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Glaciological and geomorphological map of 1 

Glacier Noir and Glacier Blanc, French Alps 2 

This is an Accepted Manuscript of an article published by Taylor & Francis Group in 3 

Journal of Maps on 17th June 2015, available online: 4 

http://www.tandfonline.com/doi/full/10.1080/17445647.2015.1054905  5 

Abstract 6 

This paper presents and describes a glaciological and geomorphological map of Glacier Noir and 7 

Glacier Blanc, French Alps. Glacier Noir is a debris-covered glacier and is adjacent to Glacier 8 

Blanc, a clean-ice (debris-free) glacier. The glaciological and geomorphological evolution of 9 

Glacier Blanc is well-known, but the evolution of Glacier Noir is poorly understood, as is the 10 

case for many debris-covered glaciers globally, despite their importance in a number of mountain 11 

ranges around the world (e.g. European and Southern Alps, the Himalayas and the Rockies). The 12 

accompanying map was created by manually digitising aerial ortho-images and historical 13 

georeferenced photographs from 1952-2013. The main glacial and geomorphological features of 14 

both glaciers were mapped including: debris cover, crevasses, moraines, hummocky terrain and 15 

scree areas.  Hydrological features (supra- and pro- glacial streams and meltwater ponds) were 16 

also mapped. The map illustrates the key differences between Glacier Noir and Glacier Blanc, 17 

and is important for understanding future glaciological and geomorphological changes. 18 
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1. Introduction 21 

Mountain glaciers are currently contributing ~27 % of the observed global sea level rise with a 22 

large uncertainty of more than 20% (Jacob et al., 2012). Although the contribution of debris-free 23 

or clean-ice glaciers is well-known, debris-covered glaciers and their contribution are still poorly 24 

understood. Debris-covered, or debris-mantled glaciers, are those where part of the surface of 25 

the ablation area, is covered by a layer of rock debris including dust, ash and boulders of various 26 

sizes (Hambrey et al., 2008, Cogley et al., 2011, Singh et al., 2011).  27 

Debris-covered glaciers represent ~5% of all mountain glaciers worldwide (WGMS and NSIDC, 28 

1989, updated 2012) and the rate of sea-level rise attributed to them differs from clean-ice 29 

glaciers due to the insulating effect of the debris layer (Reznichenko et al., 2010). A better 30 

understanding of long-term glaciological processes on debris-covered glaciers is needed to 31 

reduce the uncertainty of their contribution to global sea level.   32 

The debris layer on debris-covered glaciers derives from a number of sources, most notably 33 

valley-side rockfalls (Deline and Kirkbride, 2009). These rockfalls can be significant at the 34 

glacier-scale, such as is the case for the Black Rapids Glaciers (Shugar et al., 2012) and the 35 

Sherman Glacier (Marangunic, 1972) rock avalanches. These rock avalanches form specific 36 

deposits characterised by the regular thickness of the debris layer and angular grains (Hewitt, 37 

2009). Other sources of debris include collapsing lateral moraines (Hambrey and Ehrmann, 38 

2004) and debris elevated from subglacial and englacial positions to supraglacial positions 39 

(Goodsell et al., 2005). The debris from these latter sources is more heterogeneous and may 40 

contain a mix of sub-angular to sub-rounded grains. 41 

The supply of surface debris to the glacier’s terminus has great control over the 42 

geomorphological processes occurring on and adjacent to that glacier (Reznichenko et al., 2011) 43 

and often results in the formation of very large geomorphological features, such as the Waiho 44 
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Loop moraine in the Southern Alps, New Zealand (Tovar et al., 2008). From a glaciological 45 

point of view, the elevation of the snout of a debris-covered glacier would be lower than a 46 

similar clean-ice glacier. Specific glaciological and geomorphological dynamics of a debris-47 

covered glacier are beginning to be considered in the interpretation of glaciated landscape and 48 

landforms (Reznichenko et al., 2012, Carrasco et al., 2013). Accurate interpretation and 49 

attribution of features to debris-covered glaciers can lead to re-interpretation of palaeo-climatic 50 

conditions contributing to their formation (Shulmeister et al., 2009, Vacco et al., 2010). 51 

