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The development of tea blister caused by Exobasidium
vexans in tea (Camellia sinensis) correlates with the reduced
accumulation of some antimicrobial metabolites and the
defence signals salicylic and jasmonic acids

L. A. J. Mura*, B. Haucka, A. Wintersa, J. Healda, A. J. Lloyda, U. Chakrabortyb and

B. N. Chakrabortyb

aInstitute of Biological, Environmental and Rural Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth, SY23 3DA,

UK; and bDepartment of Botany, University of North Bengal, Siliguri 734013, India

Blister blight (causal agent, Exobasidium vexans) is an economically devastating disease of tea (Camellia sinensis). To

determine what metabolite changes occur with tea blister that could be linked to disease progression, metabolomic

approaches were used on E. vexans infected tea from a Darjeeling (India) plantation. Samples were classified according

to disease phenotypes, i.e. either healthy or at one of three stages of disease progression. Initial metabolite fingerprint-

ing using Fourier transform infrared (FTIR) spectroscopy indicated that metabolite changes could be related to disease

stage. Electrospray ionization mass spectrometry (ESI-MS) highlighted caffeine and flavonoid metabolism changes as

disease progressed. High-performance liquid chromatography (HPLC) with online photodiode array detection and

electrospray ionization-tandem mass spectrometry (HPLC-PDA-ESI/MSn) was used to characterize the caffeine, flavan-

3-ol, flavone and flavonol profiles. There were increases in quercetin and kaempferol glucosides, kaempferol triglyco-

sides and some catechin-class antioxidants, but also substantial reductions in apigenin and myricetin glycosides and,

particularly, caffeine as disease progressed. The content of important defence hormones, salicylic acid and jasmonic

acid, was also reduced in blister blight diseased samples. Thus, E. vexans infections perturb defence signalling and

reduce many potentially antimicrobial compounds, such as caffeine, to aid disease progression.

Keywords: caffeine, catechins, flavonoids, tea blister disease

Introduction

Tea (Camellia sinensis) production is an important com-
ponent of Indian agricultural production and gross
domestic product (GDP). Indian tea accounts for 31% of
global production with a total turnover of $1�8 billion,
earning >$300 million dollars total net foreign exchange
(FAOSTAT, 2010). Most Indian production is black tea
where leaves are first rolled to break intracellular com-
partmentalization. Thus, phenol oxidases come into con-
tact with phenolic compounds, allowing their oxidation
to proceed for 90–120 min prior to drying. During this
‘fermentative’ period the distinctive black tea flavour
begins to develop as flavan-3-ols condense to form theaf-
lavins and their polymers thearubigins (Del Rio et al.,
2004). By contrast, in green tea production rolled leaves
are immediately steamed so that flavan-3-ol oxidation
does not take place.

Given the economic importance of tea, any threats to
yield are of great importance. Blister blight caused by
Exobasidium vexans is a leaf disease in tea that preferen-
tially attacks the economically important young leaves
and is by far the most serious disease of cultivated tea
(Punyasiri et al., 2005). If not controlled by fungicides,
tea losses due to blister blight may be as high as 35%
(Radhakrishnan & Baby, 2004). Exobasidium vexans is
an obligatory pathogenic basidiomycete spread by wind-
borne basidiospores. Infection most likely proceeds
through stomata (Punyasiri et al., 2005) and on germina-
tion the mycelium grows intercellularly before the
basidia fruiting bodies form below the lower epidermis.
As these develop they force up and rupture the epidermis
to form the blister (Boekhout, 1991). Macroscopically,
E. vexans is typified by an initial discolouration of the
infected leaf area before the formation of circular blisters
(Punyasiri et al., 2005).
The main control measure for blister blight is through

the use of fungicides, particularly carbendazim, hexaco-
nazole, propiconazole and tridemorph. These fungicides
are applied every 2 weeks throughout the period when
the disease is prevalent (Premkumar & Baby, 2005). This
imposes a considerable additional financial cost and also
logistical problems that could allow the blister blight
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fungus to persist in tea plantations. Strategies of disease
control based on host resistance mechanisms have been
relatively unexplored (Martosupono, 1991). Some level
of resistance to blister blight has been noted in tea culti-
vars (Balasooriya, 1996) with chitinase possibly playing
a role in reducing blister formation (Jeyaramraja et al.,
2005), as may increases in polyphenol oxidase and per-
oxidase activities (Rajalakshmi & Ramarethinam, 2000).
Given the chemical richness of tea, resistance is also

likely to depend on antimicrobial metabolites that need
to be identified if they can be exploited in, for example,
breeding programmes. The most abundant flavan-3-ols
are (–)-epicatechin and gallic acid derivatives, but other
important chemical classes include flavonols, such as
conjugates of quercetin and kaempferol, coumarate,
some purine alkaloids, theobromine and also the purine
alkaloid, caffeine (Finger et al., 1991, 1992; Kiehne &
Engelhardt, 1996a,b; Kiehne et al., 1997). Even a cur-
sory examination of the literature from clinical microbi-
ology shows that certain tea metabolites have
antimicrobial activity (Park et al., 2004; Song & Seong,
2007; Aron & Kennedy, 2008; Evensen & Braun, 2009;
Sitheeque et al., 2009; Gordon & Wareham, 2010) but
there have been relatively few attempts to examine how
such metabolites change during disease development.
Preliminary studies have reported changes in saccharide
metabolism (Pius et al., 1998) and provided some evi-
dence of antimicrobial phytoalexins, catechin and meth-
ylxanthine accumulation following infection by blister
blight (Vidhyasekaran, 1988; Nagahaulla et al., 1996;
Rajalakshmi & Ramarethinam, 2000; Punyasiri et al.,
2005).
In this paper, metabolomic approaches are employed

to begin to map changes in metabolites in young tea
leaves as blister symptoms develop within a plantation.
These could be sources of resistance or susceptibility that
could be more fully characterized in subsequent studies.
Major metabolite differences are described, centring on

the reduced accumulation of caffeine and the important
defence signals salicylic acid (SA) and jasmonic acid (JA)
as well as apigenin and myricetin glycosides and
increases in kaempferol and quercetin triglycosides. The
importance to breeding programmes of screening for tea
germplasm where the levels of these metabolites are
maintained is discussed.

