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There is an emerging and urgent need for new approaches for the management of environmental
challenges such as flood hazard in the broad context of sustainability. This requires a new way of working
which bridges disciplines and organisations, and that breaks down science-culture boundaries. With this,
there is growing recognition that the appropriate involvement of local communities in catchment
management decisions can result in multiple benefits. However, new tools are required to connect or-
ganisations and communities. The growth of cloud based technologies offers a novel way to facilitate this
process of exchange of information in environmental science and management; however, stakeholders
need to be engaged with as part of the development process from the beginning rather than being
presented with a final product at the end.

Here we present the development of a pilot Local Environmental Virtual Observatory Flooding Tool.
The aim was to develop a cloud based learning platform for stakeholders, bringing together fragmented
data, models and visualisation tools that will enable these stakeholders to make scientifically informed
environmental management decisions at the local scale. It has been developed by engaging with
different stakeholder groups in three catchment case studies in the UK and a panel of national experts in
relevant topic areas. However, these case study catchments are typical of many northern latitude
catchments. The tool was designed to communicate flood risk in locally impacted communities whilst
engaging with landowners/farmers about the risk of runoff from the farmed landscape. It has been
developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. The
pilot tool combines cloud based services, local catchment datasets, a hydrological model and bespoke
visualisation tools to explore real time hydrometric data and the impact of flood risk caused by future
land use changes. The novel aspects of the pilot tool are; the co-evolution of tools on a cloud based
platform with stakeholders, policy and scientists; encouraging different science disciplines to work
together; a wealth of information that is accessible and understandable to a range of stakeholders; and
provides a framework for how to approach the development of such a cloud based tool in the future.
Above all, stakeholders saw the tool and the potential of cloud technologies as an effective means to
taking a whole systems approach to solving environmental issues. This sense of community ownership is
essential in order to facilitate future appropriate and acceptable land use management decisions to be co-
developed by local catchment communities. The development processes and the resulting pilot tool
could be applied to local catchments globally to facilitate bottom up catchment management approaches.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Europe is currently experiencing a relatively flood-rich period
with a spate of major floods across the continent over the last
decade (Macklin and Rumsby, 2007; Wilby and Keenan, 2012). UK
agriculture has experienced significant intensification over the past
70 years as a direct result of national government and European
incentives to increase productivity (O'Connell et al. 2007; Marshall
et al. 2014). Agricultural land use management is known to have an
influence on downstream flood risk in the UK (Burton et al. 2003;
O'Connell et al. 2007; Wilby et al. 2008; Hess et al. 2010;
McIntyre and Marshall, 2010; Wilkinson et al. 2013b). Instead of
fighting and controlling flood hazards with only traditional engi-
neered solutions (e.g. higher dikes, flood walls), new management
styles focus on ‘‘understanding and managing the flood risk’’
(Samuels et al. 2006; de Groot, 2014). Farmers and land managers
are increasingly targeted by scientists to help inform research and
policy tools (Nettle et al. 2010; Vignola et al. 2010; Winsten et al.
2010; Oliver et al. 2012). There is growing recognition that the
appropriate involvement of local communities in land and water
management decisions can result in multiple environmental, eco-
nomic and social benefits. Therefore, local stakeholder groups are
increasingly being asked to participate in decision making along-
side policy makers, government agencies and scientists (see Lane
et al., 2011 which illustrate a way of working with experts, both
certified [academic natural and social scientists] and non-certified
[local people affected by flooding], for whom flooding is a matter
of concern). As such, addressing issues such as flooding requires
new ways of learning about the catchment, by engaging with local
communities for better mutual understanding. There is a need for a
catchment based, community led initiative to understand and
respond to flood hazards, using a bottom up approach. Tools are
required which are developed through a behaviour driven design
process. The communities at risk of flooding, the landowners who
manage the land which generate the runoff and the organisations
who manage catchments need to be part of the development
process from the beginning rather than being presentedwith a final
product at the end.

Recent advances in the area of computing and cyber infra-
structure have provided computing platforms to enhance the
management of data resources, using services which bring together
people and tools, facilitating information sharing for science or
other data rich applications (Yang et al. 2010; Fox and Hendler,
2011; Huang et al. 2013). In short this means that we can now
compute, model, share information and therefore, potentially,
achieve higher levels of insight, and make better decisions than
before. A problem today is not so much that we can visualise a
virtual reality that has the appearance of being more and more
realistic; it is much more the evaluation of the models on which
that representation of reality is based. Models can be misleading in
the detail, even if they provide some broad resemblance to obser-
vations of real variables. An important concept in this respect is
treating models as tools for learning about places (the “models of
everywhere” concept of Beven (2007) and Beven and Alcock
(2012)), whereby models become repositories of knowledge that
can assimilate data, integrate information about places from local
stakeholders, and be interrogated to guide management and policy
decisions, or to inform the requirements for new data to constrain
uncertainties.

This type of learning process about places will be similar
regardless of discipline, process, users and uses. Detailed visual-
isation changes the focus from the concepts and issues about how
to represent the system to the idiosyncrasies of places; to learn in
depth about a particular reach of river, a soil profile or a field. This
will require making all the data available about that place on a
shared platform; being able to access a collection of models and
choose those that are appropriate to understand the complexities
that exist; and, allowing that the information collected by com-
munities of volunteers (such as farmers, catchment managers or
members of the public) might be valuable in constraining the vir-
tual view of a place. This sense of place can be particularly useful in
engaging local communities with processes in familiar contexts to
them (Lane et al. 2011). If all of these opportunities can be truly
managed and brought together, this is the vision and the possibility
of what we see as a great new way of doing hydrology and earth
science and is what we describe the start of here e an environ-
mental virtual observatory.

