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ABSTRACT 

 

We investigate the n-type metal oxide Tin (IV) oxide (SnO2), as an electron injection and 

transport layer in hybrid polymer light-emitting diodes (HyLEDs). SnO2 is air stable and bio-

safe, with high optical transparency and electrical conductivity, and with a deep valence band 

energy, making it highly suitable for such applications. Results reveal that SnO2 is effective 

as an electron injecting cathode material, when a thin hole-blocking interlayer of Cs2CO3 or 

Ba(OH)2 is coated on it. Devices are optimized with respect to injection-layer thickness and 

hole-blocking layer configuration, with high performance metrics (current efficiencies of 20 

cd/A, external quantum efficiencies of 6.5%) being demonstrated in the device with Ba(OH)2 

as the inorganic interlayer in the hybrid architecture. Also, we characterize thin-films of 

spray-pyrolysis deposited SnO2, as compared with the commonly used interlayer material 

ZnO, in terms of film morphology and interfacial photophysics.  
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1. INTRODUCTION 

 

In hybrid polymer light emitting diodes (HyLEDs), n-type metal-oxides are employed as 

electron injecting layers to avoid the use of low work function metals, thus avoiding the 

requirement for rigorous encapsulation, and thereby simplifying the production process.  

Amongst the wide range of available n-type transition metal oxides, tin(IV) oxide is air 

stable, bio-safe, and exhibits both high optical transparency in the visible range and high 

electrical conductivity, making it an attractive potential electrode material for HyLEDs.
[1,2]

  

Our work reports an innovative use of SnO2 as an electron injection layer for these devices, 

which demonstrate high performance metrics, in combination with the other desirable 

features and properties of this material, as described. 

The very first hybrid polymer-LEDs (PLEDs) utilized TiO2 as the electron injection 

and transport layer, while molybdenum oxide (MoO3) was chosen as the hole injection and 

transport layer, with F8BT (Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-

(benzo[2,1,3]thiadiazol-4,8-diyl)]) as the emissive layer.
[3]

 This TiO2/F8BT/MoO3-based 

device was the first encapsulation-free device which could be operated in air, and exhibited a 

lower threshold voltage for current turn-on and similar luminance, compared to conventional 

PLEDs. The current efficiency was low, however, due to the high current density of holes, 

which was caused by Ohmic-like injection at the polymer/MoO3 interface. In this device, the 

hole current leaked through the n-type metal oxide at the cathode without recombination with 

electrons, as there was a high barrier for electron injection and also a lack of an effective 

hole-blocking layer. In the studies which followed, attention has then been paid to finding a 

more suitable n-type metal-oxide for barrier-free electron injection. Bolink et al.
[4]

 utilized 

the same HyLED architecture, but used ZnO as the electron injection and transport layer 

instead of TiO2, achieving a higher brightness. However, the efficiency of this ZnO-based 

device was still relatively low (~1.3 cd/A). By inserting of a thin layer of TFB (poly(9,9-

dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) in between F8BT and MoO3, the 

luminance efficiency was increased to 2.8 cd/A, as shown by Kabra et al.
[5]

 This 

improvement was attributed to better charge-carrier balance, with TFB acting as a hole trap. 

However, this use of a double polymer layer makes the fabrication complicated; a more 

elegant approach is to explore n-type transition metal-oxides, with a high conduction band for 

electron injection and a deep valence band to block holes at the interface of n-type metal 

oxide/polymer film. The metal oxide ZrO2 was used in F8BT-based HyLEDs as both the 
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electron injection and hole blocking layer, since it has a conduction band edge of -3 eV and 

deep valence band energy of -8.7 eV.
[6]

 The device using ZrO2 as the electron injection layer 

showed a very high brightness of ~26000 cd/m
2
 and a luminance efficiency of 2.7 cd/A. The 

study of other two n-type metal oxides with deep valence bands, MgO (-10 eV) and HfO2 (-

8.7 eV),
[7]

 revealed that the use of these two n-type metal oxides can block holes and reduce 

the current density. The luminance is increased more in the case of using MgO than HfO2 as a 

consequence of MgO having deeper valence band energy. However, the luminance efficiency 