Materials and methods

Sampling tea from a Darjeeling plantation

All tea plants were of the North Indian Assam variety (TV-9)
growing within Margaret’s Hope Tea Gardens (North Kurseong,

Darjeeling, India, 26�951° N, 88�280° E; altitude 950–1830 m

a.s.l.). Natural infections of tea blister were sampled over a 4 h

period and grouped into one of four disease stage classes (Fig. 1).
These classes represented apparently uninfected healthy (H)

young leaves of tea (Fig. 1a), early symptoms of E. vexans infec-
tion consisting of a reddening at the infection site (Fig. 1b; desig-

nated infection stage 1; S1), samples exhibiting the formation of
characteristic blisters (Fig. 1c; infection stage 2; S2) and samples

where blisters had led to the formation of large necrotic patches

in the leaves (Fig. 1d; infection stage 3; S3).
Samples were collected from 10 geographical sites within the

Margaret’s Hope Tea Gardens (in this paper designated a to j)

of approximately 20 m2 each and separated from each other by

at least 100 m. Plants were sampled between 10:00 and 14:00 h
on 15 and 16 June. At each site samples of 10 leaves at each

infection stage as well as healthy (symptomless) controls were

taken and separately pooled. Thus, four pooled samples of each

phenotypic class were taken so that a total of 40 samples (10 of
each phenotypic class) were taken forward for metabolomic

analyses.

Sample preparation

Samples were taken from the plantation on wet ice and processed
on the day they were sampled. A total of 5 g from each sample

pool was ground to a fine powder in liquid nitrogen. The metab-

(a) (b)

(c) (d)

Figure 1 Stages of blister blight disease on

tea (Camellia sinensis) leaves. Healthy

leaves (a) and tea leaves infected with tea

blister blight (Exobasidium vexans) at

designated infection stages 1 (b), 2 (c) and

3 (d). Bar = 1 cm.
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olites were extracted using a 10 mL chloroform:methanol:water

(22:56:22) mix which allowed the isolation of both polar and
nonpolar metabolites. The slurry was centrifuged at 3400 g to

remove any particulate matter and the supernatants collected.

The volatile components of the extraction mix were evaporated

over a waterbath at 45°C for 4–6 h as required. The aqueous sol-
vent was removed by lyophilization. The dried samples were then

dispatched to Aberystwyth University in the UK. On receipt, the

samples were resuspended in 1 mL methanol:water (70:30) and
stored at �80°C until analysis within a month of receipt.

Fourier transform infrared (FTIR) spectroscopy

This was undertaken in accordance with the manufacturer’s

instructions (Bruker BioSciences Corp.) and as described in

Johnson et al. (2003). Spectra were created over a wavenumber
range of 4000 to 600 cm�1 using 64 co-added scans at 4 cm�1

resolution, permitting collection of 1763 data points. Data were

analysed using MATLAB v. 6.5 (The MathWorks, Inc.) or PYCHEM

(Jarvis et al., 2006). In-house algorithms were used to convert

the resultant spectra into absorbance. CO2 peaks were replaced

with a smooth trend using an in-house code and the spectra

were normalized to total absorbance (Timmins et al., 1998).

Direct injection electrospray ionization-mass
spectrometry (DI-MS)

Direct injection electrospray ionization-mass spectrometry was
carried out using a Micromass LCT mass spectrometer (Micro-

mass/Waters Ltd) in negative ionization mode, which has been

shown to be effective for characterization of plant extracts

(Mattoli et al., 2006). Extracts were reconstituted in 0�25 mL
30% (v/v) methanol:H2O. Extracts of 10 lL were introduced by

DI at a flow rate of 0�5 mL min�1 in 30% (v/v) methanol:H2O

running solvent, using a Harvard 11 syringe pump (Harvard
Ltd). Direct injection electrospray ionization-mass spectrometry

data were acquired over the m/z range of 100–1400 and were

imported into MATLAB, binned to unit mass and then normalized

to percentage total ion as stated in Johnson et al. (2007).

Liquid chromatography

Typically, 50 lL of extract were analysed by reverse-phase

HPLC on a Waters system with a 996 photodiode array detector

(PDA) and a Nova-Pak C18 radial compression column (4 lm,
8 9 100 mm; Waters Ltd). The column was equilibrated with

100% solvent A (5% acetic acid) at a flow rate of 2 mL min�1.

Metabolites were eluted from the column by linear gradient to

100% solvent B (100% methanol) over 50 min and monitored
from wavelengths of 240 to 400 nm.

