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Highlights

• A transversely isotropic elastic layer coated with a thin layer is considered
• Flexural stiffness of the coating layer is neglected
• Leading-order asymptotic models for the layer deformation are constructed
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An asymptotic model for a thin bonded elastic

layer coated with an elastic membrane

I. Argatov, G. Mishuris ∗

Institute of Mathematics and Physics, Aberystwyth University, Ceredigion SY23
3BZ, Wales, UK

Abstract

The deformation problem for a transversely isotropic elastic layer bonded to a rigid
substrate and coated with a very thin elastic layer made of another transversely
isotropic material is considered. The leading-order asymptotic models (for com-
pressible and incompressible layers) are constructed based on the simplifying as-
sumptions that the generalized plane stress conditions apply to the coating layer,
and the flexural stiffness of the coating layer is negligible compared to its tensile
stiffness.

Key words: Deformation problem, thin layer, elastic coating, transversely
isotropic, asymptotic solution

1 Introduction

Some natural biological tissues such as articular cartilage possess an inhomogeneous, lay-
ered structure with anisotropic material properties. In particular, morphological studies
of adult articular cartilage [13,16] show three different zones of preferred collagen fiber
bundle orientation. The superficial zone formed by tangentially oriented collagen fibrils
provides a thin layer with a high tensile stiffness in the direction parallel to articular
surface. It was shown [20] that the high transverse stiffness of the superficial tissue layer
(characterized by tangentially oriented collagen fibrils) is important in controlling the
deformation response of articular cartilage. Generally speaking, the surface layer in bio-
materials usually has different mechanical properties than the underlying bulk material.
Due to this circumstance, the mechanical deformation behavior is strongly influenced by
the complex interaction of these layers [30].

In the present paper, we consider the deformation problem for a transversely isotropic
elastic layer reinforced with a thin elastic membrane ideally attached to one surface,
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Preprint submitted to Elsevier October 16, 2015



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

while the other surface is bonded to a rigid substrate. Following [2,29], it is assumed that
the reinforcing layer is very thin (with respect to a characteristic size of the applied load)
so that its deformation can be treated in the framework of the generalized plane stress
state. Moreover, it is assumed that the flexural stiffness of the coating layer is negligible
compared to its tensile stiffness. Thus, the reinforcing thin layer is regarded as an elastic
membrane.

The rest of the paper is organized as follows. In Section 2, we formulate the three-
dimensional boundary conditions for a coated elastic layer. The deformation problem
formulation itself is given in Section 3. Asymptotic analysis of the deformation problem is
presented in Section 4. The main result of the present paper is presented by the leading-
order asymptotic models for the local indentation of the coated elastic layer developed
in Section 5 for the cases of compressible and incompressible layer. Finally, Section 7
contains some discussion of the obtained asymptotic models and outlines our conclusion.

2 Boundary conditions for a coated elastic layer

We consider a very thin transversely isotropic elastic coating layer (of uniform thickness ĥ)
ideally attached to an elastic layer (of thickness h) made of another transversely isotropic
material (see Fig. 1). Let the five independent elastic constants of the elastic layer and its
coating are denoted by A11, A12, A13, A33, A44 and Â11, Â12, Â13, Â33, Â44, respectively.

z

ĥ

0h

Figure 1. An elastic coated layer as a model for articular cartilage (the histological image of
articular cartilage is taken from the paper [26]). The regions −ĥ ≤ z ≤ 0 and z ≥ h represent
the superficial zone and the subchondral bone, respectively.

Under the assumption that the two layers are in perfect contact with one another along
their common interface, z = 0, the following boundary conditions of continuity (interface
conditions of perfect bonding) should be satisfied:

v̂(y, 0) = v(y, 0), ŵ(y, 0) = w(y, 0), (1)

σ̂3j(y, 0) = σ3j(y, 0), j = 1, 2, 3. (2)

Here, (v,w) and (v̂, ŵ) are the displacement vectors of the elastic layer z ∈ (0, h) and
the elastic coating layer z ∈ (−ĥ, 0), respectively, σij and σ̂ij are the corresponding

components of stress. In what follows, we make use of the Cartesian coordinate system
(y, z), where y = (y1, y2) are the in-plane coordinates.

On the upper surface of the two-layer system, z = −ĥ, we impose the boundary conditions
of normal loading with no tangential tractions

σ̂31(y,−ĥ) = σ32(y,−ĥ) = 0, σ̂33(y,−ĥ) = −p(y), (3)
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where p(y) is a specified function of external loading.