(2.4 cd/A for HfO2, and 3.3 cd/A for MgO2 based HyLEDs) is not significantly increased, 

suggesting the deep valence band is not necessarily able to ensure highly efficient exciton 

recombination. The introduction of caesium carbonate (Cs2CO3) as an electron injection and 

hole-blocking layer was a breakthrough in polymer light-emitting diodes.
[8-10] 

Morii et al. 

showed a high current efficiency of 7 cd/A with Cs2CO3 thermally deposited between TiO2 

and F8BT layers.
[11]

 Bolink et al. used a well-known stable polymer, namely “Super yellow” 

(SY), in the hybrid architecture ITO/ZnO/Cs2CO3/SY/MoO3/Au, and achieved an efficiency 

of 8 cd/A. Evidently, the device did not show any electroluminescence without the Cs2CO3 

layer, and this observation emphasizes the importance of the role of a hole-blocking layer in a 

device with Ohmic injection for holes.
[12]

 The study of the device with an architecture of 

ITO/ZnO/Cs2CO3/F8BT/MoO3/Au with a very thick polymer active layer
[13]

 has achieved the 

highest efficiency of ~23 cd/A which is one order of magnitude higher than the state of the 

art PLEDs using F8BT and represents a milestone in single layer polymer light-emitting 

diodes. The further exploration of hole blocking layers lead to a surprisingly high efficiency 

of ~28 cd/A with Ba(OH)2 as inorganic interlayer, instead of Cs2CO3.
[14] 

However, the same 

study also revealed that there is an imbalance between the opposite charges in this structure 

(deficiency of electrons), hence leaving scope for further improvement and development of 

such hybrid devices. 

In the present work, spray-pyrolysis coated SnO2 is studied as a transparent electron 

injection layer in HyLED structures. The characteristic flat-band energy levels of this 

material suggest that it should function well in this role; a bandgap energy of 3.7–3.8 eV, 

with a measured valence band energy reported as being -8.5 eV.
[15]

 Devices are optimized 

with respect to injection-layer thickness and hole-blocking layer configuration, with high 

performance metrics (current efficiencies of 20 cd/A, external quantum efficiencies of 6.5%) 

being demonstrated. Also, the characteristics of the as-deposited films, in terms of film 
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morphology and interfacial photophysics, are explored, allowing comparison with the 

commonly used interlayer material ZnO. 

 

 2. EXPERIMENTAL DETAILS 

 

 SnO2 thin films, as produced via spray-deposition methods, have already received 

some interest and application, particularly in the context of charge transport media in dye-

sensitized solar cells.
[16,17]

 Following similar protocols, the colorless liquid Tin (IV) chloride, 

SnCl4, is used as the precursor to prepare Tin (IV) oxide, SnO2. 250 μl or 300 μl of SnCl4 is 

mixed with 5ml ethanol in an amber vial and the solution is deposited by spray pyrolysis onto 

indium-tin oxide ITO substrates, via a spray gun (atomizer) using oxygen as propellant.
[18] 

The distance between the atomizer and the substrate is approximately 25 cm and the substrate 

temperature is controlled at ~ 470-500ºC.  According to the literature, an SnO2 film is 

obtained for temperatures between 420 to 500ºC and has high optical transmission in visible 

range and a high electrical conductivity.
[19]

 The simple reaction to produce SnO2 is as 

follows: 

SnCl4 + 2H2O → SnO2 + HCl.      (1) 

Following the deposition of SnO2, the substrates are heated for a further 15 minutes and then 

cooled, with Cs2CO3 or Ba(OH)2 and then F8BT spin-coated sequentially on the surface of 

SnO2, followed by annealing at 155ºC under nitrogen flow for 45 minutes. The substrates are 

then transferred to the vacuum chamber and 10nm of MoO3 and 70nm of gold deposited by 

thermal evaporation under a vacuum. Then the devices are then encapsulated and dried for 12 

hours. The thickness of SnO2 is ~50 nm when 250 μl precursor of SnCl4 is used, and 70 nm 

when 300 μl is used, as confirmed by profilometry; the thickness of the Cs2CO3 and Ba(OH)2 

interlayers is ~7 nm. The film thickness of F8BT is between 1000nm and 1200 nm, with the 

resultant device architecture illustrated in Figure 1. In the subsequent device 

characterizations, the F8BT film thickness was fixed at around 1 μm, which has been found 

in our previous work to be optimum for the device performance.
[13,20]