New and specific computational opportunities that can
contribute to this vision include: (i) the use of cloud computing
techniques to allow disparate databases to be readily available to
inform the representation of a complex sequence of processes and
forcing boundary conditions for a particular application and scale,
(ii) the choice and the linking-in of the relevant process represen-
tations in a complex system in a way that allows those represen-
tations to be easily modified in an open source, user-driven, future-
proofed way, (iii) the means of evaluating and managing uncer-
tainty by conditioning against past and new future observations at
different scales in space and time, and (iv) ways of presenting
complex interpretative and predictive model results to different
groups of users using effective visualisation methods. A particularly
difficult issue is how to convey the assumptions on which such
results are based, and record the audit trail of the decisions that
lead to them, in a way that is accessible to users if required (e.g.
Kloprogge et al. 2011; Beven and Alcock, 2012). Accountability
should be an important part of the process (e.g. Stirling, 2010).

The Environmental Virtual Observatory Pilot project (EVOp) was
a proof of concept project to develop new cloud based applications
for accessing, interrogating, modelling and visualising environ-
mental data by developing a series of exemplars at the local, na-
tional and international scale (in this paper we focus on the local
scale exemplar). The long term vision of the Environmental Virtual
Observatory concept is to (http://www.evo-uk.org):

1. Make environmental data more visible and accessible to a wide
range of potential users including public good applications;

2. Provide tools to facilitate the integrated analysis of data, greater
access to added knowledge and expert analysis and visualisation
of the results;

3. Develop new, added-value knowledge from public and private
sector data assets to help tackle environmental challenges.

The aim of this work was to develop a cloud based learning
platform for stakeholders, bringing together fragmented data,
models and visualisation tools that will enable these stakeholders
to make scientifically informed environmental management de-
cisions at the local scale. This novel cloud based tool was devel-
oped through an evolutionary iterative development process
involving active local stakeholder engagement. In particular we
focussed on communicating the management implications related
to flooding, which was identified as a key environmental issue
with stakeholders in three focus areas across the UK. More spe-
cifically, the objectives were to (1) Develop a framework for
creating the cloud based learning platform using stakeholder
engagement to identify the crucial components for the end-users,
(2) Based on outcomes from (1), build and evaluate the cloud
based tool utilising further stakeholder feedback, and (3) Explore
how complex hydrological processes (e.g. concepts of hydrological
modelling) can be effectively communicated to all stakeholders
using cloud based tools to increase understanding of environ-
mental management decisions.

http://www.evo-uk.org
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2. Study areas

The development of the local EVOp cloud based tool was un-
dertaken in three dominantly rural river systems in the UK; the Dyfi
(Wales), Dee (Scotland) and Eden (England) (Fig. 1). Focus sub-
catchments of Leri (47 km2; Dyfi), Tarland (80 km2; Dee) and
Morland (15 km2; Eden) were chosen based on provision of
knowledge from existing research into land, water and stakeholder
interactions, coupled with a good network of hydrological sensing.
All sites commonly have mixed land use, a range of water quality
issues, with small population centres that have suffered recent
flooding.

The River Dyfi is located north of Aberystwyth inmid-Wales and
its catchment drains an area of 671 km2. The Dyfi and its tributaries
form a dense, dendritic drainage network with a total channel
length of over 1500km. Rainfall in the upland areas is on average
2000 mm per annum, falling to c. 1000 mm on the coast. Land use
in the catchment is dominated by agricultural activity, whereas
slate quarrying and metal mining were historically prevalent. The
Dyfi catchment has been designated as a UNESCO Biosphere
reserve, with 23 designated Sites of Special Scientific Interest (SSSI)
and parts of the Snowdonia National Park lying within the catch-
ment boundary. The Leri is a tributary of the Dyfi to the northwest,
near the coast. Stakeholders include farming interests and resi-
dents of Tal-y-Bont village (population 660) which had severe
flooding in June 2012, including damage to local housing and
businesses (Foulds et al. 2014a, 2014b).

The River Dee in northeast Scotland has multiple European
habitat designations (e.g. Natura 2000 and Scottish Natural Heri-
tage Special Area of Conservation) for species such as Freshwater
Pearl Mussel and economically-important Salmonid fish species.
Tarland Burn, situated centrally in the Dee catchment, is the first
tributary with intensive land use and first point of nutrient-
impacted waters entering the oligotrophic main river (Stutter
and Lumsdon, 2008). Rainfall is approximately 1000 mm per
year with long periods of winter snow. Stakeholders include
farming interests, local residents and businesses in both the village
of Tarland and town of Aboyne (populations 600 and several
thousands, respectively). The Tarland Burn suffers diffuse pollution
and morphology issues with pressures from farming, urbanization
and septic tanks. It is currently PooreModerate under the Euro-
pean Union Water Framework Directive (WFD) and is a Priority
Catchment for the national regulator, Scottish Environment
Fig. 1. The three UK catchments in which testing and evaluation occurred. The Morland and T
(dark green) respectively. (For interpretation of the references to colour in this figure legen
Protection Agency (SEPA). The community suffered a large flood in
2002, with minor ones since. In response to these pressures
excellent examples of community led initiatives in natural flood
management and riparian habitat improvement have occurred
(Bergfur et al. 2012).