Following Rahman and Newaz [30], we simplify the deformation analysis of the elastic
coating layer based on the following two assumptions: (1) the coating layer is assumed to
be very thin, so that the generalized plane stress conditions apply; (2) the flexural stiffness
of the coating layer in the z-direction is negligible compared to its tensile stiffness.

In the absence of body forces, the equilibrium equations for an infinitesimal element of
the coating layer are

∂σ̂j1
∂y1

+
∂σ̂j2
∂y2

+
∂σ̂j3
∂z

= 0, j = 1, 2, 3. (4)

The stress-strain relationship for the transversely isotropic elastic coating layer is given
by 



σ̂11

σ̂22

σ̂33

σ̂23

σ̂13

σ̂12




=




Â11 Â12 Â13 0 0 0

Â12 Â11 Â13 0 0 0

Â13 Â13 Â33 0 0 0

0 0 0 2Â44 0 0

0 0 0 0 2Â44 0

0 0 0 0 0 2Â66







ε̂11

ε̂22

ε̂33

ε̂23

ε̂13

ε̂12




, (5)

where (ε̂11, ε̂22, . . . , ε̂12)
T is the vector of strains in the coating layer, the superscript T

denotes the transposition operation, and 2Â66 = Â11 − Â12.

Integrating Eqs. (4) through the thickness of coating layer and taking into account the
interface and boundary conditions (2) and (3), we get

ĥ

(
∂ ˆ̄σj1
∂y1

+
∂ ˆ̄σj2
∂y2

)
= −σj3

∣∣∣
z=0

, j = 1, 2, (6)

ĥ

(
∂ ˆ̄σ13
∂y1

+
∂ ˆ̄σ23
∂y2

)
= −σ33

∣∣∣
z=0
− p. (7)

Here, ˆ̄σij are the averaged stresses, i.e.,

ˆ̄σij(y) =
1

ĥ

0∫

−ĥ

σ̂ij(y, z) dz.

Under the simplifying assumptions made above, we have

ˆ̄σ13 = ˆ̄σ23 = ˆ̄σ33 = 0. (8)

Hence, Eq. (7) immediately implies that

σ33
∣∣∣
z=0

= −p. (9)
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Moreover, in view of (8), the averaged strain ˆ̄ε33 must satisfy the equation

Â13 ˆ̄ε11 + Â13 ˆ̄ε22 + Â33 ˆ̄ε33 = 0.

Therefore, the in-plane averaged stress-strain relationship takes the form




ˆ̄σ11

ˆ̄σ22

ˆ̄σ12




=




ˆ̄A11
ˆ̄A12 0

ˆ̄A12
ˆ̄A11 0

0 0 2 ˆ̄A66







ˆ̄ε11

ˆ̄ε22

ˆ̄ε12



, (10)

where we introduced the notation

ˆ̄A11 = Â11 −
Â2

13

Â33

, ˆ̄A12 = Â12 −
Â2

13

Â33

, 2 ˆ̄A66 = ˆ̄A11 − ˆ̄A12. (11)

On the other hand, in view of the interface conditions (1), we will have

ˆ̄ε11 = ε11
∣∣∣
z=0

, ˆ̄ε22 = ε22
∣∣∣
z=0

, ˆ̄ε12 = ε12
∣∣∣
z=0

, (12)

where ε11, ε22, and ε12 are the in-plane strains in the coated elastic layer z ∈ (0, h).

Therefore, taking Eqs. (10) and (12) into account, we transform the boundary conditions
(6) as follows:

−1

ĥ
σ31
∣∣∣
z=0

=
∂

∂y1

(
ˆ̄A11

∂v1
∂y1

+ ˆ̄A12
∂v2
∂y2

)
+ ˆ̄A66

∂

∂y2

(
∂v1
∂y2

+
∂v2
∂y1

)
,

−1

ĥ
σ32
∣∣∣
z=0

= ˆ̄A66
∂

∂y1

(
∂v1
∂y2

+
∂v2
∂y1

)
+

∂

∂y2

(
ˆ̄A12

∂v1
∂y1

+ ˆ̄A11
∂v2
∂y2

)
.