 

 

3. RESULTS  

3.1 LED characteristics with Ba(OH)2 as inorganic interlayer. 
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Figure 2(a) shows the characteristics of current density and luminance versus 

operating voltage (J-V-L) of devices with the structure ITO/SnO2/ Ba(OH)2/F8BT/MoO3/Au 

where the film thicknesses of SnO2 are 50nm and 70nm respectively.  Both devices show a 

very low current turn-on voltage and suggest a hole current leakage at sub-voltage as MoO3 

forms an Ohmic contact for hole injection.
[21]

  For both devices, the electroluminescence turns 

on at a higher voltages (above 3 V), at which point the current transport changes from 

unipolar to ambipolar, as is evidenced by the knee in the J-V curve at around 3V. For devices 

with an SnO2 thickness of 70 nm, the maximal current efficiency of 20.0 cd/A is achieved 

and corresponds to an EQE of 6.5%, as indicated in Table 1, which is lower than the case 

with ZnO as electron injection layer (~23 cd/A).
[13]

 In the case of SnO2 thickness of 50nm, 

the current density is much larger than for devices with a 70 nm thick layer and the 

luminance turn-on voltage is around 3V. The luminance is seen to increase steadily, reaching 

more than 10000 cd/m
2
 at 16 V, with a maximal current efficiency of 17.4 cd/A 

corresponding to an EQE of 4.5%. The current turn-on bias is similar in both cases, as is 

consistent with this current being a unipolar hole current, which is only dependent on the 

hole-injection and -blocking layer. With the increase of the bias, the current density of the 

diode with the thinner SnO2 increases more steeply than the diode with thicker SnO2. 

Although the current efficiency of the device with a thinner SnO2 layer is slightly lower, the 

absolute luminance is much higher and reaches 1000cd/m
2
 at 9.4V. Both diodes reach 

maximal efficiency at ~16V.  

3.2 LED characteristics with Ba(OH)2 as inorganic interlayer. 

Although the device with SnO2 as the electron injection layer has a lower current 

efficiency compared to the device using ZnO as previously reported,
[11] 

the device efficiency 

is still significantly improved compared to other n-type metals such as TiO2, HfO2, MgO and 

ZrO2 etc.
[3,5-7,11]

 It is well established that Cs2CO3 as hole blocking layer plays a decisive role 

in the enhancement of the device performance in the novel hybrid structure, since Cs2CO3 

dopes the polymer (to n-type) resulting in improved electron injection.
[22,23]

 This doping is 

additionally verified by experiments, when Cs2CO3 is annealed prior to the deposition of 

F8BT there is no electroluminescence at all from the HyLEDs.
[13,24]

 To compare the relative 

efficacies of Cs2CO3 and Ba(OH)2 as the inorganic interlayer, we therefore also fabricated 

devices with Cs2CO3 coated on SnO2. 
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Figure 2(b) allows a direct comparison of J-V-L characteristics of the devices with 

Ba(OH)2 and Cs2CO3 as hole blocking layer. It is clear there are two domains of current 

density versus voltage in both device structures; however, the two domains are more clearly 

differentiated in the diode using Cs2CO3, which also has an earlier current onset without 

accompanying luminescence. It is likely that the hole-blocking effect is less efficient in the 

case of Cs2CO3 and leads to a hole current leakage at low voltages due to Ohmic injection of 

holes at the MoO3/F8BT interface. The luminance turn-on voltage is similar for both devices, 

~3V, while the current and luminance in the device with Cs2CO3 increases more rapidly than 

the device with Ba(OH)2 and reaches a maximum luminance at 12 V. The lower current 

efficiency of the Cs2CO3-based device is likely due to inefficient charge recombination, 

perhaps related to exciton quenching at the metal-oxide/Cs2CO3/F8BT interface. Since 

Cs2CO3 intermixes with F8BT at the interface and consequently causes an improvement of 

electron injection accompanied by the introduction of defect sites, enhanced exciton 

quenching may be expected within the interfacial region of the device.
[22,23]

 The Ba
2+

 ions 

inherent in Ba(OH)2 are doubly charged and less easily doped into the polymer. This in turn 

results in fewer defects at the interface with the F8BT polymer, presumably leading to a 

better hole blocking effect. 
[14,25,26]