The Eden catchment in northwest England is a mixed grassland
area of 2398 km2, with a main channel length of 130 km. Average
rainfall is 1700 mm per year, with higher rainfall on the uplands of
the Lake District and Pennine fells on the catchment boundaries to
east and west (Mayes et al. 2006). The catchment has several sites
designated as SSSI and Special Areas of Conservation (SAC) status,
for the range of habitats and species it supports and the river passes
through two National Parks, two Areas of Outstanding Natural
Beauty (AONBs) and a World Heritage Site. Agriculture in the
catchment is characterised by mixed dairy and livestock farming,
and comprises both rough grazing and improved grazing with
some arable land use towards the north and on the richer soils of
the River Eden floodplain. Diffuse pollution and flooding are key
water pressures across the Eden, including the Morland subcatch-
ment, in the southwest of the main catchment (Owen et al. 2012).
Stakeholders in this area represent farmers and residents of Mor-
land village (population 380).

3. Iterative framework development process

This section describes the methodology by which the Local
EVOp Flooding Tool (LEFT) was created following the agile devel-
opment cycle presented in Fig. 2. The tool was created by a multi-
disciplinary working group composed of hydrological,
environmental modelling, social science, distributed computing
and programming specialists. Agile development allows adaptive
planning through evolutionary steps and with continued collabo-
ration with stakeholders, facilitating rapid and flexible response to
change. Fundamental steps in the process were the discussions
with stakeholders at the beginning and in a number of iterations
throughout the project cycle to ensure the tool meets the needs of
its users.

3.1. Stakeholder engagement

A fundamental objective was to design, develop and test a cloud
based tool with local catchment stakeholders based around the
environmental issues of interest to the community; for this a
arland (light green) catchments are located within the larger Eden and Dee catchments
d, the reader is referred to the web version of this article.)



Fig. 2. LEFT development cycle.
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development cycle was proposed (Fig. 2). Morland catchment
stakeholders were residents of the village of Morland, farmers and
catchment managers from the Environment Agency and Natural
England. Dyfi catchment stakeholders were villagers who live close
to the Dyfi (e.g. Tal-y-bont village), farmers, and local environ-
mental and catchment groups. In the Tarland catchment, stake-
holders included farmers, local village residents, SEPA and the local
council. These stakeholders were engaged throughout the life of
the project. However, it was acknowledged that stakeholders
should not be just those who reside within or have a vested interest
in the named catchment but also external stakeholders who are
interested in the process. These could include, for example, national
environmental policy officers or other scientists (including mem-
bers of the EVOp). The EVOp had a Project Advisory Group (PAG)
who offered guidance on the scientific, political and technical
development aspects of the project and tool development. This
group of eight members consisted of national level representatives
from the water and IT industry, regulatory bodies, government, and
academia who were technical and scientific experts in the fields of
cloud computing and environmental sciences.

Development and feedback meetings (Fig. 2) and an evaluation
workshop were held in the Dyfi, Tarland and Morland catchments
over the two year lifespan of the pilot project. In most cases, these
took the form of eveningmeetings with farmers and local residents,
where informal dialogue was engendered to gain their local
knowledge and opinions. Alongside this there were meetings with
the PAG and other scientific stakeholder groups. The start-up
community stakeholder meeting began by introducing the
concept of the EVOp, followed by a workshop session to discover
relevant environmental issues to both the farming and local village
communities. The knowledge exchange exercise during the first
workshops identified flooding as a shared and important issue in all
three catchments (Mackay et al. 2012;Wilkinson et al. 2013a). Local
flood risk and management became the primary focus of the pilot
tool. Development suggestions for the tool were then presented for
the next stages with further discussions between the project team
and the local stakeholders. The two contrasting stakeholder groups
were used to validate the tool throughout the process.
3.2. Storyboard development

Based on initial stakeholder discussions, there was a require-
ment for communities to be better informed about flooding in
relation to environmental aspects of change in climate, land use
and management. A novel aspect of the project was to use a sto-
ryboard to ensure the tool development was grounded in real
questions and challenges of the end-users. A storyboard was
developed for each catchment that reflected the needs of the
different stakeholders based around the theme of flooding. This
was used to engage and commence design of the data needs and
the prototype cloud based tool. This approach allowed the tool to be
developed efficiently through stakeholder consultation. With di-
rection from the local communities, the local flooding communities
storyboard was created (Table 1). The generic aspects of the com-
bined storyboard process are presented in Table 1b with examples
of the specific needs to be addressed by individual communities
(Table 1a). The storyboard sets a series of technical and scientific
questions. The spatial scale of the tool was reduced to research case
studies and the flooding processes were focused primarily on flash
flooding arising from rural land management. Other flooding pro-
cesses were discussed and acknowledge at the first stakeholder
workshops (e.g. surface water flooding), however, the stakeholder
focus remained on rural land use management. The storyboard
provided a mechanism to create a focused tool, which incorporated
stakeholder feedback. Before the prototype tool was developed an
exercise to understand what cloud resources were available was
conducted (Vitolo et al. 2015).

3.3. Development phases

3.3.1. First development phase
For the first stage of prototype testing, the format of local

community workshops followed a structure of presenting the
prototype concepts of the LEFT (see Electronic Supplement 1 for an
overview of the cloud technologies used in development of the
prototypes), obtaining initial feedback, followed by structured
discussion on how to move to the next step (following the princi-
ples of the LEFT storyboard; Table 1). The main feedback points at
this stage from the community meetings were:

� The choice of the LEFT mapping tool technology was accepted
(Electronic Supplement 1), Google was familiar to them and the
use of overlaying colour-coded markers on the map to indicate
the availability of additional datasets such as rainfall time series
and telemetered imagery was considered intuitive by the
stakeholders.