Finally, the above boundary conditions can be rewritten in the matrix form as

σ31e1 + σ32e2
∣∣∣
z=0

= −L̂(∇y)v
∣∣∣
z=0

, (13)

where L̂(∇y) is a 2× 2 matrix differential operator such that

L̂αα(∇y) = ĥ ˆ̄A11
∂2

∂y2α
+ ĥ ˆ̄A66

∂2

∂y23−α

L̂αβ(∇y) = ĥ
(

ˆ̄A12 + ˆ̄A66

) ∂2

∂yα∂yβ
, α, β = 1, 2, α 6= β.

(14)

Thus, the deformation problem for an elastic layer coated with a very thin flexible elastic
layer is reduced to that for the elastic layer without coating, but subjected to a different
set of boundary conditions (9) and (13) on the surface z = 0.
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3 Deformation problem formulation

Now, let us consider a relatively thin transversely isotropic elastic layer of uniform thick-
ness, h, coated with an infinitesimally thin elastic membrane and bonded to a rigid sub-
strate, so that

v
∣∣∣
z=h

= 0, w
∣∣∣
z=h

= 0. (15)

In the absence of body forces, the vector (v, w) of displacements in the elastic layer satisfies
the Lamé system

A66∆yv + (A11 − A66)∇y∇y · v + A44
∂2v

∂z2
+ (A13 + A44)

∂

∂z
∇yw = 0,

A44∆yw + A33
∂2w

∂z2
+ (A13 + A44)

∂

∂z
∇y · v = 0.

(16)

Assuming that the coated layer is loaded by a normal load and denoting the load density
by p, we require that

σ33
∣∣∣
z=0

= −p. (17)

Based on the analysis performed in Section 2, the influence of the elastic membrane
(coating layer) is introduced by the boundary condition

σ31e1 + σ32e2
∣∣∣
z=0

= −L̂(∇y)v
∣∣∣
z=0

, (18)

where L̂(∇y) is the matrix differential operator defined by formulas (14).

Taking into account the stress-strain relationship




σ11

σ22

σ33

σ23

σ13

σ12




=




A11 A12 A13 0 0 0

A12 A11 A13 0 0 0

A13 A13 A33 0 0 0

0 0 0 2A44 0 0

0 0 0 0 2A44 0

0 0 0 0 0 2A66







ε11

ε22

ε33

ε23

ε13

ε12




,

we rewrite Eqs. (17), (18) as follows:

A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z

∣∣∣∣∣
z=0

= −p, (19)

A44

(
∇yw +

∂v

∂z

)∣∣∣∣
z=0

= −L̂(∇y)v
∣∣∣
z=0

. (20)

Equations (15), (16), (19), and (20) comprise the deformation problem for the coated
transversely isotropic elastic layer bonded to a rigid substrate.
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Observe that the effect of the superficial tangential zone (modeled as an elastic membrane)
has been introduced as an effective boundary condition (18). Such a surface membrane
can also be considered as a material surface (with elasticity) in the framework of the
surface elasticity theory of Gurtin and Murdoch [15]. The latter approach was recently
used in a number of papers [12,21,33].

4 Asymptotic analysis of the deformation problem

Let h∗ be a characteristic length of the external load distribution. Denoting by ε a small
positive parameter, we require that

h = εh∗ (21)

and introduce the so-called “stretched” dimensionless normal coordinate

ζ =
z

εh∗
.

In addition, we non-dimensionalize the in-plane coordinates by the formulas

ηi =
yi
h∗
, i = 1, 2, η = (η1, η2),

so that
∂

∂z
=

1

εh∗

∂

∂ζ
, ∇y =

1

h∗
∇η.

Moreover, we assume that the tensile stiffness of the coating layer is relatively high, i.e.,
ˆ̄A11 >> A11, and so on. For the sake of definiteness, we consider the situation when

L̂(∇y) = ε−1L̂∗(∇y), (22)

that is, in particular, the ratio A11/
ˆ̄A11 is of the order of εĥ/h∗.

Employing the perturbation algorithm [14], we represent the solution to the deformation
problem (15), (16), (19), (20) as follows:

v= ε2v1(η, ζ) + . . . , (23)

w= εw0(η, ζ) + ε3w2(η, ζ) + . . . . (24)

Here, for the sake of brevity, we include only non-vanishing terms.

It can be shown (see, in particular, [3]) that the leading-order term in (24) is given by

w0(η, ζ) =
h∗p

A33

(1− ζ), (25)

whereas the first non-trivial term of the expansion (23) satisfies the problem

A44
∂2v1

∂ζ2
= −(A13 + A44)∇η

∂w0

∂ζ
, ζ ∈ (0, 1),

7
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A44
∂v1

∂ζ
+

1

h∗
L̂∗(∇η)v

1

∣∣∣∣∣
ζ=0

= −A44∇ηw
0
∣∣∣
ζ=0

, v1
∣∣∣
ζ=1

= 0.

