. However, Wintle and Murray (2006) noted that 2D0 

occurs when the OSL signal is about 15% below the saturation value of the dose response curve. 

Therefore, in this study, the prudent maximum limit of the technique was approximated by the dose 

corresponding to the signal intensity (Lx/Tx)  that is 15% below the signal intensity at saturation 

(determined by summing the Imax values of the two saturating exponential components). For the 

natural TT-OSL dose response curve, this value is ~ 2200 Gy. If the natural TT-OSL DRC is fitted 
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with a single saturating exponential, the curve does not describe the data well for doses less than 500 

Gy, however, the corresponding 2D0 value is ~1950 Gy. 

    

5 SAR Dose Response Curves 

 Twenty one single aliquot regenerative (SAR) laboratory TT-OSL dose response curves 

(DRCs) were constructed using one aliquot from each of the twenty one samples and following the 

protocol shown in Table 3 (165 Gy test dose). Four examples of individual SAR TT-OSL DRCs are 

shown in subfigures 3a-3d, including the modern analogue sample (Fig. 3a), a bright aliquot (Fig. 3b), 

a dim aliquot (Fig. 3c), and the oldest sample (Fig. 3d). Subfigure 3e shows all twenty-one SAR TT-

OSL DRCs, an average SAR TT-OSL DRC (fit to all the data) and the natural TT-OSL DRC. The 

data for the natural DRC shown in figure 2 depicts Ln/Tn values measured for each aliquot, but in 

subfigure 3e, the Ln/Tn values for each sample have been averaged to a central value with standard 

error.  

 The average TT-OSL laboratory dose response curve can be equally well described by a 

single or double saturating exponential with a saturation dose similar to the natural TT-OSL dose 

response curve (2D0 of 2700 Gy for single saturating exponential fit, D0 values of 1500 and 150 Gy 

for double saturating exponential fit). However, the regenerated laboratory doses had much brighter 

signals relative to the subsequent test dose, resulting in deviation between natural and laboratory TT-

OSL dose response curves at circa 150 Gy (Fig. 3). This deviation causes TT-OSL equivalent doses 

>150 Gy to increase in stratigraphic order but increasingly underestimate the palaeodose (true burial 

dose).  

 In order to test that the difference between the natural and laboratory TT-OSL DRCs was 

not caused by uncorrected sensitivity change during the intensive TT-OSL dating protocol (see 

protocol, Table 3), laboratory doses ranging from 0 to ~3500 Gy were added to untreated aliquots of 

the modern sample (JYM) and the resulting Lx/Tx ratios (red stars, Fig.  3a and 3e) were compared 

with the Lx/Tx values of other dose response curves generated in this study. Subfigure 3a compares the 

Lx/Tx ratios of these additive doses (red stars) with a SAR laboratory dose response curve generated 
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using a different aliquot of the same sample (white circles). The excellent agreement observed (Fig. 

3a) suggests that minimal uncorrected sensitivity change occurred during the TT-OSL SAR protocol.  

 When the additive doses (red stars) are compared against the average Luochuan SAR 

laboratory dose response curve (solid black line, Fig.  3e), the Lx/Tx ratios are in agreement up to 745 

Gy, but higher additive doses have Lx/Tx ratios lower than the average curve, suggesting that the 

modern dust sample (JYM) may have slight differences in dose response curve shape compared to the 

loess samples. Finally, when the additive doses (red stars) are compared with the natural TT-OSL 

dose response curve (dashed black line) it can be observed that the Lx/Tx ratios deviate at ~150 Gy, 

similar to the other laboratory dose response curves.  These results suggest that the deviation between 

natural and laboratory dose response curves is not related to sensitivity change during measurement of 

the natural TT-OSL signal. 