Liquid chromatography mass spectrometry (LC-MS)

Compounds within selected samples were tentatively identified

by reverse-phase high performance liquid chromatography

(HPLC) with an online photodiode array (PDA) detector and
electrospray ionization-tandem mass spectrometry (HPLC-PDA-

ESI/MSn). Analyses were performed on a Thermo Finnigan sys-

tem (Thermo Electron Corp.) comprising a Finnigan Surveyor
PDA Plus detector, a Finnigan LTQ linear ion trap with ESI

source and a Waters Nova-Pak C18 column (4 lm,

3�9 9 100 mm). The autosampler tray temperature was main-

tained at 5°C and the column temperature at 30°C. Sample

injection volume was typically 10 lL, the detection wavelength

was set to 240–400 nm, and the flow rate was 1 mL min�1 with
10% of the sample going to the mass spectrometer (MS). The

mobile phase consisted of water/0�1% formic acid (solvent A)

and methanol/0�1% formic acid (solvent B). The column was

equilibrated with 95% A, and the percentage of B increased lin-
early to 55% over 50 min. Interface and MS parameters were

optimized by infusion of chlorogenic acid standard at a constant

rate into the LC flow. Mass spectra were acquired in negative
and positive ionization mode with the following parameters:

nitrogen sheath gas 30 arbitrary units, nitrogen auxiliary gas 15

arbitrary units and capillary temperature 320°C. Spray voltage

was 4�0 kV in negative ionization mode and 4�8 kV in positive
ionization mode, capillary voltage –1 V and 45 V, respectively,

and tube lens offset –68 V and 110 V. MS/MS fragmentation

was carried out at normalized collision energy of 35% and iso-

lation width 2�0 (m/z). For analysis of flavan-3-ols, ionization
parameters were optimized further by infusion of catechin stan-

dard (Sigma-Aldrich) into the LC flow.

Naringinase assays

To identify sugar moieties in flavonoid glycosides, selected
extracts were treated with naringinase from Penicillium decum-
bens (Sigma Aldrich), an enzyme with glucosidase and rhamnos-

idase activity. Naringinase (399 U enzyme activity per gram

solid) was made up in McIlvaine buffer, pH 4�0, at 17 U mL�1.
Assays were carried out in McIlvaine buffer, pH 4�0, with

50 lL of extract and an enzyme concentration of 6�7 U mL�1 in

a total volume of 1�5 mL. After incubation for 2�5 h at 40°C,
samples were partially purified on a 500 mg Sep-Pak C18 3 cc
Vac RC cartridge (Waters) following the manufacturer’s instruc-

tions, dried down at 50°C under nitrogen and redissolved in

70% methanol for analysis by LC-MS.
To confirm the identity of flavonol aglycones, 100 lL of

selected extracts were hydrolysed in a total volume of 1 mL 1 M

HCl. Following incubation for 1 h at 100°C, the pH of the sam-

ples was adjusted to 4�5. Extracts were then partially purified
on a 500 mg Sep-Pak C18 3 cc Vac RC cartridge, dried down at

50°C under nitrogen and redissolved in 70% methanol for

analysis by LC-MS.

Data analysis

Principal component analysis (PCA) and discriminant function

analysis (DFA) based on principal components (PCs) were used

as described in Allwood et al. (2006) and followed accepted

MSI standards (Goodacre et al., 2007). Principal component
analysis reduces the dimensionality of multivariate data whilst

preserving most of the variance, following which DFA is used to

discriminate between groups on the basis of the retained PCs

and the a priori knowledge of class structures within the data
sets. All calculations were performed in MATLAB or PYCHEM. The

major sources of variation were targeted from the loading vec-

tors (eigenvalues), which contributed > � 2 standard deviations
to the observed variation. KEGG (http://www.genome,jp/kegg/)

and the Sheffield tomato ESI (http://aps.group.shef.ac.uk/tomato/

index.html) metabolite databases were used to assign a tentative

identification to each m/z value.
Heat maps were generated using EPCLUST software (Brazma

et al., 2003). Comparisons of the metabolite peaks from differ-

ent treatments with controls were performed using Tukey multi-

ple pairwise comparison test using MINITAB v. 14 (Minitab Ltd).
Differences with P < 0�05 were considered significant.
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Salicylic acid and jasmonic acid measurements

Salicyclic and jasmonic acid concentrations in samples were

determined by LC-MS using the Micromass LCT-time of flight

(LCT-ToF), as described in Clarke et al. (2004) and Allwood
et al. (2006), respectively. Absolute SA and JA concentrations

were derived by comparison with deuterated standards (d6-SA

(C/D/N Isotopes Inc.); d6-JA standard, kindly provided by Claus

Wasternack (Leibniz Institute of Plant Biochemistry, Halle, Ger-
many)), which were added to the samples at first extraction.

Results

Fourier transform infrared fingerprinting

Extracts from young healthy tea leaves (Fig. 1a) and tea
blister-exhibiting leaves at each designated stage of infec-
tion (Fig. 1b, c, d) were investigated using FTIR spec-
troscopy. The derived spectra indicated that the
plantation-sourced samples were chemically rich but
infection-specific changes could not be observed without
mathematical analyses (Fig. 2a). Employment of the
supervised DFA, which employs a priori knowledge of

the experimental class, showed clustering according to
stage of disease, of healthy samples (H), a group com-
prising of S1 and S2 infection stages, and most clearly
the necrotic infection stage 3 (Fig. 2b).
The data were further investigated by employing DFA

to assess how far infection could dominate over bio-
chemical variation linked to sampling site (Fig. 2c, d).
DFA suggested that there were some biochemical differ-
ences of the FTIR spectra of Stage 1 samples from those
of the healthy controls, but these were difficult to distin-
guish from the variation due to sampling site (Fig. 2c).
However, with the blister stage 2 samples, they were
clearly separated from H samples along the DF1 axis,
indicating infection-associated changes that could not be
linked to sampling site (Fig. 2d).

Tentative identification of the main metabolite changes
following infection with E. vexans

Direct injection electrospray ionization-mass spectrome-
try was employed for metabolite profiling and tentative
indications of the changes that occurred following

(a) (b)

(c) (d)

Figure 2 FTIR analysis of tea leaves infected with tea blister blight (Exobasidium vexans) sampled from Margaret’s Hope Tea Gardens, Darjeeling,

India. (a) FTIR spectra derived from healthy and blister blight infected tea leaves at designated infection stages. (b) Discriminant function analysis

(DFA) of 10 samples from each biological class: H = healthy; S1 = stage 1; S2 = stage 2; and S3 = stage 3. The model is based on 10 principal

components (PC) that encompassed 99�23% of the total variance amongst the samples. Discriminant function (DF) axes discriminating metabolite

differences at different stages of infection (Discriminant Function 1) and changes associated with infection (Discriminant Function 2) are indicated.