Substituting the expansion (25) for w0 into the above equations, we obtain

A44
∂2v1

∂ζ2
=
A13 + A44

A33

h∗∇ηp, ζ ∈ (0, 1),

A44
∂v1

∂ζ
+

1

h∗
L̂∗(∇η)v

1

∣∣∣∣∣
ζ=0

= −A44

A33

h∗∇ηp, v1
∣∣∣
ζ=1

= 0.

(26)

The solution to the boundary-value problem (26) is represented in the form

v1 = −A13 + A44

2A33A44

ζ(1− ζ)h∗∇ηp+ (1− ζ)V1(η), (27)

where V1(η) satisfies the equation

1

h∗
L̂∗(∇η)V

1 − A44V
1 =

A13 − A44

2A33

h∗∇ηp (28)

on the entire plane ζ = 0.

For the second non-trivial term of the expansion (24), we derive the problem

A33
∂2w2

∂ζ2
= −(A13 + A44)∇η ·

∂v1

∂ζ
− A44∆ηw

0, ζ ∈ (0, 1),

A33
∂w2

∂ζ

∣∣∣∣∣
ζ=0

= −A13∇η · v1
∣∣∣
ζ=0

, w2
∣∣∣
ζ=1

= 0.

Now, substituting the expressions (25) and (27) for w0 and v1, respectively, into the above
equations, we arrive at the problem

∂2w2

∂ζ2
=−

[
(A13 + A44)

2(2ζ − 1) + 2A2
44(1− ζ)

] h∗∆ηp

2A2
33A44

+
A13 + A44

A33

∇η ·V1, ζ ∈ (0, 1), (29)

∂w2

∂ζ

∣∣∣∣∣
ζ=0

= −A13

A33

∇η ·V1, w2
∣∣∣
ζ=1

= 0. (30)

Integrating Eq. (29) twice with respect to ζ and taking into account the boundary condi-
tion (30)2, we obtain

w2 =−
[
(A13 + A44)

2
(
2ζ3 − 3ζ2 + 1

)
+ 2A2

44(1− ζ)3
] h∗∆ηp

12A2
33A44

+
A13 + A44

2A33

(1− ζ)2∇η ·V1(η) + C2(η)(1− ζ), (31)

8
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where C2(η) is an arbitrary function.

The substitution of (31) into the boundary condition (30)1 yields

C2 =
A44

2A2
33

h∗∆ηp−
A44

A33

∇η ·V1.

Hence, in view of this relation, formula (31) implies

w2
∣∣∣
ζ=0

= −
[
(A13 + A44)

2 − 4A2
44

] h∗∆ηp

12A2
33A44

+
A13 − A44

2A33

∇η ·V1, (32)

where V1 is the solution of Eq. (28).

5 Local indentation of the coated elastic layer: Leading-order asymptotics
for the compressible and incompressible cases

Recall that the local indentation of an elastic layer is defined as

w0(y) ≡ w(y, 0),

where w(y, 0) is the normal displacement of the layer surface.

In the case of compressible layer, Eqs. (24) and (25) yield

w0(y) ' h

A33

p(y), (33)

so that the deformation response of the coated elastic layer is analogous to that of a
Winkler elastic foundation [19,28] with the foundation modulus k = A33/h. In other
words, the deformation of the elastic coating does not contribute substantially to the
deformation of a thin compressible layer.

When the layer material approaches the incompressible limit, the right-hand side of (33)
decreases to zero and the first term in the asymptotic expansion (24) disappears. At that,
based on the known results [17], it can be shown that the ratios A13/A33 and A44/A33

tend to 1 and 0, respectively.

Therefore, in the incompressible limit situation formula (32) reduces to

w2
∣∣∣
ζ=0

= − h∗
12a44

∆ηp(η) +
1

2
∇η ·V1(η), (34)

where a44 = A44 is the out-of-plane shear modulus of the elastic layer, while V1(η) satisfies
the equation

1

h∗
L̂∗(∇η)V

1(η)− a44V1(η) =
h∗
2
∇ηp(η), η ∈ R2. (35)

9
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Thus, in the case of incompressible bonded elastic layer, formulas (22)–(24), (34), and
(35) give

w0(y) ' − h3

12a44
∆yp(y) +

h

2
∇y · v0(y), (36)

where the vector v0(y) solves the equation

hL̂(∇y)v0(y)− a44v0(y) =
h2

2
∇yp(y), y ∈ R2. (37)

Observe that in view of (27), the vector-function v0(y) has the meaning of the tangential
displacement of the surface point (y, 0) of the elastic layer. Recall also that the matrix
differential operator L̂(∇y) is defined by formulas (14). It is also appropriate to comment

here that the differential operator L̂∗(∇y) was introduced by formula (22) in such a way
that both terms on the left-hand side of Eq. (37) turn out to be of the same order of
magnitude as ε→ 0.