 

6 TT-OSL trap parameters 

 One potential explanation for the deviation between the natural and laboratory dose 

response curves is poor thermal stability of the natural luminescence signal at environmental burial 

temperatures. If the average duration of time that an electron will reside in a specific trap at a specific 

temperature before being thermally evicted (trap lifetime, τ) is too short, a significant proportion of 

the trapped electrons will be evicted during the sample's age span, resulting in lower than expected Ln 

values when the natural luminescence signal is measured. For a sample held at constant temperature, 

the average lifetime (τ) of an electron in a specific trap can be calculated by equation 1:  

� = 	 ��� exp 
 ��
�  Eqn. 1 

 Where s is the frequency factor (s-1), E is the trap depth (eV), T is temperature (K) and k is 

Boltzmann's constant (eV/K). Estimation of the natural burial lifetime of a given trap therefore 

requires characterisation of the trap parameters E and s, as well as an estimate of the average burial 

temperature.  For this study, the average burial temperature was assumed to be similar to the modern 

mean annual air temperature (10 °C, Hu et al. 2015), and E and s values were calculated using 

Hoogenstraten's method on subtracted TL peaks for one pre-sensitised aliquot each of five samples 
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(PT1, PT2, PT3, PT4, PT5) (aliquots that had previously experienced numerous cycles of heating and 

irradiation until sensitivity changes became minimal). The TL glow curve of each aliquot was 

measured at different heating rates to determine the charge trapped before TT-OSL stimulation (Fig.  

4a, Table 2, TLa) and the charge remaining after TT-OSL stimulation (Fig.  4b, Table 2, TLb). Then, 

to determine the thermoluminescence that was depleted during the TT-OSL stimulation, the post-

stimulation TL curve (TLb) was subtracted from the pre-stimulation glow curve (TLa) of the same 

heating rate (Fig.  4d). This experiment is similar to the trap characterisation protocols of Adamiec et 

al. (2010) and Shen et al. (2011) which also use Hoogenstraten’s method on subtracted TL curves 

(Table 2). 

 The loss of TL signal observed when the TT-OSL signal is measured, as obtained by the 

subtraction method used in this study (Table 2), is a relatively low intensity signal dominated by a 

broad TL peak centred at ~290 °C (5 °C/s) with some contributions from higher TL peaks (Fig.  4d, 

lighter-coloured line). However an additional experiment comparing the TL signal removed by the 

TT-OSL protocol (260 °C 10 s, OSL 125 °C 300 s, 260 °C 10 s, OSL 125 °C 100 s) with the TL 

signal removed by continuous OSL stimulation without the thermal transfer preheat step (260 °C 10 s, 

OSL 125 °C 400 s; Fig. 4c)  demonstrates that the contributions from higher TL peaks are due to the 

OSL slow components and that the TL origin of the TT-OSL signal is only the primary peak (centred 

at ~290 °C in Fig.  4d).  

 Calculation of E and s values using Hoogenstraten's method requires that the temperature 

(Tm) corresponding to peak signal intensity (I0) be identified. This identification is critical and can 

significantly affect the kinetic parameter values that are calculated. Previous researchers have 

suggested that Tm can be identified within ±2 °C based on close visual inspection of the TL curves 

(Shen et al., 2011). In order to avoid subjective bias, Tm was identified in this study as the temperature 

corresponding to the maximum signal intensity of data smoothed with a 50 °C moving average (Fig. 

5), though I0 was measured from the unmodified data.  

 The heating rate (β) and Tm of each curve were used to calculate values of 1/kTm and 

ln(Tm
2/β), which were then fit with a linear regression (Fig. 6) following the method and equations of 

Adamiec et al. (2010, Eqn. 1 therein). The slope of the fitted line is an estimation of trap depth (E) in 
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eV. Calculation of the frequency factor is less straightforward. Based partly on extrapolating the 

linear regression to the y-axis, frequency factor calculations also require a correction for thermal 

quenching. Thermal quenching estimates (W) were calculated based on mathematical fitting of the 

relationship between I0 and Tm, following the method and equations of Adamiec et al. (2010, Eqn. 3 

therein) (Fig. 7). However, W values calculated in this manner (W = 0.20 – 0.33 eV; Table 1b) are 

lower than previously published measurements for TT-OSL (Adamiec et al., 2010; ReOSL W = 0.48 

and BT-OSL W = 0.56 eV) and for quartz in general (e.g. Subedi et al., 2011; W = 0.65 ± 0.03 eV).  