� Many of the technical complexities were not appreciated or
even noticed. For example, in the Morland workshop, real time
(telemetry) feeds of rainfall, river level and webcams were
accepted as being normal.

� There was more interest in a discussion of the point of the sci-
ence and modelling and less in the detail of the science and the
models. The end users wanted simple messages in a simple
format.

The spatial and temporal web interface and the early form of the
modelling widget were approved subject to improvements.

3.3.2. Prototype 1
Feedback from the previous step was interpreted by the devel-

opment team and incorporated into the LEFT. In essence, the need
for validation through the agile development process was
embraced as the prime methodology for evolving the tool. The
development cycle (Fig. 2) highlights the agile development steps.



Table 1
Migration of (a) one of the community led storyboards (Tarland example) into (b) the conceptual framework storyboard for the interactions of a user with a set of processes for
querying a web tool interface.
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This showed that validation is needed at the technical verification
stage and at the stakeholder validation stages (Fig. 2). Independent
testing of each cycle of the design was carried out with stake-
holders. This included both a critical assessment of the technical
development (e.g. the tools and data e where limitations were
acknowledged by the user groups, for example farmers understood
the rainfall variations across their catchment) and validation of the
conceptual modelling approach (e.g. acknowledging the limitations
in conceptualising how the catchment system works and the
impact of change). The repetition of the development cycle to
produce new prototype versions resulted in the formation of a
development matrix (Fig. 3), which indicates the refinement steps
of the LEFT and the key improvements made as feedback was
assimilated. This allowed stakeholder knowledge to be directly
incorporated into the tool. Prototype 1 was able to choose tools that
could reflect time series (Flot) and Graphical User Interface (GUI)
options such as parameter sliders (which were implemented using
HTML5) (see Electronic Supplement 1). At this stage, the creation of
parameter sliders allowed instantaneous visualisation of the
impact of “what-if” decisions on flowand on flood level. Hence land
use change and sensitivity of parameter changes could be shown
simplistically (although deterministically).
During community workshops, the need to articulate the mes-

sage of how flooding occurs and the meaning of scenarios became
the main focus. An important part of this exercise was to determine
what land use change scenarios the stakeholders (both villagers as
the receptors and landowners at the source) would prefer to see
implemented in the catchment to illustrate how changes to land
use and management practices are likely to impact on flood risk at
the catchment outlet. The meeting in Morland village attended by
local farmers and villagers looked to identify some common land
use change scenarios. Alongside the ‘current’ scenario, three other
conceptual scenarios were discussed; increased and intensified
farming activities (whichwould not take on best farming practices),
sustainable runoff management with current farming practices (i.e.
using agri-environment schemes) and increased woodland. The
communities did understand the hydrological concepts and were
able to comprehend the danger and possible benefits arising from
land management options upstream. It became very clear that
‘simple informative descriptions’ of processes and scenarios were
needed. The PAG largely approved of the tool, however, they were
enthusiastic that the tool should be able to run as a self-contained



Fig. 3. A framework for creating the LEFT that resides in the EVO (Tasks in boxes, lessons learned in italics).
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package on the cloud. There was a need to show both sets of
stakeholders a comparison of cloud based modelling and desktop
based modelling in order to demonstrate computational speed and
elasticity differences between both systems.

3.3.3. Prototype 2
The final prototype LEFT was created with a mixture of spatial

and temporal tools for the impacts of land use change on flooding.
Help and guidance was supplied as part of the LEFT in the form of
on-screen help balloons and explanatory illustrations. It was agreed
that series of ‘talking head’ videos would be needed to act as a
walkthrough of the tool that would clearly show the generic and
bespoke aspects. It was vital to end users that the capability of the
modelling tool be explained to all stakeholders with detailed
worked examples. Prototype 2was achieved at the final point of the
EVOp project (however, the development group still work to
continue its legacy e see discussions). The next sectionwill present
the outputs from prototype 2.

4. Results from the local EVO flooding tool

By following the agile development process described in the
previous section it has been possible to create a pilot LEFT designed
for community needs and to demonstrate the future potential of a
full EVO (beyond the pilot). The methodology of using a frequent
feedback loop with many user groups was an important develop-
ment aspect. Hence an agile development approach using active
feedback to evolve the tool rapidly was embraced by the stake-
holders. Through this development the unique parts of the overall
tool are:

� A dynamic mapping interface
� Viewing different sources of live and historical data
� Combining different datasets (mashup)
� Dynamic and elastic cloud modelling
� Learning and explanatory material

A multimedia video demonstration of the pilot LEFT tool can be
viewed at http://vimeo.com/103323374 (accessed August 2014).

4.1. Mapping and data visualisations

The first prototype responded to the catchment stakeholder
desire to view local environmental data relevant to flooding. It was
identified during stakeholder meetings with villagers in Morland,
Tarland and Tal-y-bont that access to live data can allow commu-
nities to make self-informed decisions. This data can be either
quantitative (such as rainfall and river level data) or qualitative (e.g.
webcam imagery). For example, farmers in the Morland catchment
were interested to view live rainfall data across the Eden catchment

http://vimeo.com/103323374
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to compare rainfall totals during storm events. In the Eden catch-
ment, three different sources of time series of hydrometric data
visualisations were discovered and linked to (Environment Agency
for England and Wales, UK Meteorological Office, and Eden DTC),
one of these allowed access to live rainfall dataset visualisations
(EdenDTC; see Owen et al. 2012; Outram et al. 2014). This process
indicated the potential to access data from different sources within
the Virtual Observatory framework. A customized interactive
mapping interface was developed which the user experiences first
on entry to the LEFT. Live and static datasets from hydrometric
sensors were overlaid on the map as geotagged markers. This
provides users with the ability to instantly identify assets of interest
based on geographical location. For most users, this entails
exploring their local catchment and gathering information from
various data sources. The interactive nature of the geospatial layers
provides the ability to reveal new interfaces to the user.