6 Axisymmetric, periodic, and limit cases

Observe that in the axisymmetric case (in view of (12)), we have

ˆ̄σrr = ˆ̄A11εrr + ˆ̄A12εθθ, ˆ̄σθθ = ˆ̄A12εrr + ˆ̄A11εθθ, ˆ̄σrθ = 0,

where

εrr =
∂vr
∂r

, εθθ =
vr
r
,

while Eqs. (6) should be replaced with the following one:

ĥ

r

(
∂(r ˆ̄σrr)

∂r
− ˆ̄σθθ

)
= −σzr

∣∣∣
z=0

.

Correspondingly, the boundary condition (13) takes the following form:

σzr
∣∣∣
z=0

= −ĥ ˆ̄A11

(
∂2vr
∂r2

+
1

r

∂vr
∂r
− vr
r2

)
. (38)

It is to note here that the axisymmetric boundary condition (38) was previously derived
in a number of papers [2,8,29,30].

Further, as a simple example (which is relevant to the contact of wavy and rough surfaces
[19,27,32]), we consider an example of periodic loading

p(y1) = p0

(
1 + cos

πy1
l

)
, (39)

where p0 is the maximum of distributed normal stresses with the spatial period 2l.

10
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In this case, Eqs. (36) and (37) reduce to the form

w0 = − h3

12a44

d2p

dy21
+
h

2

dv0
dy1

, (40)

hĥ ˆ̄A11
d2v0
dy21
− a44v0 =

h2

2

dp

dy1
. (41)

Substituting (39) into Eq. (41), we readily get

v0(y1) =
lhp0

2πĥ ˆ̄A11(1 + µ)
sin

πy1
l
, (42)

where we have introduced the notation

µ =
l2a44

π2hĥ ˆ̄A11

. (43)

Now, the substitution of (39) and (42) into Eq. (40) yields

w0(y1) =
π2h3p0
12l2a44

(1 + 4µ)

(1 + µ)
cos

πy1
l
. (44)

The variation of the maximum indentation w0(0) with the change of the dimensionless
parameter (43) is represented in Fig. 2.
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Figure 2. The normalized maximum local indentation.
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Finally, let us consider two opposite limit situations in the incompressible case. First,
when the coating is absent and L̂(∇y) ≡ 0, Eq. (37) implies

v0(y) = − h2

2a44
∇yp(y).

The substitution of this expression into formula (36) gives

w0(y) ' − h3

3a44
∆yp(y), (45)

which completely agrees with the asymptotic model developed in [4,5,6] (see also [10,18]).

Second, in the case of very stiff (inextensible) coating we will have v0(y) ≡ 0, and formula
(36) reduces to

w0(y) ' − h3

12a44
∆yp(y). (46)

In other words, comparing (45) and (46), we conclude that the inextensible membrane
coating attached to the surface of a thin incompressible elastic layer reduces the out-of-
plane shear compliance of the bonded layer by four times. Therefore, the reinforcing effect
of an elastic membrane on the surface of an incompressible elastic layer, which is governed

by the dimensionless ratio ĥ ˆ̄A11/(ha44), will be less than this value.

7 Discussion and conclusion

We note that the employed above perturbation technique was widely used for deriving
the transmission conditions for thin elastic interfaces (see, e.g., [11,22]). By using FEM,
the accuracy of the transmission conditions derived by asymptotic analysis was analyzed
in detail in [23,24,25].

The obtained results can shed light on the experimentally established fact [9] that the
indentation stiffness of the articular cartilage (see also [7]) is sensitive to mild degeneration
at the articular surface (which reduces the stiffness of the superficial tissue layer), while
being insensitive to changes associated with normal aging or to slight variations in cartilage
thickness.

Note also that the problem examined in this paper can be of potential interest for its
application in geophysics and foundation mechanics, where reinforcing layers are used
to enhance the stiffness characteristics of geomaterials (see, e.g., [31] and [1], where the
cases of inextensible and elastic membrane utilized for reinforcing an elastic half-space
are considered).