The arrows are included to highlight changes according to infection stage and have no mathematical relevance. (c) DFA of samples from healthy

and stage 1 infected leaves. The model is based on 10 PCs that encompassed 97�56% of the total variance amongst the samples. (d) DFA of

samples from healthy and stage 2 infected leaves. The model is based on 10 PCs that encompassed 98�78% of the total variance amongst the

samples. In (c) and (d) the a to j suffixes refer to one of 10 different locations within the Margaret’s Hope Tea Gardens.
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infection were derived. Spectra derived following DI-MS
in negative ionization mode (ESI–) were analysed by
DFA. As with the analyses of FTIR spectra, stages S1
and S2 were readily separated from healthy samples,
with S3 forming a distinct group (Fig. 3a). Metabolite
differences between healthy and stage 1 disease were
focused on because they encompassed the earliest infec-
tion events and so minimized the potential contribution
of metabolites from the fungus. DFA of spectra only
from healthy and stage 1 disease samples included the
site of origin classifications (Fig. 3b). This readily dis-
criminated between healthy and stage 1 samples, overrid-
ing any site-specific influences, with the major sources of
variation separating along the DF1 axis. The PC-DF1
loadings (eigenvalues), indicating the relative value of
each mass-ions (m/z) in contributing to the separation
seen in DF1 (Fig. 3b), were plotted (Fig. 3c) and the
major sources of variation (32 m/z) were identified.
When DFA was undertaken using data for these 32 m/z
values, good separation between stage 1 and healthy
samples was maintained (Fig. 3d). The list of tentatively
identified m/z (Table 1) suggested many metabolites from
the caffeine biosynthetic pathway (Fig. S1) and flavonoid

pathways leading to the production of certain flavan-3-ol
and flavonols (Fig. S2).

Targeting caffeine and flavonoid changes in E. vexans-
challenged tea

To focus on potential changes in caffeine and flavonoids,
samples were analysed by HPLC-PDA with detection at
280 nm (targeting caffeine and flavan-3-ols) and 340 nm
(targeting flavones and flavonols). Example chromato-
grams for healthy and each disease stage (S1, S2 and S3)
are shown in Figure 4. For each wavelength the peaks in
the chromatograms were aligned and designated accord-
ing to retention times (Fig. 4; Tables 2 & 3).
Individual metabolites were characterized by HPLC-

PDA-ESI/MSn. Some compounds were readily identified
by direct comparison of their retention times, UV spectra
and fragmentation patterns with those of standards. Ten-
tative identifications of other compounds were based on
the similarity of their UV and MS spectra to known
compounds and reports in the literature, following the
principles outlined by Markby et al. (1970) and Vukics
& Guttman (2010).

(a) (b)

(c) (d)

Figure 3 Multivariate analyses of metabolic profiles generated by electrospray ionization mass spectrometry (ESI-MS) of tea leaf samples infected

with blister blight. (a) Discriminant function analysis (DFA) of samples from healthy and tea blister blight infected tea leaves at designated infection

stages, sampled at one of 10 sites within the Margaret’s Hope Tea Gardens. H = Healthy; S1 = stage 1; S2 = stage 2; and S3 = stage 3. The model

is based on 10 principal components (PC) that explained 98�39% of the total variance amongst the samples. The arrows are included to highlight

changes according to infection stage and have no mathematical relevance. (b) DFA of samples from healthy and stage 1 infected leaves. The

model is based on 10 PCs that encompassed 95�89% of the total variance amongst the samples. (c) A plot of the loading vectors linked to m/z

associated with Discriminant Function 1 shown in (b). (d) DFA of sub-matrix of the top 32 discriminatory m/z as indicated from the loading vector

plot (c). The model is based on four PCs that encompassed 99�02% of the total variance amongst the samples in (b) and (d). Suffixes a to j refer to

one of 10 different locations within the Margaret’s Hope Tea Gardens.
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Compounds detected at 280 nm included caffeine, gal-
lic acid derivatives and flavan-3-ols (Table 2), which are
commonly observed constituents in tea (Friedman et al.,
2005; Lin et al., 2008; Wang et al., 2008). Compounds
8A, 4, 6, 7 and 8B were readily identified as caffeine,
catechin, epigallocatechin gallate, epicatechin and gallo-
catechin gallate, respectively, by comparison with refer-
ence compounds. Compound 5 with Mr 306 Da showed
the same UV spectrum and fragmentation pattern as gal-
locatechin standard but eluted at a different retention
time and was tentatively identified as epigallocatechin.
The characteristics of compound 1 were consistent

with gallate (Del Rio et al., 2004), whereas compound 3
(Mr 184 Da) with an MS2 base peak at m/z 168 in nega-
tive ionization mode (–15 Da), indicating loss of a
methyl group, was tentatively identified as methyl gal-
late. Fragmentation of the peak 2 parent ion at m/z 343
in negative mode produced ions with m/z 191 and 169.
Subsequent MS3 analysis of the ion at m/z 191 produced
fragments also observed for quinate standard, while the
ion at m/z 169 yielded a fragment with m/z 125, consis-
tent with gallate, and compound 2 was therefore identi-
fied as galloyl quinate. The fragmentation pattern of