This led to the development of bespoke visualisation widgets
whereby quantitative and qualitative data could be assessed
together using data mashup principles. For example, turbidity data
(units NTU) were not widely known by the local community. This
useful dataset can communicate the amount of suspended sedi-
ment being carried in the channel, an indication of both flow levels
and potential diffuse pollution. Combining this dataset with web-
cam imagery taken at the site of the turbidity measurement allows
the user to examine the colour of the water, or how ‘cloudy’ the
stream looks (Fig. 4). The Flot web library allowed datasets to be
combined on the Google Map tool. This LEFT widget was integrated
into a georeferenced pin allowing the user to locate the source of
the information.

The mapping tool allowed users to explore and discover live
data from within their catchments and to potentially use this data
to make decisions regarding flooding (however, the river level data
only indicate the stage at a fix point). Offline tools have also been
developed through a complementary project (the Flood Risk
Management Research Consortium) to map flooding and uncer-
tainty in areas at risk of flooding (see Leedal et al. 2010; Beven et al.
2014a). These were demonstrated in Eden workshops. Integrating
these mapping tools into a cloud-based tool would be an ambition
of a full EVO. However, for the pilot project, simple cloud based
tools and models were investigated (see Electronic Supplement 1)
to show the potential of a cloud based system. It became apparent
during the first prototype workshops with the communities that
there was a desire to understand why flooding was occurring and
Fig. 4. A widget linking turbidity and temperature time se
whether could it get potentially worse or improve in the future.
Therefore using the interactive mapping tool where assets are laid
on a map and widgets opened upon interaction, a LEFT modelling
widget was created.

4.2. Cloud modelling widget and communication

This widget contains a number of different options for the user
to choose from: the datasets available at this location (for the LEFT
this was a recent flood event that the communities in the case study
catchments were familiar with), a cloud based hydrologic model,
and the model's parameters (using pre-set parameterised scenario
buttons or sliders). The LEFT modelling widget was able to model
these events and then the user could adjust the parameters
accordingly to get a deterministic conceptual understanding of
different land use change scenarios impact on the flood hydro-
graph. A cloud implementation of TOPMODEL (Beven and Kirkby,
1979; Beven, 2012) was used within the rainfall-runoff modelling
widget. TOPMODEL was selected as it is: (1) one of only a few cloud
enabled hydrological models available during the development of
prototype 1; (2) a simple hydrological model which is widely
applicable; and therefore (3) frequently used in the hydrological
sciences community; and (4) its concepts and results are easily
communicated to stakeholders. During development, model setup
was carried out offline to ensure that the input datasets were in the
correct format and the model calibrated and validated to
adequately simulate the observed discharge. Once all selections
were performed by the user, the model was run instantly on de-
mand in the cloud and the returned results were rendered as a
hydrograph plotted using Flot (Fig. 5, right). Changes in the flood
hydrograph could be examined by running the model under
different conceptual scenarios and/or parameter combinations to
allow comparison between model runs and provide an under-
standing of the stream's response at the catchment outlet to
changes to land use and management. Changes in land use and
management in a catchment should be expected to have an impact
on flood runoff generation even without any future climate change
(Di Baldassarre et al. 2010a; Di Baldassarre et al. 2010b; deMoel and
Aerts, 2011; Beven et al. 2014b). Fig. 5, right, highlights the outputs
from the LEFT modelling widget graphical interface. These outputs
give a conceptual understanding that if farming was to intensify
then flood peaks could increase in magnitude and the time of peak
decrease (e.g. O'Connell et al. 2004). By implementing runoff
ries with a webcam image at a selected point in time.



Fig. 5. Left; Conceptual scenarios used in the LEFT modelling widget. Right; Outputs from the LEFT modelling widget relating to the selected conceptual scenarios.
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management, peak discharges could decrease and the time of peak
increase (e.g. O'Connell et al. 2007; Deasy et al. 2014; Wilkinson
et al. 2014). Large scale woodland planting could increase this ef-
fect (e.g. Robinson et al. 1998; Wahren et al. 2012; Wheater et al.
2012). Owing to the uncertainties in applying the scientific
knowledge behind the scenarios at particular sites, it was made
clear that they are not meant to specify accurately how much
change in flooding would actually take place. However, the
educational value of the scenarios and the ensuing debate are
indicative of how the community can comprehend and rationalise
the scenarios for their own circumstances. The debate on the un-
certainties in the approach was discussed. Stakeholders were
therefore encouraged to explore the sensitivity to the magnitude of
those changes (as represented by the sliders) regardless of how
those changesmight be implemented in practice. Again the broader
understanding of the benefits of flood management and land use
management are conveyed to the users in terms of relative risk and
not as absolute values.