The main result of the paper, presented in Section 4, is the leading-order asymptotic
formulas for the normal displacement (called the local indentation) of the surface points
for compressible and incompressible thin bonded elastic layers reinforced with an elastic
membrane.

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 Acknowledgment

The authors are grateful for support from the FP7 IRSES Marie Curie grant TAMER
No 610547.

References

[1] S.F. Ahmadi, M. Eskandari, Axisymmetric circular indentation of a half-space reinforced by
a buried elastic thin film, Math. Mech. Solids 19 (2014) 703–712.

[2] V.M. Alexandrov, S.M. Mkhitaryan, Contact Problems for Solids with Thin Coatings and
Layers [in Russian], Nauka, Moscow, 1985.

[3] I.I. Argatov, Pressure of a paraboloidal die on a thin elastic layer, Doklady Phys. 50 (2005)
524–528.

[4] I.I. Argatov, Development of an asymptotic modeling methodology for tibio-femoral contact
in multibody dynamic simulations of the human knee joint, Multibody Syst. Dyn. 28 (2012)
3–20.

[5] I. Argatov, G. Mishuris, Elliptical contact of thin biphasic cartilage layers: Exact solution
for monotonic loading, J. Biomech. 44 (2011) 759–761.

[6] I. Argatov, G. Mishuris, Frictionless elliptical contact of thin viscoelastic layers bonded to
rigid substrates, Appl. Math. Model. 35 (2011) 3201–3212.

[7] I.I. Argatov, F.J. Sabina, Spherical indentation of a transversely isotropic elastic half-space
reinforced with a thin layer, Int. J. Eng. Sci. 50 (2012) 132–143.

[8] V.I. Avilkin, V.M. Alexandrov, E.V. Kovalenko, On using the more-accurate equations of
thin coatings in the theory of axisymmetric contact problems for composite foundations, J.
Appl. Math. Mech. 49 (1985) 770–777.

[9] W.C. Bae, M.M. Temple, D. Amiel, R.D. Coutts, G.G. Niederauer, R.L. Sah, Indentation
testing of human cartilage: Sensitivity to articular surface degeneration, Arthritis Rheum.
48 (2003) 3382–3394.

[10] J.R. Barber, Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32 (1990) 129–132.

[11] Y. Benveniste, T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,
Mech. Mater. 33 (2001) 309–323.

[12] W.Q. Chen, Ch. Zhang, Anti-plane shear Green’s functions for an isotropic elastic half-space
with a material surface, Int. J. Solids Struct. 47 (2010) 1641–1650.

[13] I.C. Clarke, Articular cartilage: a review and scanning electron microscope study. 1. The
interterritorial fibrillar architecture, J. Bone Joint Surg. Br. 53-B (1971) 732–750.

[14] A.L. Gol’denveizer, Derivation of an approximate theory of bending of a plate by the method
of asymptotic integration of the equations of the theory of elasticity, J. Appl. Math. Mech.
26 (1962) 1000–1025.

[15] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Rat.
Mech. Anal. 57 (1975) 291–323.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[16] L.C. Hughes, C.W. Archer, I. ap Gwynn, The ultrastructure of mouse articular cartilage:
collagen orientation and implications for tissue functionality. A polarised light and scanning
electron microscope study and review, Europ. Cells Materials 9 (2005) 68–84.

[17] M. Itskov, N. Aksel, Elastic constants and their admissible values for incompressible and
slightly compressible anisotropic materials. Acta Mech. 157 (2002) 81–96.

[18] M.J. Jaffar, Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid
foundation. Int. J. Mech. Sci. 31 (1989) 229–235.

[19] K.L. Johnson, Contact Mechanics. Cambridge Univ. Press, Cambridge, UK, 1985.

[20] R.K. Korhonen, M. Wong, J. Arokoski, R. Lindgren, H.J. Helminen, E.B. Hunziker, J.S.
Jurvelin, Importance of the superficial tissue layer for the indentation stiffness of articular
cartilage, Med. Eng. Phys. 24 (2002) 99–108.

[21] J.M. Long, G.F. Wang, Effects of surface tension on axisymmetric Hertzian contact problem,
Mech. Mater. 56 (2013) 65–70.

[22] G. Mishuris, Imperfect transmission conditions for a thin weakly compressible interface. 2D
problems, Arch. Mech. 56 (2004) 103–115.
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