 Shen et al. (2011) reported an inability to accurately measure W values using this method 

because of sensitivity change during the TL measurements. Instead, they measured W values for their 

samples by varying the optical bleaching temperature and obtained a value of 0.70 ± 0.03 eV, in 

agreement with previous measurements for quartz. In the present study, s values were calculated using 

both W values estimated during the experiment and the 0.65 ± 0.03 eV value recommended for quartz 

by Subedi et al. (2011). In addition to calculating the trap parameters for each of the five tested 

samples individually, the parameters were also calculated by fitting all the data combined and sample-

specific values were integrated by weighted averaging in order to provide an estimate of general TT-

OSL signal lifetimes for the field-site.  

 The resulting TT-OSL trap parameters and associated lifetimes at 10 °C are listed in sub-

tables 1b and 1c. Trap depth values calculated for the different samples are consistent within 

uncertainties, but frequency factor estimates are more varied. Applying the thermal quenching values 

obtained from previous studies (W = 0.65 ± 0.03 eV) increases the calculated expected signal lifetime 

at 10 °C by tens of thousands of years. Weighted averages of the E, s, W, and τ values are within error 

of estimates obtained by fitting the combined data. Average lifetime estimates were calculated by 

averaging the sample specific lifetime estimates and not by calculating lifetime from the averaged E 

and s values, which would have resulted in lower estimates. The values calculated by fitting the 

combined data of the different samples and assuming similar thermal quenching to previous studies 

are also compared with the values reported by Shen et al. (2011), Adamiec et al. (2010), and Li and Li 

(2006)  in table 1.  
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 The difficulties of signal lifetime estimates calculated in this manner (e.g. parameter 

dependence on Tm identification, sensitivity changes affecting thermal quenching estimates, long 

extrapolation necessary for calculating s) and the less than certain correlation of the TL signal loss 

with the TT-OSL signal that is measured (Arnold and Demuro, in press), can reduce one’s confidence 

in the accuracy of laboratory determinations of signal lifetime. It is therefore critical that, when 

possible, laboratory lifetime estimates be compared to approximations of the natural signal lifetime 

during burial, which can be calculated by comparing measured and expected ages. 

 

7  Natural signal lifetime  

 Thiel et al. (2012) compared TT-OSL ages to post-IR IRSL290 ages and calculated a field 

estimate of the lifetime of the TT-OSL signal by assuming that the post-IR IRSL290 ages were accurate 

and that the 19 °C modern mean annual air temperature is a reasonable approximation of the average 

burial temperature.  Their results suggested a natural TT-OSL signal lifetime of 0.69 Ma which is 

consistent with lifetime estimates for the TT-OSL signal at 19 °C calculated from the trap parameters 

of Li and Li (2006) and Adamiec et al. (2010) (Table 1a). 

 Similar calculations can be made in this study using the Chiloparts chronology (Ding et al., 

2002) and assuming an average burial temperature of 10 °C (approximate to the modern mean annual 

air temperature (Hu et al., 2015)). TT-OSL equivalent doses for each of the samples were calculated 

by determining the Ln/Tn value of the natural dose response curve (dashed line, Fig. 3e) corresponding 

to the sample’s expected palaeodose and interpolating that Ln/Tn value onto the average SAR 

laboratory dose response curve (Fig. 3e). Sample ages were then calculated by dividing the equivalent 

doses by the sample specific dose rates. Ages calculated in this manner are based directly on the 

difference between the natural and laboratory dose response curves. Measured TT-OSL ages are 

plotted against expected ages in figure 8 and these datapoints can be fit with the following equation 

that includes average burial temperature (t) and signal lifetime (τ) as parameters: 