 

Whilst the efficiency of the device using Ba(OH)2 as hole-blocking layer is much 

higher than the device using caesium carbonate, the corresponding operating voltage is 

significantly higher. This might suggest a considerable barrier for electron injection but an 

improved hole blocking effect with Ba(OH)2. This mechanism is similar to that presented in 

reference [13]; the inorganic layer blocks holes at the interface with SnO2, and the resulting 

accumulation of holes promotes electron injection. The higher efficiency is also owing to the 

fact that the recombination zone is expanded into the polymer film, hence further away from 

the cathode at higher operating voltage, which results in reduced exciton quenching.  

 

3.3 Photophysical Study 

 

To gain a further insight into the role of the caesium carbonate and barium hydroxide 

interlayers in SnO2-based devices, measurements of photoluminescence quantum efficiency 

(PLQE) and fluorescence lifetime (by time correlated single-photon counting, or TCSPC) 

were carried out. The structure of the samples are quartz/SnO2/Cs2CO3/F8BT and 

quartz/SnO2/Ba(OH)2/F8BT. The polymer film thicknesses are 100nm for PLQE 
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measurement and 15nm for TCSPC measurements, which are sufficiently thin that photo-

generated excitons are in proximity with the SnO2 interface.  

 Figure 3 plots the photoluminescence (PL) intensity vs. time revealing the decay 

lifetime; the time-dependence is well-described by a mono-exponential decay, as summarized 

in Table 2. The fitted decay time for the interface of quartz/SnO2/Cs2CO3/F8BT is 0.91 ns, 

whilst it is 1.26 ns for that of quartz/Ba(OH)2/F8BT. These results suggest that both Cs2CO3 

and Ba(OH)2 interlayers cause quenching of photoluminescence at the polymer interface, as 

the decay time of the quartz/F8BT reference sample is measured to be 1.8 ns. However, this 

quenching is faster for the Cs2CO3 interlayer, as compared to Ba(OH)2. The PLQE of the 

sample using Cs2CO3 is measured to be 41%, which is much lower than the sample with 

Ba(OH)2 as interlayer (60%). The low quantum yield for the caesium carbonate-based sample 

might be due to the quenching effect caused by defects at the Cs2CO3/polymer interface, as 

revealed by X-ray photoelectron spectroscopy (XPS) studies, and the diffusion of Cs
+
 ions 

onto the benzo[2,1,3]thiadiazol-4,8-diyl (BT) units of F8BT, leading to lower energy 

states.
[23,27]

 Although both inorganic interlayers lead to some degree of exciton quenching, 

this is significantly reduced with Ba(OH)2 as compared to Cs2CO3. This could explain the 

higher efficiency of devices with the Ba(OH)2 interlayer. The results from PLQE 

measurements are summarized in Table 3. 

 

3.4 Morphological study of SnO2 and ZnO thin-films 

 

Whilst the performance of the SnO2–based devices demonstrated here indicate that it is a 

suitable n-type metal oxide for electron injection in a HyLED, we note that the device 

performance is still somewhat lower than that of the device based on ZnO as hole injection 

layer. It is informative therefore to compare the morphology of ZnO and SnO2 layers.  

Figure 4 shows the morphology of ZnO and SnO2 surface, as measured by means of 

atomic force microscopy (AFM); both thin films were made by similar means of spray 

pyrolysis, as detailed earlier in this report. For comparison, the measured sheet resistance 

values of the layers on ITO were 0.9 /Sq for ZnO and 2.2 /Sq for SnO2; i.e. comparable to 

within an order of magnitude. As shown in figure 4, ZnO apparently forms a microcrystalline 

morphology, as supported by previous studies.
[6]

 The morphology of SnO2 shows an 

amorphous or grain-like structure, again in agreement with the literature.
[28]

 Different batches 

of SnO2 films with 50nm and 70 nm thickness repeatably show the same morphological 
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structure, however there is a significant variability in the device performance, especially 

when Cs2CO3 is used as the interfacial layer. The comparison of the fluorescence decay time 

between the ZnO and SnO2 based samples (Table 2) reveals that ZnO-based samples in 

general have a longer decay lifetime than SnO2-based samples. This may also be related to 

these differences in morphology. 