Here, a detailed map is presented in order to provide the basis for investigating the 52 

geomorphological context of, and relationships between, a debris-covered glacier (Glacier Noir) 53 

and an adjacent and morphometrically-similar clean-ice glacier (Glacier Blanc). This map will also 54 

help the re-interpretation of palaeo-landforms where debris-covered glaciers may have 55 

contributed to their formation. 56 

2. Study site 57 

Located in the Haute Vallée de St Pierre in the “Écrins” National Park (Parc National des 58 

Écrins) in the French Alps (Figure 1), Glacier Noir is a 4.5 km long debris-covered glacier with a 59 

surface area of 3.8 km². In contrast, the surface of adjacent Glacier Blanc is debris-free. Both 60 

glaciers were confluent in the Pré de Madame Carle field during the Little Ice Age (LIA, 16th to 61 

mid-19th century, [Mann, 2002]). Pré de Madame Carle was a grazing field before it was 62 

transformed into an outwash plain by the advance of the glacier during the LIA (Letreguilly and 63 

Reynaud, 1989).  64 

Glacier Noir (44°54’58” N, 6°23’03” E) has an elevation range of 2200 to 3600 m and comprises 65 

a main trunk (2200 to 2900 m in elevation) of 1.1 km² (2.6 km long), orientated WSW-ENE with 66 

a single tributary (2500 to 3600 m in elevation) of 2.7 km² (3.2 km long), orientated SSW-NNE. 67 
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The tributary is now an independent glacier - named here as Glacier Noir Sud - having separated 68 

from the main glacier between 2009 and 2013. 69 

Glacier Blanc (44°56’25” N, 6°22’42” E) has an elevation range of 2500 to 4000 m and is 5.5 km 70 

long (4.8 km²), being orientated SW-NE in its upper section (3050 to 4000 m in elevation), 71 

which is relatively flat and then NW-SE in the steep crevassed area approaching its terminus 72 

(2500 to 3050 m in elevation). This main trunk is fed by six individual accumulation basins 73 

(cirques). 74 

Both glaciers have attracted previous glaciological research, with Glacier Blanc being more 75 

widely studied (Allix, 1922, Allix, 1929, Vivian, 1967a, Letreguilly and Reynaud, 1989, Reynaud 76 

and Vincent, 2000, Rabatel et al., 2002, Reynaud and Vincent, 2002, Thibert et al., 2005, Rabatel 77 

et al., 2008, Rabatel et al., 2013), than Glacier Noir (Allix, 1922, Allix, 1929, Vivian, 1967b, 78 

Cossart et al., 2006, Stott and Mount, 2007, Mount and Stott, 2008). The most recent studies 79 

have focused on sediment transport in the proglacial stream at Glacier Noir and on the variation 80 

of the equilibrium line altitude (ELA) at Glacier Blanc and its determination by optical remote 81 

sensing. 82 

3. Data and methods 83 

3.1. Data sources 84 

Mapping was conducted by manually digitising aerial ortho-images (six RGB tiles of 5 km by 5 85 

km with a 50 cm resolution) using QGIS software (Section 3.2). The National Institute of 86 

Geographic and Forestry Information (IGN) provided the ortho-images. These images are part 87 

of the French national database, ©BDORTHO, and were taken during summer 2013.  88 

The toponymy comes from the IGN topographical map (Meije-Pelvoux 3436 ET), which is 89 

included in the database ©SCAN25. The scale of the map is 1:25000.   90 
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The dates of formation of the moraines are from various sources: 91 