� = �
��� ∗ 
1 − exp 
−
�
���� ∗ � Eqn. 2 
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 The measured and expected ages of all the samples were fit with equation 2 and the 

resulting function is shown on figure 8 as ‘Fit to all Data. This same fitting procedure was also used 

for only the subset of samples (Data 1) with Ln/Tn values below the estimated maximum limit of 

reliability for the natural dose response curve (2200 Gy) and the results are shown on figure 8 as ‘Fit 

to Data 1’.  The signal lifetime at 10 °C calculated using the E and s values for the combined data and 

the thermal quenching value (W) of Subedi et al. (2011; 0.65 ± 0.03 eV), as discussed in section 6,  

was used to define a similar function that is plotted on figure 8 as ‘Lifetime at 10 °C’ (τ = 180 ka, 

Table 1c). Lifetime estimates obtained by fitting equation 2 to the data are 203 ± 5 ka for all the 

samples and 175 ± 5 ka for the subset of samples with Ln/Tn values less than 2200 Gy. These 

estimates are consistent with lifetimes calculated from trap parameters in this study and Shen et al. 

(2011), but are more than an order of magnitude lower than the lifetimes suggested by Li and Li 

(2006), Adamiec et al. (2010), and Thiel et al. (2012). 

 Mathematical functions described by equation 2 (e.g. fitted lines in Fig.  8) have an 

asymptote at old ages suggesting that if the deviation between natural and laboratory dose response 

curves is caused by poor thermal stability, there is a maximum limit to TT-OSL ages that can be 

generated in a laboratory. In figure 8, this limit occurs at about 200 ka, suggesting that even an 

infinitely old sample would not have a laboratory TT-OSL age >200 ka, unless the sample’s thermal 

stability or average burial temperature was significantly different to the other samples in the study. 

However, TT-OSL ages >200 ka have been reported in several studies (e.g. Duller et al., 2015 and 

Thiel et al., 2012) , including a previous study at Luochuan (Wang et al., 2006), which calculated a 

(constant-irradiation) TT-OSL age of ~475 ka for a sample taken near the Brunhes-Matayuma 

palaeomagnetic boundary. Perhaps differences in the maximum TT-OSL age that can be measured in 

a laboratory highlight variability in TT-OSL signal thermal stability and could be a useful measure for 

estimating thermal stability in future studies. 

 

8 Discussion 

 The late saturation of the natural TT-OSL dose response curve suggests that the signal 

could be used to extend the age range up to the ~2200 Gy limit of the natural TT-OSL dose response 
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curve if differences between natural and laboratory DRCs can be eliminated or corrected for. General 

agreement of field and laboratory measurements of the TT-OSL signal lifetime demonstrated in this 

study suggest the possibility of correcting TT-OSL ages for signal loss during burial based on 

laboratory measurements of thermal stability. This possibility was investigated by using the inverse of 

equation 2 and the trap parameter derived lifetime estimate (τ = 180 ± 10 ka) to correct the TT-OSL 

ages obtained in this study (Fig. 9, Cor-1). Sample specific thermal stability corrections based on 

sample specific laboratory thermal stability measurements (Table 1c) for a subset of samples are also 

shown in figure 9 (Cor-2).  

 Lifetime-corrected TT-OSL ages are within error of the expected ages with the exception of 

the sample-specific correction for some samples. Thermal stability corrected TT-OSL ages generated 

in this manner can accurately date older samples but have poor precision due to both the low signal 

intensity and kinetic parameter measurement difficulties. The poor accuracy of some of the sample-

specific corrected ages may reflect the difficulty of the laboratory lifetime measurements and the need 

for measurements from multiple aliquots. In this study, the laboratory thermal stability measurements 

that were in closest agreement to the apparent natural lifetime were generated by fitting data extracted 

from subtracted TL signals of multiple samples, but this could be an effect of the natural lifetime also 

being calculated by averaging signals from multiple samples. 