peak 10 with m/z 441 was similar to that reported for
epicatechin-3-gallate (Del Rio et al., 2004; Lu et al.,
2009), and MS3 analysis of the main MS2 fragments
with m/z 289 and m/z 169 yielded ions characteristic for
epi/catechin (m/z 245, 205 and 179) and gallate (m/z
169), respectively, supporting the identification of this
compound as epi/catechin gallate. Similarly, compounds
9 (Mr 472 Da) and 11 (Mr 456 Da) showed fragmenta-
tion patterns consistent with flavan-3-ol methyl gallates
and were identified as epi/gallocatechin methyl gallate
and epi/catechin methyl gallate, respectively, which are
less common constituents of tea leaves (Sano et al.,
1999; Wang et al., 2008).
Based on their UV spectra and MS fragmentation pat-

terns, the main peaks detected in the 340 nm chromato-
grams, listed in Tables 3 and 4, were classified as
flavones (compounds 12, 13, 14B, 15, 16A, 17 and 20B),
flavonols (compounds 14A and 14C, 16B, 18–20A and
21–24) and acylated flavonoids (25–28). Where UV
spectra were convoluted considerably by co-eluting com-
pounds, they were marked as not detected (nd) in Table 3.
All the flavones detected in the extracts were apigenin

glycosides, and compounds 15 and 17 were identified as
vitexin (apigenin-8-C-glucoside) and isovitexin (apigenin-
6-C-glucoside), respectively, by direct comparison with
standards. Compounds 12 (Mr 594 Da), 13 and 14B
(both with Mr 564 Da) exhibited fragmentation patterns
consistent with apigenin-C-diglycosides (Ferreres et al.,
2003, 2008; Wu et al., 2004), whilst the fragmentation
patterns of compounds 16A (Mr 594 Da) and 20B
(Mr 578 Da) were consistent with apigenin-C-hexoside-
2″-O-glycosides (Ferreres et al., 2007), a conclusion sub-
stantiated further by the decrease of compounds 16A
and 20B and an increase of vitexin and isovitexin in
extracts treated with naringinase (data not shown). UV
and MS spectra of the flavonol glycosides revealed a
range of quercetin (compounds 16B, 18–20A and 21),
kaempferol (compounds 22–24) and myricetin-O-glyco-
sides (compounds 14A and 14C).
The peaks eluting between 28 and 32 min (Table 4)

were classified as acylated flavonol glycosides, which are
characterized by a broad UV absorbance band I that is
shifted to a shorter wavelength (Santos-Buelga
et al.,2003), with an absorbance maximum at around
317 nm indicating the presence of p-coumaroyl residues
(Saracini et al., 2005). Consecutive fragmentation of the
parent ions and subsequent product ions revealed ka-
empferol and quercetin as aglycone cores. Losses of 162/
180 Da were attributed to hexosyl residues and of 132/
150 Da to pentosyl residues, whilst a loss of 146/164 Da
could be accounted for by either a rhamnosyl or a p-cou-
maroyl residue. Based on the UV absorbance spectra it
was concluded that each compound was conjugated with
at least one p-coumarate moiety.
The range of compounds, including acylated flavonol

glycosides, observed here has previously been reported in
tea (Atoui et al., 2005; Dou et al., 2007; Lin et al.,
2008), and the fragmentation patterns observed for the
acylated kaempferol conjugates are in agreement with

Table 1 Tentative identifications of the m/z from electrospray ionization

mass spectrometry (ESI-MS) of tea samples exhibiting blister blight

m/z (�H) True mass Tentative identity

109 110 Catechol

117 118 Succinate

117 306 Epigallocatechin, leucocyanindin

128 129 ?

128 316 Isorhamnetin

132 133 Asparate

135 136 Hypoxanthine

137 138 Salicylic acid

145 146 a-Ketoglutamate

151 152 Xanthine

164 165 Phenylalanine

169 170 Gallic acid

173 174 Shikimic acid

179 180 Jasmonic acid

193 194 Caffeine

225 226 Chorismate

279 280 Linolenic acid

286 287 Cyanidin

287 288 Dihydrokaempferol

289 290 Epicatechin

289 290 (9Z,15Z)-(13S)-12,13-Epoxyoctadeca-9,11,

15-trienoic acid

293 294 8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}

cyclopentyl]octanoate

325 326 ?

331 332 b-Glucogallin

339 340 Glucose/fructose 1,6-bisphosphate

353 354 Chlorogenic acid

397 398 S-adenosyl-L-methionine

457 458 Epigallocatechin gallate

458 459 ?

471 472 ?
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Table 2 Identification of metabolites detected in UV/vis chromatograms at 280 nm

Peak

RT

(min)a
kmax

(nm)b
[M � H]�

(m/z)c
[M + H]+

(m/z)d MS2 fragment ions (m/z) Tentative identification

1 1�5 275 169 125 Gallate

2 2�4 272 343 191, 169 Galloyl quinate

3 8�0 275 183 168, 124 Methylgallate

4 8�3 279 289 245, 205, 179 Catechine

5 8�8 271 305 179, 221, 219, 261, 165, 125, 137, 247, 287 Epigallocatechin

6 12�0 274 457 169, 331, 305, 287 Epigallocatechin gallatee

7 13�5 279 289 245, 205, 179 Epicatechine

8A 13�9 273 195 138 Caffeinee

8B 14�3 275 457 169, 331, 305, 287 Gallocatechin gallatee

9 15�5 277 471 183, 305, 287, 168 Epi-/gallocatechin methylgallate

10 16�5 278 441 289, 169, 331, 271 Catechin/epicatechin gallate

11 19�5 276 455 289, 183 Catechin/epicatechin methylgallate

aRT, retention time.
bWavelength at which the maximum fraction of light is absorbed.
cNegative ionization of a mass-ion.
dPositive ionization of a mass-ion.
eIdentified by direct comparison with standard.