Users can explore model parameter sensitivity through HTML
sliders included in the widget. TOPMODEL parameters m, VR and
SRmax were the most sensitive parameters and were implemented
as sliders. However, when these parameters were discussed with
stakeholders, mwas referred to a “land use change” parameter (i.e.
the rate of change of the runoff leaving the catchment - the
recession rate), VR was referred to the “ditch network” parameter
(which relates to the connectivity of the flow) and SRmax referred
to as “the vegetation parameter” (which is the rooting depth of the
crop or tree species). These sliders default to the settings for each
scenario to allow a user to compare how changes to these values
alter the model outputs. This expands functionality of the widget,
allowing the user to manually parameterise the model, and explore
changes in the parameterisation of the model and associated out-
puts. The derivation of the ‘current’ scenario outputs are based on
the calibration of the model to observed flow data.

The uncertainties of this calibration process were discussed and
were acknowledged by the stakeholders during workshops. The
conceptual ‘change’ scenarios (Fig. 5, left) were developed based on
a large range of scientific publications that an increase in intensive
farming practices increase runoff generation (e.g. O'Connell et al.
2004; O'Connell et al. 2007), runoff management can reduce the
flood peak and afforestation can reduce this further if implemented
on a large scale (e.g. McIntyre and Thorne, 2013). However, with
measures such as woodland planting, there were both synergy and
conflict of interest amongst flood storage, environment and
farming objectives. Similar findings were concluded in Morris et al.
(2008) for washland creation in S. England. None of the stake-
holders in the Morland catchment wanted to see a substantial in-
crease in woodland. Both villagers and farmers thought this would
alter how the community currently functions (i.e. the landscape is a
farming environment and that is an important part of the local
economy). This highlights that if substantial woodland was desired
to meet policy requirements, a sustainable payment mechanism
would be required to ensure the rural economy is supported and
supportive (e.g. payment for ecosystem services Prager et al. 2012).

It should be noted that the evidence behind these flood miti-
gation impacts are based on this broad knowledge only and it is still
subject to current debate. For example, in the Leri catchment
(tributary of the Dyfi), given both the size of the storm and the
nature of the catchment, the land management scenarios would
have had very little impact on the extreme flood event. The key
issues were floodplain encroachment and the local Agency's under-
estimation of the flood risk because of the use of short instrumental
records (see Foulds et al. 2014a). This highlights how land use
management change can have little effect on extreme flood events.
Catchment stakeholders did comprehend and generally agreed
with these scenarios and the discussion about the uncertainties
ensured the stakeholders were aware of the limitations of the as-
sumptions. Uncertainty analysis and its communication was high-
lighted as a key addition to any future tool in a full EVO project. In
discussing some of the sources of uncertainty with the local com-
munity, further local knowledge can be gathered that could help to
minimise some of these uncertainties (e.g. Lane et al., 2011; Beven
and Alcock, 2012).

A requirement from stakeholder testing was to create help tools
to allow the user to learn about different parts of the modelling
widget. These were incorporated as a result of discussions during
prototype 1 testing phase. For example, users in Tarland were un-
familiar with how land use scenarios would look for their
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catchment. By using outputs from a virtual reality theatre, these
scenarios could be visualised for their catchment. One of the most
important help tools developed (based on feedback from prototype
1) was the TOPMODEL help tool. Using expert knowledge combined
with stakeholder feedback, a dynamic help tool was created that
allows the user to highlight certain parts of a flood hydrograph and
conceptually understand the catchment and model state at that
point in time (Fig. 6). Fig. 6 also allows stakeholders to understand
the significance of the model parameters required to run
TOPMODEL.

4.3. Stakeholder evaluation of the cloud tool

At the end of the project (whilst demonstrating the final pilot
prototype), evaluation events were held in the Morland catchment
(local community and landowners/farmers), in Tal-y-bont (local
community), the Tarland catchment (with local advisory groups
and scientists) and with the wider PAG and scientific groups. After
demonstration or use of the final version of the pilot LEFT, at-
tendees were asked to fill in a brief questionnaire. Electronic
Supplement Fig. 1 summarises responses to the main questions
on the likely usage, ease of use and appearance of the local EVOp
demo. The results from the questionnaire data suggest that the
respondents have a mixed perception of the LEFT demo. Although
the total number of responses does not represent a large sample
size, there are a greater number of positive than negative responses
to questions about interest in using the demo and its appearance.
Particularly strong positive responses were elicited from questions
about frequency of use, ease of use, presentation/layout, usefulness
and help and information resources (Electronic Supplement Fig. 1).
A citizen of Tal-y-bont summed up the demonstration saying
‘potentially, all of the internet resources demonstrated could be
very useful to a range of different users’. Another participant said
‘there is a need for internet resources that brings the various
strands of data and information together on a particular topic/for
an individual or group in one location’. The large number of neutral
responses perhaps reflects that the LEFT does not currently meet
the needs of those users, which as a pilot might be expected.
However, one participant commented that ‘although the EVO por-
tal was interesting, more time would be needed to adequately
assess its usefulness’. The potential use of the LEFT demo was seen
more for ‘work’ as opposed to ‘personal’ purposes, indicating how
stakeholders currently view its likely utility. This highlights the
need to develop further versions of the tool based on a wider
Fig. 6. Output from an interactive help tool e “what is a h
stakeholder community to capture the needs of the users. The
majority of participants would recommend the LEFT to a friend and
some people commented that the web tools discussed (especially
webcams) ‘are a very positive development’. Stakeholders raised a
wide range of issues that should be tackled by a full EVO; for
example, biodiversity and habitat conservation, climate change and
energy security; food security; droughts; water quality; health of
fisheries were all mentioned alongside flood risk.