 Correction of TT-OSL ages for signal lifetime has been previously applied (Duller et al., 

2015; Ryb et al., 2013) using the signal lifetime values reported by Adamiec et al. (2010). However, 

significant differences in TT-OSL signal lifetime calculated by Li and Li (2006), Adamiec et al. 

(2010), and Thiel et al. (2012) (~4 Ma at 10 °C) and by Shen et al (2011) and this study (~200 ka at 

10 °C) suggests that TT-OSL thermal stability may vary between samples or study regions. In 

addition to inherent signal lifetime variability and measurement difficulty, the sensitivity of signal 

lifetime corrected TT-OSL ages to fluctuations in burial temperature remains to be investigated in 

further detail (Duller et al., 2015).  

 Although there may be other factors influencing the agreement between natural and 

laboratory TT-OSL dose response curves (and hence the maximum age range of TT-OSL dating), the 

data from this study suggests that thermal instability of the TT-OSL signal could account for the 
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majority of the observed deviation, and that differences are unlikely to be caused by sensitivity 

change during measurement of the natural TT-OSL signal.  

 

9 Conclusions 

 This study compared natural and laboratory generated thermally transferred optically 

stimulated luminescence (TT-OSL) dose response curves (DRCs) for fine-grain quartz extracts from 

the Luochuan loess section in central China. The natural TT-OSL DRC saturates at about 2200 Gy, 

much later than the fast component OSL signal, but deviates from the laboratory TT-OSL DRC at 

circa 150 Gy resulting in TT-OSL equivalent dose underestimation. Comparison of TT-OSL signal 

lifetime calculated from measurement-derived values of trap parameters and the natural lifetime of the 

TT-OSL signal at average burial temperature, suggests this deviation is primarily due to thermal 

instability. The agreement of these two independent assessments of TT-OSL signal lifetime at 

Luochuan suggests that laboratory measurements of thermal stability reflect burial lifetimes in nature, 

and can potentially be used to correct for the difference between natural and laboratory dose response 

curves. This technique could enable the TT-OSL signal to extend the age range of quartz 

luminescence dating up to the saturation level of the natural TT-OSL dose response curve. 
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Figure Captions 
 

1. Signal intensities of the OSL and TT-OSL signals for an aliquot of sample PT5 in response to 
a dose of 165 Gy. The first decay is the 300 s OSL signal. The TT-OSL signal was defined by 
subtracting the early background subtracted tenth TT-OSL cycle (red) from the early 
background subtracted first TT-OSL cycle (blue). Signals are separated by heating to 260 °C 
for 10 s. 

2. Natural TT-OSL dose response curve. Each point represents a Ln/Tn measurement from a 
single aliquot plotted against the sample’s expected palaeodose. The data are fitted with a 
double saturating exponential function of the form: Ln/Tn (D) = 3.4*(1-exp(-D/1300)) + 
0.7*(1-exp(-D/110)) + 0.0. 

3. Laboratory dose response curves measured in this study are shown as grey lines with 
individual Lx/Tx measurements represented by white circles. Subfigures a-d show SAR dose 
response curves for individual aliquots of a) the modern sample b) a bright aliquot c) a dim 
aliquot and d) the oldest sample. First TT-OSL signal response to the natural test dose for 
these aliquots is shown in corner insets. Subfigure e) compares laboratory and natural dose 
response curves. The natural dose response curve is the same as in figure 2, but Ln/Tn values 
have been averaged by sample with error bars depicting standard error. Lx/Tx values of 
additive laboratory doses administered to untreated aliquots of the modern sample are shown 
in red on subfigures a) and e). 

4. TL glow curves for sample PT5 measured with a 5 °C/s heating rate following a 2100 Gy 
dose. Subfigure a) shows the U340 TL signal remaining after a 10 s 260 °C preheat and a 300 
s 125 °C blue optical stimulation (TLa). Subfigure b) shows the U340 TL signal remaining 
after the same treatment and a TT-OSL cycle (TLb).  The TL signal removed during the TT-
OSL cycle is obtained by subtracting TLb from TLa and is shown in dark blue on subfigure 
d). Subfigure c) shows the U340 TL signal remaining after a 10 s 260 °C preheat and a 400 s 
125 °C blue optical stimulation (TLc). Subtracting TLb from the TLc signal demonstrates the 
TL signal removed during the TT-OSL cycle due to the thermal transfer preheat, shown in 
light blue on subfigure d). The difference between the light and dark blue signals on subfigure 
d) is interpreted to be the TL signal removed by slow blue OSL components. 