(a) (b)

Figure 4 UV/vis chromatograms of samples representative of each blister blight disease stage. Representative UV/vis chromatograms at (a) 280 nm

and at (b) 340 nm. Chromatograms of healthy tissue are shown in green (H), disease stage 1 in red (S1), disease stage 2 in purple (S2) and

disease stage 3 in yellow (S3). Each selected peak is indicated by grey shading and designated by a number.
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structures proposed by (Lee et al., 2008) based on
nuclear magnetic resonance (NMR) studies of similar
compounds.

Changes in caffeine and flavonoids in E. vexans-
challenged tea

Based on the peak areas, a data matrix was constructed
for each wavelength (280 nm or 340 nm) and analysed
using DFA. Initial analyses focused on the possible site-
specific effects by comparing variation within the H sam-
ples (Fig. S3). These suggested that for metabolites

detected at 280 nm, site j was distinctive, but for metab-
olites detected at 340 nm, site c displayed distinctive pro-
files. Apart from these two sites, the other sites were
notable for the relative lack of variation.
Analysis of the 280 nm peak matrix indicated that

there was considerable variation amongst the healthy
samples, but these were distinct from diseased samples
(Fig. 5a). Samples from S1 and S2 but not S3 formed a
distinctive group that exhibited some limited separation
along DF2. Examination of the loading vectors describ-
ing the variation along DF1, which separated between
infected and healthy samples, indicated a particular

Table 3 Identification of metabolites detected in UV/vis chromatograms at 340 nm

Peak

RT

(min)a
kmax

(nm)b
[M�H]�

(m/z)c
Main MS2 fragment ions in

negative mode

Main MS2 fragment ions

in positive mode Tentative structure assignment

12 17�2 nd 593 473, 503, 353, 383, 575 Apigenin-6,8-di-C-hexoside

13 19�3 271, 337 563 473, 443, 503, 383, 353,

545, 425

Apigenin-6-C-pentoside-8-C-hexoside

14A 19�8 nd 479 316, 317 Myricetin-O-glucosided

14B nd 563 443, 473, 353, 383, 545, 503 Apigenin-6-C-hexoside-8-C-pentoside

14C nd 625 316, 317 319, 481 Myricetin-O-glucosyl-rhamnosided

15 20�7 269, 339 431 311, 341 Vitexine

16A 21�1 270, 336 593 413, 293, 473, 341 433, 415, 367 Apigenin-C-hexoside-2″-O-glucosided

16B nd 771 301, 609 303, 611, 465, 449 Quercetin-O-hexoside-O-hexosyl-rhamnoside

17 21�5 271, 339 431 311, 341, 413 Isovitexine

18 21�7 nd 463 301, 300 Quercetin-O-glucosided

19 21�9 257, 355 771 301, 300, 609 303, 611, 465, 449 Quercetin-O-hexoside-O-hexosyl-rhamnoside

20A 22�4 258, 352 463 301, 300 Quercetin-3-O-glucosided

20B 269, 345 577 413, 293, 457, 341 433, 415, 313 Apigenin-C-hexoside-2″-O- rhamnoside

21 22�8 257, 357 609 301, 300, 302 303, 465 Quercetin-3-O-glucosyl-rhamnosided

22 23�4 266, 347 755 285, 593 287, 595, 449, 433, 577, 611 Kaempferol-O-hexoside-O-hexosyl-rhamnoside

23 24�4 266, 348 755 285, 593 287, 595, 449, 433 Kaempferol-O-hexoside-O-hexosyl-rhamnoside

24 25�4 266, 349 593 285 287, 449 Kaempferol-3-O-glucosyl-rhamnosided

nd, not determined.

The identity of the flavonol moieties of O-glycosides was confirmed by comparison of the relevant MS3 spectra in negative ionization mode to those

of authentic aglycone standards.
aRT, retention time.
bWavelength at which the maximum fraction of light is absorbed.
cNegative ionization of a mass-ion.
dPresence of glucosyl/rhamnosyl moiety confirmed by naringinase assay.
eIdentified by direct comparison with standard.

Table 4 Characterization of acylated flavonol-glycosides detected at 340 nm

Peak RT (min)a kmax (nm)b [M�H]� (m/z)c Flavonol core Number and type of residues attached

25 29�2 258(sh), 268, 316 1079 Quercetin 2 p-Coumarate/rhamnosed 3 hexose

26 29�6 257(sh), 268, 317 1049 Quercetin 2 p-Coumarate/rhamnosed 1 pentose 2 hexose

27A 30�9 268, 317 1063 Quercetin 3 p-Coumarate/rhamnosed 2 hexose

27B 1063 Kaempferol 2 p-Coumarate/rhamnosed 3 hexose

28A 31�1 268, 317 1033 Quercetin 3 p-Coumarate/rhamnosed 1 pentose 1 hexose

28B 1033 Kaempferol 2 p-Coumarate/rhamnosed 1 pentose 2 hexose

sh, peak shoulder.
aRT, retention time.
bWavelength at which the maximum fraction of light is absorbed.
cNegative ionization of a mass-ion.
dAt least one is p-coumarate.
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prominence for peak 8A (Fig. 6b), which represented caf-
feine (Table 2). Examining the peak matrix from the
340 nm chromatograms, the H samples were again
highly variable between sites but were distinct from
infected samples (Fig. 5b). Each disease stage exhibited
distinctive clustering that indicated that changes in flavo-
noids were prominent as infected leaves passed from S1
to S2. Plotting the DF1 loading vectors suggested that no
single peak was a major source of variation between

healthy and disease stage samples. However, peaks 17,
18 and 21 made the greatest contribution to variation.
To more easily view metabolite changes as blister blight

developed, mean values are given in Tables S1 and S2
where differences were tested for significance. Peak areas
and mean fold differences at different disease stages over
H controls are displayed as heat maps (Fig. 6). Analyses
of variation within replicates (here equivalent to samples
from different sites) indicated that only on a single occa-