5. Discussion and lessons learned

5.1. Development framework and tool outputs

The LEFT has been through three development cycles (Fig. 3)
during the life of the project. This agile development approach has
allowed stakeholders to input into the design of the tool
throughout the pilot project. The key features of the LEFT is that it
has a dynamic mapping interface, a user can view live data from
different sources, it combines different datasets (using mashup
methods), it uses dynamic and elastic cloud modelling, and it en-
gages at all levels of prior knowledge through learning and
explanatory material. Stakeholder evaluation has been an impor-
tant process throughout the development of the tool. The first
engagement events led to the focus of developing a flooding tool,
whilst later events helped develop the functionality for local
stakeholders, local policy makers and scientists. The second
meeting (during prototype 1) focused more on the exploration of
data, understanding of water processes in the landscape, and the
initial development of model scenarios. A discussion of flooding in
Morland village using the Environment Agency for England and
Wales flood inundation predictions highlighted that the local
knowledge of the residents could be used to 'ground truth' these
model predictions and help to improve the way the model is set up
to run. It was suggested the LEFT modelling widget could be
developed into a farmer engagement tool. Further development of
the LEFT modelling widget would probably need to focus on the
needs of a few regular end-users, such as Catchment Sensitive
Farming Officers and the River Trusts, with the prospect for
widening this audience over time. A clear message from the eval-
uation with catchment stakeholders was that the concept of the
cloud was not important to them; there was an expectation that
this information should be available via the internet already
regardless of the employed technical concepts. The real interest
was in how it could help their particular problem or the way
ydrograph and how does this relate to TOPMODEL?”
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information was combined, modelled and presented using tools
that they do not usually have on their own computers.

Many suggestions were made in the final evaluation workshops
to progress the LEFT and the wider EVO concept further. In partic-
ular, it was felt the tools needed a clearer focus and applicability to
landmanagement scale decisionmaking rather than the catchment
scale. This could be a farm scale tool or more defined implications
of the impacts of decisions made at the farm level in terms of
economic cost or practical changes needed. This would require
more existing (or new) models to be developed for use on cloud
computing platforms. Stakeholders saw the LEFT and the EVOp
concept as an effective means to taking a whole systems approach
to solving environmental issues. These findings are similar to de
Groot (2014) who concluded that by including both experts and
citizens in the development of specific measures, cultural elements
such as meanings, values and visions on human/nature relation-
ships can be taken into account in reaching safety and ecological
goals. Feedback also identified other ways to take the LEFT forward,
for example, by creating flood maps which relate to the modelled
hydrographs (see for example Leedal et al. 2010; Beven et al.
2014b). By linking flood maps to socio-economic data, assess-
ments of the costs and benefits of options could be made, providing
the community with information with which to make decisions.
Where it was worth the investment a local real-time forecasting
could be developed to provide warnings to local people based on
local sensors (e.g. Smith et al. 2012, Smith et al. 2014).

5.2. Future directions

The modelling widget highlights how elasticity in a cloud
computing environment can significantly speed up modelling
simulations. The use of cloud computing to run environmental
models has great potential. There is no up-front investment, it has
lower operating costs, it outsources demanding issues such as
scalability, and it has the potential for green IT (Elkhatib et al. 2014).
However, some issues do need to be resolved such as knowing
where your data resides, risks of cloud companies closing down and
running costs/funding (highlighting sustainability and mainte-
nance issues; who would keep the site up and running and solve
technical problems). Legal issues also need to be explored, for
example, by mashing two different datasets together it may be
possible to create new data (for example, which could identify a
regulatory breach) which could identify an individual that could
subsequently be used for a prosecution.

The EVOp uses a hybrid approach to take advantage of both
types of cloud server (public and private) (Elkhatib et al. 2012,
2013). The pilot tool uses flood events which were known by the
local community and these events were pre-calibrated within the
modelling tool environment, therefore the user could click ‘current
conditions’ (Fig. 5, left) and the best fitting model output would be
applied. This was identified using a random search approach, based
on an offline Monte Carlo simulation with 5000 realisations. An
automated Monte-Carlo script could be integrated into the
modelling widget, but for the purpose of demonstrating the tool,
the user is able to use parameter sliders to manually calibrate the
model. However, calibrating the tool does require expert hydro-
logical knowledge in the modelling process or it can form part of
the learning process for other end users. The pilot LEFT has high-
lighted there is potential for users to pre-select their desired time
period. This was something that could not be actioned in the pilot,
however, should be considered in a full EVO. It was found that if
complex tools are being communicated to non-specialists, the help
material needs to be clear and to the point. An example of how the
LEFT has taken this forward is with ‘talking head’ video demon-
strations (see weblink at the beginning of the results section).
As the focus of the pilot project was to demonstrate the po-
tential to connect data, models and visualisation tools in the cloud,
the model outputs are conceptual. Uncertainty surrounding the
outputs was discussed with stakeholders during trialling prototype
2 (when the pilot project ended). The next step would take on
board this feedback and consider model uncertainty and commu-
nication of this uncertainty. The communication of uncertainty in
modelling results was explored in the National Hydrology EVO tool
(this shows uncertainty bounds calculated offline). The flood haz-
ard maps used for illustration in the project also included uncer-
tainty estimates (Beven et al., 2014a,b). There is potential to link
these types of maps with the outputs from the European Flood Risk
Management Directive, allowing flood risk and hazard maps
developed in those plans to be linked with similar flood mapping
tools (though cloud technologies). There was also an attempt (after
the final evaluation) to generate 'live' the uncertainty bounds for
the LEFT tool using a Taverna workflow based on the generalized
likelihood uncertainty estimation (GLUE) methodology. This was
not pursued due to limited timeframe of the project. Fig. 7 high-
lights just one option as to how the uncertainty could be visualised
in the modelling using only the sliders and multiple simulations.
There is a need for future development of the LEFT to include a tool/
function to communicate the nature of uncertainties that might
result in decisions being made in different ways (see Prudhomme
et al. 2010; Wilby and Dessai, 2010; Beven and Alcock, 2012;
Beven et al. 2014b).