5. a) TL glow curve for sample PT5 measured with a 0.05 °C/s heating rate as well as the 50 °C 
moving averaged signal that was used to identify the temperature corresponding to the initial 
TL peak. b) TL glow curves for sample PT5 measured with varying heating rates from 0.05 to 
5.00 °C/s. 

6. a) Data derived from TL peak temperatures and heating rates of sample PT5 fit with a linear 
regression to identify the TT-OSL trap depth. The error bars represent ± 2°C uncertainty in 
peak temperature. b) Data derived from TL peak temperatures and heating rates of all five 
samples measured, the combined data are fit with a linear regression to identify the general 
(non-sample-specific) TT-OSL trap depth. 

7. a) Initial TL peak intensity vs peak temperature with ± 2°C uncertainty for each of the PT5 
TL glow curves, fitted to obtain an estimate of thermal quenching. b) Initial TL peak 
intensities vs peak temperatures for all five samples measured. Thermal quenching values 
calculated with this method were lower than previously published values for quartz and were 
not always used in further calculations in this study, see text for details. 

8. Expected and measured ages are compared and shown to deviate from the 1:1 line after 45 ka. 
Field estimates of signal lifetime were obtained by fitting equation 2 to either all the data 
(Black dotted line) or the data subset with unsaturated natural signals (Fit to Data 1). TT-OSL 
signal lifetime at 10 °C, as calculated from laboratory thermal stability measurements (all 
samples combined, assumed 0.65 eV thermal quenching), is shown by a dotted grey line. 

9. Comparison of lifetime corrected TT-OSL ages against measured and expected ages. The red 
squares (Cor-1) represent TT-OSL ages corrected by the general lifetime of the five PT 
samples (all samples combined, assumed 0.65 eV thermal quenching), while the purple 
triangles (Cor-2) represent TT-OSL ages corrected by sample-specific lifetimes. Error bars 
that continue beyond the scale of the plot are infinite and any missing datapoints are due to 
corrected ages of infinity. 
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Table Captions 
 

1. Table 1: Comparison of TT-OSL kinetic parameters (E and s), thermal quenching (W), and 
signal lifetimes from this and other studies. T1a) Previously published values. T1b) Values 
calculated in this study using individual sample estimates of thermal quenching. T1c) Values 
calculated in this study assuming thermal quenching of W = 0.65 eV. T1d) Estimates of field-
lifetime based on comparing known and expected ages and assuming burial temperature 
similar to modern annual air temperature. 

2. Comparison of protocols used for estimating TT-OSL thermal stability  
3. TT-OSL dating protocol used in this study  
4. Dose rates and expected palaeodoses for the samples analysed in this study 
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A.    Reference Trap E (eV) s (x 1010 s-1) W (eV) τ10 (Ma) τ19 (Ma) 

Li and Li 2006  Medium 1.14 ± 0.05 0.00017* - 3.7 0.89 
Adamiec et al. 2010 Re-OSL 1.46 76 0.52 (0.48) 4.5 0.71  

Shen et al. 2011  Trap A 1.34 ± 0.05 9.5 0.70 ± 0.03 0.24 0.05  
       

B.     Sample Trap E (eV) s (x 1010 s-1) W (eV) τ10 (Ma) τ19 (Ma) 

PT1 TT-OSL 1.32 ± 0.09 9.5 ± 1.6 0.28 ± 0.09 0.09 ± 0.02 0.02 ± 0.00  
PT2 TT-OSL 1.32 ± 0.05 10.7 ± 1.5 0.27 ± 0.09 0.10 ± 0.01 0.02 ± 0.00  