- A public engagement booklet edited by the “Écrins” National Park (Écrins, 2005) on the 92 

glaciers present in the park. 93 

- Unpublished historical and archive documents owned by the “Écrins” National Park. 94 

- Archived ortho-images and georeferenced aerial photographs extracted from the 95 

historical IGN database. This database is the compilation of previous versions of the 96 

©BDORTHO, grouping aerial scenes from 1952 to 2009. 97 

The archived ortho-images were also used for the photo-interpretation of moraines, which is 98 

sensitive to the position of shadows (Otto and Smith, 2013).  99 

The interpretation of the ortho-images was verified and refined by direct field observation 100 

between mid-August and mid-September 2014, particularly where the ortho-images have 101 

shadowed areas or other areas where a misinterpretation is possible. All ground-based 102 

photographs presented in this article and on the map were taken during the same period. 103 

3.2. Software and digitising tools 104 

All mapping and digitising was conducted in ©QGIS software (QGIS, 2014), a free and open 105 

source geographic information system. Multiple versionsof QGIS have been used (see Software 106 

Section below) as well as the updated versions of the following plugins: 107 

- autoSaver plugin, for automatic saves of the work in progress 108 

- Digitizing Tools plugin, for additional digitising options 109 

- GdalTools plugin, for elevation data extraction 110 

- Georeferencer GDAL plugin, for the georeferencing of the aerial images 111 

- GPS Tools plugin, for the import of field data 112 

- Multipart Split plugin, for better management of multiple features in the same layer 113 
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The map was designed using the composer module of QGIS. The ground-based photographs 114 

presented on the map were modified using ©Adobe Illustrator CS2.  115 

The digitisation of the ortho-images was conducted within a scale range of 1:1000 to 1:10000, 116 

allowing a global view of each feature across the study site’s large altitudinal range. 117 

3.3. Map design 118 

3.3.1. General principles 119 

The mapped features are divided into four themes with additional background data: glaciological, 120 

geomorphological, hydrological and anthropogenic. The different colour schemes used are 121 

theme dependent. Glaciological features are depicted using only black and white colours. 122 

Geomorphological features are depicted in brown to yellow colours.In addition, vegetated 123 

features are presented in dark green. Hydrological features (ponds and streams) are depicted 124 

using different hues of blue. Although not essential to the map’s principal purpose, 125 

anthropogenic features which provide important context (e.g. buildings) are depicted in grey. To 126 

bring contrast to the map, the background contour lines are depicted in light green. 127 

3.3.2. Specific digitising cases 128 

Moraines have been digitised only as moraine ridges. Ridges are the best indicators of the 129 

position of a moraine and so help to understand the retreat history of glaciers. The extent of 130 

moraines has not been digitised to not overload the map with more polygons. From field 131 

observations, crevasses and crevasse traces represent the large majority of the structural features 132 

on Glacier Blanc and Glacier Noir. However, due to the ortho-image resolution and the heavily 133 

disturbed area in the curve of Glacier Blanc, the recognition of foliations and/or lineations was  134 

particularly difficult, and consequently, some might have been digitised as crevasses.  135 
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In addition to digitising active and relict meltwater ponds, their areas of topographical influence 136 

(see Section 4.3.1) was also  mapped as separate features because of their importance in the 137 

melting of debris-covered glaciers (Sakai et al., 2000). 138 

4. Description of the mapped features 139 

4.1. Glaciological features 140 

4.1.1. Glacier outlines 141 

Glaciers were identified using the following definition: “mass of ice presenting active flow 142 

pattern” which is a simplified version of the GLIMS definition (Rau et al., 2005). This definition 143 

was used as a guide to outline digitization of both glaciers, although defining the lateral and 144 

frontal boundaries was easier for Glacier Blanc (i.e., between clean ice and proglacial debris) than 145 

for the ablation area of Glacier Noir, where the debris cover makes the identification of the 146 

glacier limit (Figure 2) and flow patterns more difficult (Cogley et al., 2011; Paul et al., 2013). 147 