The LEFT is one of four pilot tools developed within the wider
EVOp project, focussing on the local scale. National (UK) tools were
developed looking at diffuse pollution exports (Greene et al. 2015)
and water resources modelling (Odoni and the NERC EVOp Team
2012). An international scale tool explored soil carbon fluxes
(Emmett et al. 2014). These tools use the same cloud principles of
linking cloud models, data and visualisation tools. However, the
fundamental difference is they exist at different scales and engage
with different stakeholders. There is a need to link up these tools to
allow knowledge from each to be either upscaled or downscaled.
For example, some farmers in the Eden catchment were interested
to learn more and discover how diffuse pollution levels vary across
the UK.

The development of the LEFT (and also the wider EVO tools)
raised issues about data availability and sharing. There is a need for
all stakeholders to become better at data sharing. Coupled with
this, many spatial datasets within the case study catchments are
restricted (e.g. land use) and cannot be made public (however,
some can be made public at a cost). Therefore if a full EVO were to
include real time models, issues regarding the acquisition of real
time datawould need to be resolved in order for the full potential of
an EVO to be realised. Combining live data and environmental
models in a cloud environment would allow for more
accurate predictions (e.g. local floodwarning systems). There is also
a need to address compatibility issues; for example some
visualisation tools did not perform properly in Internet Explorer
prior to version 9.

6. Conclusions

The pilot LEFT tool has been created and tested using an agile
development approach. It has brought scientists (from different
disciplines), communities and catchment managers together to
identify common environmental issues and to look forward at ways
to manage these. It provides data visualisations, modelling capa-
bility and interpretative information, which can build a greater
understanding of the environment and facilitate the exchange of
ideas between different interest groups. Overall, there was uni-
versal stakeholder agreement that EVOp has the potential to



Fig. 7. An example interface (using Flot) that could be used in future tools to explore uncertainties.
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provide a tool that holds both educational and scientific value. The
novel aspects of the LEFT are: the co-evolution of tools on a cloud
based platform with stakeholders (communities), policy makers
and scientists; encouraging sciences to work together (this pilot
brought together environmental, computing and social disciplines
together); a wealth of information that is accessible and under-
standable to a range of stakeholders; and provides a framework for
how to approach the development of such a cloud based tool in the
future. The framework and resulting tool could be applied to similar
catchments globablly and applied to other environmental issues.
The concept of deploying data, models and tools as services in the
cloud was demonstrated to be an effective way forward.

Flooding was highlighted as a key environmental issue in all
three study catchments. Other catchment issues were also identi-
fied but all the stakeholders involved explored the cloud based
tools provided to understand and manage flood risk at a local level.
The iterative development process allowed the LEFT tool to be
adapted to the users' needs and allowed the development team to
efficiently design the functions of the tool that the stakeholders
requested. In particular, to make the outputs from modelling more
accessable to catchment stakeholders, the results from the hydro-
logical model could be fed into a hydraulic model to allow the ef-
fects of different land management scenarios to be tested in terms
of predicted inundation maps. The development of the pilot LEFT
highlighted issues that should be resolved when developing the
next stage of the EVO process. Owing to the limited timeframe of
the project (a two year pilot project) the LEFT was unable to explore
uncertainty of model outputs in detail. Therefore uncertainties
were discussed in final stakeholder workshops.

There is a great deal of potential to further develop the LEFT and
incorporate some of the additional features illustrated by the sto-
ryboard. It is essential that additional functionality within EVOp is
matched by the careful development of supporting material and
help features to empower and educate users in how to carry out
analyses in a considered way. The addition of more data and sen-
sors from within the study catchments or across more locations
would be a simple step to expand the geographical range of EVOp.
In terms of tools, the ability to import and manipulate data, rather
than stream an image, would allow more options for how the user
can view data at sites and compare data between sites. Creating a
greater sense of ownership of EVOp by the wider community is
important for its continuation and future success; this may partly
be achieved by the development of crowdsourcing tools to enable a
wide range of people to contribute to tackling science problems.
This supports statements that catchment science and management
should follow bottom-up working principles (Fraser et al. 2006;
McGonigle et al. 2014; Watson, 2014) whereby stakeholders on
the ground need to be engaged and involved in catchment man-
agement and restoration projects. Local catchment stakeholders
identified importantmerits of using the LEFT (and cloud based tools
in general), for example, being able to access data and tools
remotely that are normally not available to them. Above all,
stakeholders saw EVOp as an effective means to taking a whole
systems approach to solving environmental issues.

Already, nationally and internationally there is an appetite for
the creation of a full EVO. By using findings from this study and
other pilot tools, new initiatives have already been proposed (for
example the Belmont Forum [see http://igfagcr.org/-accessed
August 2014]). The EVO concept highlights the ambition for holistic
thinking between scientists, policy, practitioners and the general
public in order to solve environmental issues. By bringing together
our fragmented environmental datasets, models and tools using a
cloud infrastructure, these issues can be resolved more efficiently
and cost effectively. The EVO offers the realisation of a new type of
catchment science and the ‘models of everywhere’ concept.
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