PT3 TT-OSL 1.37 ± 0.05 31.4 ± 2.6 0.25 ± 0.04 0.24 ± 0.02 0.04 ± 0.00  

PT4 TT-OSL 1.30 ± 0.05 7.1 ± 0.5 0.20 ± 0.03 0.07 ± 0.00 0.01 ± 0.00  

PT5 TT-OSL 1.35 ± 0.05 17.8 ± 2.9 0.33 ± 0.11 0.17 ± 0.03 0.03 ± 0.00  

Combined TT-OSL 1.33 ± 0.03 13.0 ± 0.9 0.27 ± 0.04 0.12 ± 0.01 0.02 ± 0.00 
Average TT-OSL 1.33 ± 0.02 20.0 ± 9.6 0.27 ± 0.05 0.16 ± 0.06 0.02 ± 0.01 

       
C.     Sample Trap E (eV) s (x 1010 s-1) W (eV) τ10 (Ma) τ19 (Ma) 

PT1 TT-OSL 1.32 ± 0.09 6.1 ± 1.1 0.65 ± 0.03 0.14 ± 0.02 0.03 ± 0.00  
PT2 TT-OSL 1.32 ± 0.05 6.9 ± 0.9 0.65 ± 0.03 0.16 ± 0.02 0.03 ± 0.01  

PT3 TT-OSL 1.37 ± 0.05 20.2 ± 2.4 0.65 ± 0.03 0.38 ± 0.04 0.07 ± 0.01  

PT4 TT-OSL 1.30 ± 0.05 4.2 ± 0.5 0.65 ± 0.03 0.12 ± 0.02 0.02 ± 0.00  

PT5 TT-OSL 1.35 ± 0.05 12.2 ± 1.5 0.65 ± 0.03 0.25 ± 0.03 0.05 ± 0.01  

Combined TT-OSL 1.33 ± 0.03 8.4 ± 0.7 0.65 ± 0.03 0.18 ± 0.01 0.03 ± 0.00 
Average TT-OSL 1.33 ± 0.02 12.7 ± 6.3 0.65 ± 0.03 0.24 ± 0.10 0.04 ± 0.02 

       
D.    Reference Trap  τ10 (Ma) τ19 (Ma) 

This study Re-OSL - - - 0.175 ± 0.005 - 
Thiel et al. 2012 TT-OSL - - - - 0.69  
 

*s value as calculated from reported values for lifetime and trap depth, this value is 106.23 but is rounded to 106.2 in the 
original paper 
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 Li and Li 2006  Adamiec et al 2010: ReOSL = TTOSL-BTOSL Shen et al 2011: Trap A = TL2-TL3 This Study: TT-OSL = TLa-TLb 

Step One aliquot per T TT-OSL BT-OSL TL2 TL3 TLa TLb 

        1 Natural Dose (~270 Gy) TL 450 °C at 5 °C/s TL 450 °C at 5 °C/s TL 450 °C at 5 °C/s TL 450 °C at 5 °C/s TL 450 °C at 5 °C/s TL 450 °C at 5 °C/s 

2 OSL 160 °C/ 4000 s  360 Gy Dose  360 Gy Dose 57.6 Gy Dose  57.6 Gy Dose 2100 Gy Dose  2100 Gy Dose 

3 TL T °C (260 - 340) for t s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s 

4 OSL 160 °C/ 2000 s LM-OSL 125 °C/ 80 s LM-OSL 125 °C/ 80 s OSL 125 °C/ 40 s OSL 125 °C/ 40 s OSL 125 °C/ 300 s OSL 125 °C/ 300 s 

5 TL T °C (260 - 340) for 10 s TL 450 °C at X °C/s (TTOSL) OSL 310 °C/ 40 s TL 450 °C at X °C/s (TL2) Preheat 300 °C/ 10 s TL 450 °C at X °C/s (TLa) Preheat 260 °C/ 10 s 