 

4. DISCUSSION 

 

The J-V-L curves in Figure 2 indicates there is a current leakage at the interface of 

SnO2/Cs2CO3, while this effect is less pronounced at the SnO2/Ba(OH)2 interface. Also the 

photophysical studies reveal that samples based on Ba(OH)2 have a longer fluorescence 

decay lifetime and larger PLQE than the one based on Cs2CO3. The reduced PL quenching in 

the Ba(OH)2 based samples may be due to the doubly charged Ba
2+

 ions being more difficult 

to diffuse into polymer film than singly charged Cs
+
 ions,

[23]
 leading to a corresponding 

reduced defect density at the interface Ba(OH)2/polymer. Hence, Ba(OH)2 provides a better 

hole-blocking effect, leading to a better device performance. Amongst the large batch of 

devices, it has been found that devices based on SnO2/Ba(OH)2 show better reproducibility 

than devices based on SnO2/Cs2CO3, and the Ba(OH)2 based samples also show a reduced 

exciton quenching effect compared to Cs2CO3 based samples, as shown in Table 3. The 

measured EQE values of devices based on SnO2/Cs2CO3 and SnO2/Ba(OH)2 are compared 

with theoretically estimated ones as shown  in Table 2, which are determined as described in 

equation 1: 

                                                                             (Eq. 1) 

where   is the opposite charge balance,     is the singlet to triplet ratio (taken as 25%),   is 

the measured PLQE and              is the outcoupling factor (which is in the range of 

0.75/n
2
 to 1.2/n

2
),

[29]
 and n is the polymer refractive index being taken as 1.8 for F8BT. The 

calculated EQE values, using both pre-factors 0.75 and 1.2 for comparison, are given in table 

3; the results indicate that the measured device efficiency is slightly higher than that 

theoretically predicted. However, an important caveat is the difference in the F8BT layer 

thickness between devices (1000 nm) and the theoretical model, which is based on the optical 

constants with a film thickness of 100 nm.
[13] 

Furthermore, considering recent evidence that 
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the singlet-triplet ratio can be greater than 25% and even go beyond 50%, there is indeed 

scope for a further improvement of device efficiency.
[30]

  

The morphological study by means of AFM reveals a difference between the ZnO and 

SnO2 surfaces. The suggestion is that the ZnO is microcrystalline-like while SnO2 is 

amorphous-like; details which may be resolved in the future with a detailed  X-ray diffraction 

study. Also the comparison of fluorescence decay lifetime between the structures of 

ZnO/inorganic interlayer/F8BT and SnO2/inorganic interlayer/F8BT reveals that ZnO based 

samples show a longer fluorescence decay lifetime (see Table 3). This suggests that it might 

be worthwhile investigating alternative methods of SnO2 deposition, such as atomic layer 

deposition (ALD), which delivers a crystalline structure and might allow modification of the 

interfacial interaction between SnO2 and the inorganic interlayer, in order to achieve an 

improved device performance. This method would also have the advantage of lower 

processing temperatures that those used in spray pyrolysis, where SnO2 requires annealing at 

high temperatures, close to where glass starts to bow, and which would obviously be 

incompatible with plastic substrates. ALD would thus potentially allow compatibility with 

some of the more niche low-cost flexible substrates. Nevertheless, the reproducibility of 

devices based on SnO2/Ba(OH)2 as electron injection and hole blocking layer is high 

compared to those based on SnO2/Cs2CO3, in addition to the superior device performance 

metrics described. 

5. CONCLUSIONS 

In summary, polymer (F8BT) HyLEDs based on Tin (IV) oxide as an electron 

injection and transport layer, used in combination with thin hole-blocking interlayers, have 

been investigated. The device efficiency with Ba(OH)2
 
as the interlayer reaches 20.0 cd/A 

with an EQE of 6.5%,  which is significantly higher than that of diodes using Cs2CO3 (current 

efficiency of 12.1 cd/A and corresponding EQE of 4%).  The higher efficiency of the devices 

with Ba(OH)2 is believed to arise from a better hole-blocking effect, since Ba
2+

 is doubly 

charged and less readily diffuses into the polymer layer, leading to fewer interfacial defects. 