4.1.2. Debris cover 148 

For this map, we defined debris cover as where there is no clean ice visible. The precise limits of 149 

debris-covered areas are difficult to define because of the continuous variations in debris 150 

concentration that are encountered in the field. In addition, the debris cover must have been 151 

persistent, i.e. appearing in images separated by at least one year. By these criteria, no debris 152 

cover was mapped on Glacier Blanc because the debris cover areas are temporary and localised, 153 

and are rapidly buried by snow in the accumulation area, or removed from the surface through 154 

crevasses in the ablation area. 155 

4.1.3. Crevasses 156 

Crevasses form when the extension strain exceeds a critical threshold (Vaughan, 1993) resulting 157 

in fields of fractures with distinctive lengths and orientations. This fractured area is particularly 158 
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visible on the lower section of Glacier Blanc where the glacier changes direction and becomes 159 

steeper. 160 

 On Glacier Noir, most of the crevasses are filled by debris that leaves only traces of the 161 

crevasses visible on the surface. These crevasse traces create only low relief perturbations and are 162 

consequently not visible by direct observation in the field. 163 

4.1.4. Nunataks and bare-rock areas 164 

Nunataks are areas of glaciers where the bedrock is exposed (Singh et al., 2011). Nunataks and 165 

other bare-rock areas are mainly present on the south-facing side of Glacier Blanc. The locations 166 

of these rock exposures vary, as they are dependent on the ice thickness and the ice flow. 167 

Consequently, the features mapped are only those present when the aerial images were taken in 168 

2013, as for streams (Section 4.3.2). 169 

4.2. Geomorphological features 170 

These features are all related to the former presence of a glacier. 171 

4.2.1. Moraines 172 

Moraines are landforms built by the deposition by glaciers of glacial sediments (Singh et al., 173 

2011). There are many types of moraines (Bennett and Glasser, 2009); around Glacier Noir and 174 

Glacier Blanc these are mostly frontal and lateral moraines and were mapped accordingly. 175 

During the LIA, Glacier Noir and Glacier Blanc had a common terminus and produced a large 176 

moraine, like many other alpine glaciers. This LIA frontal moraine has been partially washed 177 

away by the proglacial stream, and currently, the only large LIA moraine intact is the lateral 178 

moraine of Glacier Noir. This moraine is recognisable because of its large size compared to the 179 

surrounding moraines (Figure 3). 180 
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4.2.2. Gullies 181 

Gullies are formed in areas of unconsolidated sediment where the runoff from rain and 182 

snowmelt creates micro-valleys. In the study site, most of the gullies are on the ice-proximal 183 

flank of moraines.  184 

The process of gullying is an active phenomenon (Figure 4) and was observed during heavy 185 

rainfall events during the fieldwork period. This process contributes widely to the erosion of 186 

moraines. 187 

4.2.3. Scree areas 188 

According to Singh et al. (2011), scree material (also called debris) is “Unconsolidated sediment, 189 

larger than 1 mm, of angular or rounded angular fragments of boulders (clasts), predominantly 190 

originating from physical weathering”. Scree areas are steep zones of scree material. All the active 191 

scree areas around Glacier Noir and Glacier Blanc face SW to SE. Scree clast size is variable, 192 

ranging from pebble to boulder-size.  193 

Three types of scree areas were mapped: 194 

- Active scree areas where traces of rock falls are visible and where regular rock falls have 195 

been observed in the field. They are mainly located around the Glacier Noir catchment. 196 

- Stabilized scree areas without traces of active rock falls located on the eastern side of the 197 

terminus of Glacier Blanc and above the outwash plain. 198 

- Vegetated scree areas near the entrance of Haute Vallée de St-Pierre. 199 

Figure 5 presents the geological context for the scree production. Production appears to be 200 

independent of lithology (gneiss or granite) and to be primarily driven by the slope orientation 201 