6 OSL 160 °C/ 2000 s (Lx)  TL 450 °C at X °C/s (BTOSL)  OSL 125 °C/ 40 s  OSL 125 °C/ 100 s 

7 Repeat from Step 2    TL 450 °C at X °C/s (TL3)  TL 450 °C at X °C/s (TLb) 

 with increased t       

8    Test Dose  Test Dose   

9    Preheat 220 °C/ 10 s Preheat 220 °C/ 10 s   

10    OSL 125 °C/ 40 s OSL 125 °C/ 40 s   
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Step Dating Protocol 

  
1 Dose (or Natural) 

2 Preheat 260 °C/ 10 s 

3 OSL 125 °C/ 300 s 

4 Preheat 260 °C/ 10 s 

5 OSL 125 °C/ 100 s (Lx) 

6 Repeat Steps 4-5 nine times 

7 165 Gy Test Dose 

8 Preheat 260 °C/ 10 s 

9 OSL 125 °C/ 300 s 

10 Preheat 260 °C/ 10 s 

11 OSL 125 °C/ 100 s (Tx) 

12 Repeat Steps 10-11 nine times  
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Sample Depth (m) Dose Rate (Gy/ka) Exp. Age (ka) Exp. Palaeodose (Gy) 
JYM 
 

0.0 - 0 ± 0 0 ± 0 
S0 Lower - 11 1.1 3.94 ± 0.32 8 ± 1 32 ± 4 
LC0.0 
 

2.0 3.59 ± 0.26 15 ± 1 52 ± 6 
LC2.0 
 

4.0 4.04 ± 0.29 26 ± 3 106 ± 13 
LC4.5 
 

6.5 3.91 ± 0.29 45 ± 5 177 ± 22 
LC7.5 
 

9.5 3.73 ± 0.29 71 ± 7 266 ± 34 
LC8.0 
 

10.0 4.28 ± 0.34 80 ± 8 341 ± 44 
LC9.0 
 

11.0 3.87 ± 0.32 99 ± 10 382 ± 50 
LC10.5 
 

12.5 3.69 ± 0.28 128 ± 13 471 ± 59 
PT1* 
 

12.7 3.29 ± 0.26 132 ± 13 434 ± 55 
LC13.5 
 

15.5 3.86 ± 0.29 170 ± 17 657 ± 82 
LC17.5 
 

19.5 3.83 ± 0.29 240 ± 24 919 ± 116 
PT2* 
 

20.3 3.31 ± 0.26 252 ± 25 835 ± 106 
L3-11 
 

22.8 3.75 ± 0.30 301 ± 30 1127 ± 144 
PT3* 
 

25.8 3.62 ± 0.27 339 ± 34 1226 ± 153 
PT4* 
 

31.9 3.53 ± 0.27 422 ± 42 1490 ± 187 
L5-11 
 

34.4 3.81 ± 0.28 491 ± 49 1873 ± 233 
PT5* 
 

40.4 3.55 ± 0.29 624 ± 62 2218 ± 287 
L8-11 
 

51.3 3.61 ± 0.29 805 ± 81 2904 ± 370 
L9-11 
 

62.4 3.70 ± 0.30 959 ± 96 3545 ± 455 
L10-11 
 

65.3 4.21 ± 0.33 1020 ± 102 4294 ± 543 
*These PT samples are the same PT samples investigated by Chapot et al. 2012 but are a finer grain size with 
greater dose rates and expected palaeodoses due to increased alpha radiation  
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Highlights 
• Natural and laboratory TT-OSL DRCs deviate at ~150 Gy but saturate at higher doses 
• TT-OSL signal lifetime at 10 °C calculated from measured E and s values is ~180 ka 
• TT-OSL signal lifetime at Luochuan estimated from the DRCs’ deviation is ~175 ka 
• Natural and laboratory TT-OSL DRC deviation may be caused by low thermal stability 
• Laboratory measurements of signal lifetime may be able to correct old TT-OSL ages 

 