Photophysical studies reveal that the fluorescence lifetime of F8BT is longer and PLQE 

higher for quartz/SnO2/Ba(OH)2/F8BT structures compared to quartz/SnO2/Cs2CO3/F8BT. 

Hence, the interface of SnO2/Ba(OH)2  is characterized by reduced exciton quenching, as 

compared to SnO2/Cs2CO3. A further detailed study of the interface between SnO2 and 

interlayer(s) might be helpful for further device optimization. The morphological study of 
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SnO2 and ZnO thin films reveals that the surface morphology of SnO2, as prepared by means 

of spray pyrolysis, is different from that of ZnO prepared using the same method.  

SnO2 has thus been demonstrated as a highly suitable n-type metal oxide material for 

electron injection in HyLEDs, in combination with the other desirable features and properties 

of this material. With suitable improvements of surface morphology in the future, SnO2 may 

be exploited in state-of-the-art LED devices.  
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Figure 1 The structure of a hybrid polymer light emitting diode using SnO2 as the electron 

injection layer, and Cs2CO3 or Ba(OH)2 as the inorganic interlayer (hole blocking layer). The 

inset shows the chemical structure of the F8BT active layer.  
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Figure 2 (a) J-V-L curve comparison of the performance of HyLEDs (Ba(OH)2 hole-blocking 

layer) with two different SnO2 layer thicknesses, 50nm (circles) and 70nm (squares). (b) J-V-

L curve comparison of diodes based on SnO2, using Cs2CO3 (squares) and Ba(OH)2 (circles) 

as the hole-blocking layer. In both graphs, solid/red symbols represent luminance and 

empty/black symbols the current density. 
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Figure 3 Fluorescence decay-time measurements with F8BT deposited onto three different 

interfaces, as indicated; quartz/SnO2/Cs2CO3/F8BT, quartz/SnO2/Ba(OH)2, and quartz/F8BT. 

The F8BT film thickness is 15nm, with excitation at = 470 nm, and emission being 

measured at = 555 nm. 
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Figure 4. Atomic force microscope (AFM) images of spray deposited ZnO (top) and SnO2 

(bottom). The r.m.s. roughness of both of these films was measured to be below 5 nm. 

Respective height scales for the two images are shown as insets.  
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HyLED structure ITO/SnO2/Cs2CO3/F8BT/MoO3/Au ITO/SnO2/Ba(OH)2/F8BT/MoO3/Au 

Bias@10mA/cm
2
 6.2V 10.1V 

Bias@1000cd/m
2
 6.4V 12.3V 

Peak luminance 

efficiency (cd/A) 

12.1@9.4V 20.0@15.6V 

Peak EQE (%) 4% 6.5% 

Power Efficiency (lm/W) 4.2 4.1 

 

Table 1 HyLED performance parameters using Cs2CO3 and Ba(OH)2 as inorganic interlayers  
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F8BT (15nm) Decay time (ns) 

Quartz/ZnO/Cs2CO3/F8BT 1.16 

Quartz/ZnO/Ba(OH)2/F8BT 1.31 

Quartz/SnO2/Cs2CO3/F8BT 0.95 

Quartz/SnO2/Ba(OH)2/F8BT 1.26 

 

Table 2 Comparison of fluorescence decay lifetimes between samples based on ZnO and 

SnO2 as well as Cs2CO3 and Ba(OH)2. The thickness of ZnO and SnO2 is ~ 50 nm and that of 

the thin film of Cs2CO3 and Ba(OH)2 is ~ 7 nm. 

 

 

 EQE 

Measured 

 

 

EQE 

Predicted 

Decay 

time (ns) 

PLQE (%) 

SnO2/Cs2CO3/F8BT 4%  2.6-3.7 % 0.95 41 

SnO2/Ba(OH)2/F8BT 6.5%  3.8-5.6 % 1.26 60 

 

Table 3 A comparison of EQE values between 1000nm thick devices based on Cs2CO3 and 

Ba(OH)2, in terms of both measurement and theoretical prediction. The theoretical values 

account for the full possible range of device outcoupling factors. Corresponding F8BT 

fluorescence decay time and photoluminescence quantum efficiency (PLQE) values are 

given, where the polymer thickness was set at 15nm. 

 