(a) (b)

(c) (d)

Figure 5 Infection stage-specific changes in metabolites detected in UV chromatograms at 280/340 nm from samples of tea leaves infected with

blister blight. The areas of each designated peak (see Fig. 4) from HPLC-PDA (photodiode array) scans at (a) 280 nm and at (c) 340 nm were

derived. Discriminant function analysis (DFA) of peak areas in spectra from healthy and tea blister infected tea leaves at designated infection stages

H = healthy, S1 = stage 1, S2 = stage 2 and S3 = stage 3 were derived. DFA models were based on (a) six principal components (PC) explaining

97�45% of total variation, and (c) six PC explaining 95�24% of the total variation. The mean values are given for each class as a cross around which

90 and 95% confidence circles are shown. Associated with each DFA are loading plots for the 280 nm chromatogram (b) and for the 340 nm

chromatogram (d) showing the relative importance (eigenvalues) of each peak in deriving the separations shown along each Discriminant Function

1 (DF1) axis.

(a) (b)

Figure 6 Heat map of changes in

metabolites detected in UV chromatograms

at 280/340 nm. Mean fold differences

between healthy and tea blister infection

stage 1 (S1), stage 2 (S2) and stage 3 (S3)

derived for peaks absorbing at (a) 280 and

(b) 340 nm are displayed using a heat map

and compared by hierarchical cluster

analyses.
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sion were mean differences significant, again suggesting
the reproducibility of the sampling approach. For the cat-
echin class (metabolites detected at 280 nm), major
increases following infection were suggested from the heat
map (Fig. 6a), of which increases in gallate (peak 1), cate-
chin (peak 4), epigallocatechin (peak 5), epicatechin (peak
7) and epi/gallocatechin methylgallate (peak 9) were sig-
nificant (Table S1). Of the apparent reductions in metab-
olite content only caffeine (peak 8A), the major source of
variation in Figure 5a, was significant. Similar assessment
of changes in metabolites detected at 340 nm suggested
both increases and decreases following infection with
E. vexan, as shown by the heat map (Fig. 6b). However,
statistically significant decreases were seen only with some
of the apigenin glycosides (peaks 14B and 16A) and the
myricetin glycosides (peaks 14A and 14C). Conversely,
significant increases were seen with isovitexin and querce-
tin-O-hexosides (peaks 17 and 21) a kaempferol hexoside
(peak 23) and co-eluting quercetin/kaempferol glucosides
(peak 28) (Table S2).

Changes in jasmonic acid and salicylic acid in
E. vexans-challenged tea

The discriminatory list (Table 1) suggested the reduction
of 137 m/z and 179 m/z metabolites that were suggested
to represent salicylic acid and jasmonic acid. It was also
noted that m/z 289 and m/z 293, tentatively identified as
12, 13(S)-epoxylinolenate and 3-oxo-2-(cis-20-pentenyl)-
cyclopentane-1-octanoate, are jasmonate intermediates.
To partially confirm these data, targeted assays for SA and
JA were made on the tea samples (Fig. 7). Healthy and
stage 1 samples both proved to be highly variable, with no
clear trends emerging. However, in the blister-exhibiting
stage 2 and necrotic stage 3 both SA and JA contents in
the samples were significantly (P < 0�001) reduced.

Discussion

Major threats to tea production come from climate
change, pests (Hazarika et al., 2009) and fungal patho-

gens such as E. vexans. Several problems hamper the
implementation of effective strategies to reduce losses
due to pathogens. Control of pest and pathogen most
often involves the application of biocides, but their effi-
cacy is dependent on proper use (Karthika & Muraleedh-
aran, 2009). An alternative means of improving field
resistance in tea, based on plant breeding, has been ham-
pered by tea’s domestication process. Tea is a naturally
outcrossing plant so that initial production from seed-
lings was highly genetically heterogeneous. This led to
the derivation of ‘orchard varieties’, which exhibited
considerable variation in yield, quality and suitability for
fermentation. There was then a shift to a focus on yield
as the main selection criterion and a move towards clo-
nal propagation, all of which has contributed to a rela-
tively poor genetic variation in the tea genotype (Green,
1971; Banerjee, 1992). The aim of the current study was
to assess how the tea metabolome responded to infection
with E. vexans. This could indicate key features of dis-
ease progression, which could include defeated host
defences. Crucially, these metabolomic assessments were
made with infected tea samples taken from a Darjeeling
plantation. To the authors’ knowledge, no tea–pathogen
interactions have been sampled previously under open
environmental conditions, so these investigations provide
a novel insight into the field responses of tea.
Fourier transform infrared spectroscopy is a well-estab-

lished method through which a snapshot of sample bio-
chemistry may be obtained (Griffiths, 1983). Analysis of
the data using DFA successfully identified variation within
the data sets that were associated with infection stage.
Thus, the sampling approach, based on the collection of
10 separate pools of tissue, when coupled with supervised
multivariate approaches (Goodacre et al., 2004), allowed
biologically relevant biochemical changes to be discerned.
Direct infusion ESI-MS was employed to tentatively iden-
tify metabolite changes. Discriminant function analysis
models suggested that three classes of metabolites
appeared to be prominent: gallic acid derivatives, caffeine
and flavonoids. Crucially, these metabolites were consis-
tent with those found in studies of green tea, epicatechin

Figure 7 Salicylic and jasmonic acid content

in blister blight-infected tea samples.

Measurements of salicylic acid and jasmonic

acid content were made of tea samples from

each stage of blister blight disease;

H = healthy; S1 = stage 1; S2 = stage 2; and

S3 = stage 3.