(Nagai et al., 2013).  202 
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4.2.4. Hummocky terrain 203 

On the map, hummocky terrain (Figure 6) designates an assemblage of debris and glacial 204 

sediment pits and mounds including small, possibly ice-cored moraines (Singh et al., 2011).  205 

The hummocky terrain is located in the proglacial area of both glaciers and in a former lower 206 

accumulation cirque of Glacier Noir Sud. Like gullies, these areas are particularly active and their 207 

morphology evolves closely with the variation of the proglacial streams, especially during heavy 208 

rainfall events.  209 

4.2.5. Bedrock with incised channels 210 

Large areas of bedrock (gneiss) with incised channels are visible in front of Glacier Blanc, 211 

revealed as the glacier receded. Field observations confirm that some of the channels have 212 

subglacial origins and are probably Nye channels. Nye channels (or N-Channels) are subglacial 213 

channels directly carved into bedrock by meltwater discharge (Nye, 1973). .Most of the visible 214 

channels are now abandoned except for those occupied by the glacier's main proglacial streams. 215 

4.2.6. Outwash plain 216 

An outwash plain is a large flat area covered with well-sorted glaciofluvial sediment. Braided 217 

rivers often develop widely in outwash plains, for example in Iceland where they are called 218 

“sandur” because of the predominance of sand- and gravel-sized sediment across such plains. 219 

The proglacial streams of Glacier Noir and Glacier Blanc converge in the upper part of the 220 

outwash plain to form a dynamic braided stream system as shown in Figure 7 at two different 221 

dates. 222 

4.3. Hydrological features 223 

4.3.1.  Meltwater ponds 224 
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Meltwater ponds are depressions on the ice surface that are filled with water released by the melt 225 

of snow and ice. Numerous, often large, supraglacial meltwater ponds are a common feature on 226 

debris-covered glaciers. Indeed, such ponds form the basis of one key classification of the 227 

morphological evolution of debris-covered glaciers (Benn et al., 2012).  228 

Meltwater ponds form by differential melting between debris-covered and clean ice areas. 229 

Ablation of the latter is faster than the former, creating a depression – here called the area of 230 

topographical influence – where water can be stored. This process involves a positive feedback 231 

loop where the edge of the depression becomes steeper and so less debris-covered, inducing 232 

further melting and consequently steepening of the side. This feedback loop gradually extends 233 

the area of topographic influence of meltwater ponds.  234 

However, these meltwater ponds are eventually drained supraglacially via a channel or englacially 235 

via crevasses. The drainage process creates relict/trace ponds (Figure 8) where the difference 236 

between the pond itself and the area of topographic influence is still visible. 237 

4.3.2. Streams 238 

Water streams on the study site are produced by the melt of glaciers. They are found in two 239 

different positions: on the surface (supraglacial streams) and in front (proglacial streams) of both 240 

glaciers. Due to the dynamics (water discharge, deposition of sediment) and ephemeral nature of 241 

proglacial streams, especially in the outwash plain, only principal active channels were mapped, 242 

illustrating the situation at the time the aerial images were acquired. 243 

Supraglacial streams could only be observed on the debris-covered surface of Glacier Noir. Most 244 

of the mapped streams were restricted to the ablation area. No visual expression of supraglacial 245 

streams was found on aerial images of Glacier Blanc despite their presence in the field (Figure 9). 246 

Therefore, supraglacial streams were not mapped on Glacier Blanc. 247 



12 
 

12 
 

4.4. Anthropogenic features and elevation data 248 

The Glacier Noir and Glacier Blanc site is a tourist attraction in the “Écrins” National Park and 249 

so buildings (three refuges, one visitor centre and public restroom facilities), roads and hiking 250 

trails were additionally mapped to provide context. 251 

Contour lines from the IGN 1998 digital elevation model (DEM) were added as background 252 

information. To clarify the topographical context of the map, arêtes lines were added on the 253 