Plant Pathology (2015) 64, 1471–1483

1480 L. A. J. Mur et al.



with its gallate derivative and conjugates of quercetin and
kaempferol (Finger et al., 1992; Balentine et al., 1997;
Del Rio et al., 2004). Even more importantly, the
‘pseudo-time course’ sampling approach adopted (where
samples were classified according to disease stage) allowed
disease-responsive changes to be suggested. These could
reflect the deployment of an ultimately compromised
defence response that attempts to contain or delay the
progress of the pathogen. The green tea flavonols, epicate-
chin, epigallocatechin, epicatechin gallate, epigallocate-
chin gallate and gallic acid all have antioxidant activities
and are known to suppress lipid peroxidation (Dai et al.,
2008). Such properties in green tea have been suggested to
reduce the risk of cardiovascular disease and cancer (Yang
& Landau, 2000). The analyses in the present study
showed the accumulation of catechin-class metabolites,
which could be expected to limit lipid peroxidation, a
feature of several forms of disease development linked to
cell death (Mur et al., 2008).
A striking change occurring during disease progression

was a reduction in the accumulation of the alkaloid caf-
feine, which was one of the most prominent sources of
variation in the metabolomic analyses. Caffeine has well-
established antimicrobial activity, as demonstrated by
transgenic tobacco lines over-expressing three N-methyl-
transferases from the caffeine biosynthetic pathway
(CaXMT1, CaMXMT1 and CaDXMT1). The caffeine
content in these transgenic lines was in the region of 5 lg
per mg fresh weight and was able to repel tobacco cut-
worm (Spodoptera litura) larvae and also Tobacco mosaic
virus and Pseudomonas syringae (Kim & Sano, 2008).
Thus, suppression of caffeine accumulation, possibly
directly targeted by E. vexans pathogenic mechanisms,
could be a key feature in the establishment of tea blister
disease. The maintenance of caffeine levels could therefore
be a target for increasing field resistance to E. vexans.
Caffeine production has also been linked to production

of the major defence hormones SA and JA (Jia et al.,
2010). Therefore, it was of significance that, in the tar-
geted assays, SA and JA content was observed to be
greatly reduced by disease stage S2, a feature that will
undoubtedly compromise resistance to pathogens. Thus,
the SA–JA–caffeine defence network could be actively
targeted by growers through the exogenous use of chemi-
cals that initiate systemic acquired resistance (SAR) and
this may potentially be an effective mechanism of reduc-
ing losses due to tea blister. Indeed, SAR activators have
been shown to suppress the pathogenic fungi Colletotri-
chum theae-sinensis and Pestalotiopsis longiseta (Yoshida
et al., 2010) or the herbivorous mite Tetranychus kanza-
wai (Maeda & Ishiwari, 2012) on tea. It is also relevant
that some plant growth-promoting rhizobacteria (PGPR)
induce SAR (Yi et al., 2013) and there has been at least
one report that PGPRs are effective in reducing disease
in tea (Chakraborty & Sharma, 2007). Therefore, PGPR
that boost the SA–JA–caffeine pathway could be an alter-
native means to suppress tea blister disease in the field.
Significant increases in some glycosides of quercetin

and kaempherol were observed in infected tissue. Quer-

cetin is a potent antioxidant and has been extensively
used as a therapy intervention to prevent age-associated
diseases (Morel et al., 1994). If quercetin glycosides are
primarily acting as antioxidants in this interaction, this
effect could be reduced through the significant reduction
in the content of myricetin and apigenin glycosides
(Table S2), which also show antioxidant activity (Hayder
et al., 2008; Kandasamy & Rathinam, 2011). However,
quercetin, along with a range of other phenolics, can also
act as a pro-oxidant to induce the peroxidase (POX)-ca-
talysed production of H2O2; for example, through the
use of glutathione as a redox couple (Phenolic (Ph)
O + GSH + POX ? GS.+ PhOH; GS + GS�? GSSG�;
GSSG� + O2 ? O2

�; O2
�+ 2H+? H2O2) (Galati et al.,

1999). Thus, exogenous application of quercetin to Ara-
bidopsis was found to enhance resistance against the bac-
terial pathogen Pseudomonas syringae pv. tomato (Pst)
via an elevation of in planta H2O2 content and activa-
tion of salicylic mediated defences (Jia et al., 2010). In a
metabolomic study of grapevine (Vitis vinifera subsp.
vinifera), resistance exhibited by cultivar Regent to
downy and powdery mildew was tentatively linked to
quercetin-3-O-glucoside and a trans-feruloyl derivative
(Ali et al., 2009). In an in vitro screen of the antifungal
activity of phenolics produced by cultivated olive (Olea
europea) against Verticillium dahliae-induced wilt, it was
found that the aglycones quercetin and luteolin were the
most potent, with catechin exhibiting relatively poor
activity (Baidez et al., 2007). Equally, the importance of
glycosylation should not be underestimated as this aug-
ments flavonoid-influenced resistance by increasing the
stability of flavonols such as kaempferol and quercetin.
In flax, transgenic plants over-expressing glycosyltrans-
ferase (GT1) exhibited higher resistance to Fusarium
infection than wildtype plants (Lorenc-Kukula et al.,
2009). Based on these observations, it seems likely that
the increases in quercetin- and kaempferol-glycosides are
part of the plant’s resistance response.
Data from the metabolomics approach of this study,

coupled with the pseudo-time course sampling, have pro-
vided insights into the events associated with tea blister
disease progression and suggest possible agricultural tar-
gets to reduce yield losses. Thus, this work demonstrates
the validity of using metabolomic strategies in open envi-
ronments to monitor stress in the field.
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