DEM as well as some altitude points.  254 

5. Conclusion 255 

We describe here a new glaciological and geomorphological map of Glacier Noir and Glacier 256 

Blanc in the French Alps. The mapped features were divided into four different themes 257 

(glaciological, geomorphological, hydrological and anthropogenic) to facilitate the understanding 258 

of the map and future studies and comparisons. However, these four themes interact closely.  259 

Glacier Noir and Glacier Blanc are the main actors of sediment transport and deposition, 260 

creating a range of geomorphological features, from sand layers in the proglacial area to LIA 261 

moraines. The streams are, on the contrary, the main actors of erosion on the surface of Glacier 262 

Noir, acting to transfer sediment of the debris layer from the top of the glacier to the terminus, 263 

as well as eroding the proglacial terrain of both glaciers to create an outwash plain further 264 

downstream. Meltwater ponds are the perfect example of the interaction of glacial (melting of 265 

debris-free ice cliffs), geomorphological (back wasting of debris from the layer) and hydrological 266 

(storage and drainage of significant quantities of water) processes. Finally, anthropogenic features 267 

such as roads and bridges modify erosional/depositional patterns in a complex way, especially in 268 

the outwash plain.  269 
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Understanding these processes and their interactions is part of a larger research project on the 270 

impact of variations in supraglacial debris cover on glacier evolution and dynamic response to 271 

climatic forcing.  272 
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Figures 390 

 391 

Figure 1: Overview map presenting the position of the study site (red rectangle) in “Écrins” 392 

National Park (solid black line). Background map: IGN ©SCANREGIONAL. Inset: location 393 

(red marker) of the study site in the European Alps. Background image: ©NASA. 394 
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 395 

Figure 2: Extract of 2013 orthophotograph illustrating the difficulties in determining the edge of 396 

Glacier Noir, especially in the area between the northern border and the LIA moraine. 397 



18 
 

18 
 

 398 

Figure 3: Glacier Noir (white dotted line) and its LIA moraine (black dashed line). The LIA 399 

moraine is the largest geomorphological feature i the study site and its ridge is constantly ~50-60 400 

m above the surface of the glacier from the terminus to the headwall. 401 
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 402 

Figure 4: The new gullies (white arrows) created during a heavy rainfall event (26/08/2014) on 403 

the southern side of the LIA moraine of Glacier Noir. 404 
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 405 

Figure 5: Geological map of the study site with superimposed scree areas. Geological variations 406 

(mainly gneiss except for Glacier Noir Sud with granite) in the study area cannot explain the 407 

origin of the scree areas. Slope orientation is the main factor in the scree production. Adapted 408 

from Bureau de Recherche Géologiques et Minières (BRGM) maps 0822N and 0823N. 409 
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 410 

Figure 6: Hummocky terrain in the proglacial area of Glacier Blanc. The hummocky moraine 411 

(green) are easily eroded by the proglacial stream. The frontal moraine (white) marks the lower 412 

limit of this hummocky area. 413 
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 415 

Figure 7: Outwash plain of Glacier Noir and Glacier Blanc. As a consequence of the heavy 416 

rainfall event of 26th August 2014, the proglacial stream shifted from the northern edge of the 417 

outwash plain to the southern edge, illustrating this highly dynamic environment. 418 
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 420 

Figure 8: Relict meltwater pond and its area of influence at the terminus of Glacier Noir. The 421 

bottom of this pond collapsed in a subglacial channel between 2013 and 2014. 422 
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 424 

Figure 9: Various meltwater channels in the study area. (A) Active meltwater channel just below 425 

the accumulation area of Glacier Noir. (B) Trace of meltwater channels in the ablation area of 426 

Glacier Noir. (C) Active meltwater channels on Glacier Blanc highlighted by pink dye. Note the 427 

difference in scale between these images. 428 




